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Geometry of Elementary Operations

 

Notation:

 

We write  

 

x

 

 = 

 

B

 

x  for a vector in a geometrical space,  perhaps the plane or our familiar  3-
dimensional space,  wherein basis  

 

B

 

  connects  

 

x

 

  with the column vector  x  of its components 

via an invertible linear transformation. Similarly  

 

w

 

T

 

 = w

 

T

 

B

 

–1

 

  is a linear functional acting upon 

vectors in the geometrical space and represented by a row vector  w

 

T

 

  via the same basis  

 

B

 

 .  

Hence,  

 

w

 

T

 

x

 

 = w

 

T

 

x ;  in fact,  all expressions involving geometrical entities like  

 

x

 

  and  

 

w

 

T

 

  in 
this note are computed by replacing those entities' symbols by their numerical representatives  x  

and  w

 

T

 

 .  So long as we stick with just one basis  

 

B

 

  we might as well avoid the bother of typing 
boldface characters;  whenever we see  “ x ”  we shall let the context determine whether this 
refers to the column vector  x  or to the geometrical vector  

 

x

 

 .

 The equation  “ r

 

T

 

x = constant ”  confines  x  to a  

 

line

 

  if the whole space is  2-dimensional,  a  

 

plane

 

  if  3-dimensional,  an  

 

hyperplane

 

  if the dimension exceeds  3 .  In this note the word 
“ plane ”  will be used as an abbreviation for  “ line or plane or hyper-plane.”

 

Elementary Projectors:

 

For any vector  c  and functional  r

 

T

 

  such that  r

 

T

 

c 

 

≠

 

 0 ,  let  P := cr

 

T

 

/

 

r

 

T

 

c .  Then  P  

 

projects

 

  
any vector  z  onto  y = Pz  as follows:  Find the plane,  in the family of parallel planes whose 

equations are  “ r

 

T

 

x = constant ”,  that passes through  z ;  its equation is  “ r

 

T

 

x = r

 

T

 

z ”.  Find the 
line through the origin  o  parallel to  c ;  its parametric equation is  “ x = c

 

λ

 

 ”  wherein  

 

λ

 

  runs 

through all real scalars.  The line and plane intersect at  y = c(r

 

T

 

z

 

/

 

r

 

T

 

c) = Pz  because  y  is 

parallel to  c  and  r

 

T

 

y = r

 

T

 

z .  Some writers call  P  a  “projector”,  some a  “projection”.

In short,  elementary projector  P  collapses the whole vector space to a line through  o  parallel 

to  c ,  and the direction of collapse is parallel to the planes  “ r

 

T

 

x = constant ”.  

 

Draw a picture

 

.

Note that  I 

 

≠

 

 P = P

 

2

 

 

 

≠

 

 O .  This relation characterizes every projector.  Another projector is  

Q := I – P = I – cr

 

T

 

/

 

r

 

T

 

c .  

 

Confirm that it satisfies

 

   I 

 

≠

 

 Q = Q

 

2

 

 

 

≠

 

 O  

 

too

 

.  It collapses the whole 

space into the plane  “ r

 

T

 

x = 0 ”,  and the direction of collapse is parallel to  c ,  first because  

r

 

T

 

Qz = o

 

T

 

z = 0  and second because  z – Qz = Pz  is parallel to  c .  

 

Draw a picture again

 

.

Unlike the projectors in most introductory texts,  ours need not be  orthogonal;  we can use any 

direction  c  not in the plane  “ r

 

T

 

x = 0 ”,  and project parallel to the plane onto  c  via  P ,  or else 
parallel to  c  onto the plane via  Q .  Our  

 

Affine

 

  vector space need not be  

 

Euclidean

 

.

The projectors  P and Q  are called  

 

complementary

 

  ( not spelt  “ complimentary ”)  because  
P+Q = I .  They decompose an arbitrary vector  z  into two components;  Pz  is the component 

parallel to  c ,  and  Qz  is the component in the plane  “ r

 

T

 

x = 0 ”.

Exercise:  Verify  PQ = QP = O ;  what does this mean geometrically?
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Elementary Reflectors:

 

A  

 

reflector

 

  is a linear operator  W  that satisfies  W

 

2

 

 = I 

 

≠

 

 W .  Some writers call  W  a  
“reflection”  or,  if  British,  a  “reflexion”.  An example is  –I ,  which reflects through the 

origin  o  ( it reflects  z  to  -z ).  All  

 

elementary reflectors

 

  have the form  W := I – 2cr

 

T

 

/

 

r

 

T

 

c  

with  r

 

T

 

c 

 

≠

 

 0 ,  so  W = I – 2P = 2Q – I .    Every elementary reflector leaves a plane unchanged;  

the plane’s equation is  “ r

 

T

 

x = 0 ”  since  Wz = z  for every vector  z  in this plane.  Every 
vector  z  not in this plane has a nonzero component  Pz  parallel to  c  pointing out of this 
plane;  W  reverses that component:   z = Pz + Qz    so    Wz = WPz + WQz = –Pz + Qz .  For 

example take      and     ,  so    .  This  W  is a 

permutation matrix that swaps the first two elements of a  ( row or column )  vector.  In general,  
every permutation of two elements is a reflector,  leaving unchanged the plane of vectors with 
those elements equal,  and reversing vectors with only those elements nonzero and of opposite 

sign.  In most introductory texts,  reflectors are all  

 

orthogonal

 

  reflectors with  c = (r

 

T

 

)

 

T

 

  in an  
Euclidean  space;  but our reflectors work in a more general  Affine  space and can reverse any 

direction  c  not in the mirror-plane  “ r

 

T

 

x = 0 ”.  

 

Draw a picture

 

.

 

Why are  Elementary  Reflectors  and  Projectors  called  “Elementary” ?

 

Let  C := (c

 

1

 

, c

 

2

 

, …, c

 

k

 

)  be a  “row”  of  k  linearly independent vectors  c

 

j

 

  drawn from an  n-dimensional vector 
space;  we assume  0 < k < n .  This  C  serves as a basis for a  k-dimensional 

 

subspace

 

  

 

S

 

   of the  n-dimensional 
space.  Many a basis  (C, C) = (c

 

1

 

, c

 

2

 

, …, c

 

k

 

, c

 

k+1

 

, …, c

 

n

 

)  for the  n-space can be built up from  C  by augmenting it 
successively by vectors  c

 

k

 

,  c

 

k+1

 

,  …,  c

 

n

 

  each chosen to be linearly independent of all its predecessors though 

otherwise arbitrary.  Let  R

 

T

 

  be the  “column”  of the first  k  linear functionals  (“rows”)  r

 

T
1

 

,  r

 

T
2

 

,  …,  r

 

T
k

 

  in  

(C, C)

 

–1

 

 ,  whence it follows that  R

 

T

 

C = I

 

k

 

 ,  the  k-by-k  identity matrix,  and  R

 

T

 

C = O

 

k,n–k

 

 .  ( Can you see 

why?)  Finally let  P := CR

 

T .  It is a projector because  O ≠ P2 = P ≠ I .  ( Why is  P ≠ I ? )    Complementary to  P  

is the projector  Q := I – P ;  and  W := I – 2P = 2Q – I  is a reflector because  W2 = I  ≠ W .  ( What is the inverse of 
a reflector  W ? )  P  and  W  leave unchanged the  (n–k)-dimensional subspace  S   spanned by  C ,  which turns out 

to be also the plane of all vectors  s  that satisfy  RTs = o .  ( Can you see why?)

In short,  the  n-space  has been decomposed into a sum of two complementary subspaces  S  and  S   ( neither of 
which determines the other because they need not be orthogonal ),  and projector  P  collapses the space into  S  
along lines parallel to  S .  Complementary projector  Q  collapses the space  into  S  along lines parallel to  S .  
Reflector  W  reflects the space in the mirror  S  along lines parallel to  S .  Although these operators preserve 
subspaces more general than the lines or hyperplanes preserved by elementary operators,  these non-elementary 
operators can be decomposed into elementary operators,  as we shall see now.

Let  Pj := cjr
T

j  for  j = 1, 2, …, k .  Evidently  Pj = Pj
2  is an elementary projector;  moreover  PiPj = O  if  i ≠ j ;  

can you see why?  These elementary projectors are said to  annihilate each other.  Thus  P = P1 + P2 + … + Pk   is 
the sum of elementary and mutually annihilating projectors.  Similarly  W  is a product of  k  elementary reflectors  
Wj := I - 2Pj  in any order!  ( Confirm that  WiWj = WjWi ;  they commute.)  Finally we have a nontrivial theorem:

Every projector can be decomposed into a sum of elementary and mutually annihilating projectors.
Every reflector can be decomposed into a product of elementary and commuting reflectors.
Every reflector or projector decomposes the space into complementary subspaces  S  and  S  as above.

This could be proved now,  but its proof will become simpler after we have studied eigenvalues and eigenvectors.

r
T

1– 1 0= c
1

1–

0

= W
0 1 0

1 0 0

0 0 1

=
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Elementary Dilatators,  Expansions and Compressions:
For any elementary projector   P := crT/rTc  as defined above,  and for any nonzero scalar  µ ,  
let   M(µ) := I + (µ-1)P = Q + µP .   The elementary reflector  W = M(-1)  is a special case.  In 
general,  the  dilatator  M(µ)  expands  ( if  |µ| > 1 )  or  compresses  ( if  |µ| < 1 )  the space 

parallel to  c  while keeping the plane “ rTc = 0 ”  unchanged.  If  µ < 0  the dilatator also reflects 
the space in that unchanged plane.  Other writers use  “dilator”,  “dilation”,  “dilatation”,  
“expander”,  “expansion”,  “compressor”  or  “compression”  in place of  “dilatator”,  or restrict 

them to  Euclidean  space with  c = (rT)T  orthogonal  ( perpendicular )  to the plane  “ rTz = 0 ”  
left unchanged.  Our  c  need not be orthogonal.  Draw pictures to illustrate diverse dilatators.

Exercise:  Confirm that   M(µ) M(λ) = M(µλ)   and therefore   M(µ)–1 = M(1/µ) .

Example:  For    and   ,     is the elementary operation 

that multiplies the second row or column of a  3-by-3  matrix by  µ .  Every elementary row 
operation that multiplies a row by a nonzero constant is a dilatator analogous to this one.

Elementary Shears:
Choose now any nonzero vector  s  and functional  tT  constrained by  tTs = 0 .  In other words 

choose first any plane  “ tTx = 0 ”  through  o  and then any nonzero vector  s  in that plane.  

Now an elementary  shear   Sµ := I + µstT   slides an arbitrary vector  z  to   y := Sµz   by adding 

to  z  a multiple of  s  proportional to the distance between the two parallel planes  “ tTx = 0 ”  

and  “ tTx = tTz ”,  one through  o  and the other through  z .  Draw pictures.

A good way to visualize the effect of an elementary shear is to imagine a deck of playing cards 
stacked straight so that the stack’s sides look like rectangles.  Shearing the deck slides the cards,  
keeping their respective edges parallel,  in such a way that the stack’s sides remain 

parallelograms.  The bottom card stays fixed in the plane “ tTx = 0 ”.

Exercise:  Verify   Sµ Sß = Sµ+ß ,   and  (Sµ)–1 = S–µ .

Example:  For    and   ,       is the 

elementary row operation that adds  6µ  times the second row to the first and  7µ  times the 
second row to the third of a  3-by-3  matrix.  Every elementary row operation that adds multiples 
of one row to others is analogously premultiplication by a shear.  The inverse operation,  
subtracting,  is a shear too.  Analogous such elementary operations upon columns amount to 
postmultiplications by shears.  Some writers restrict an elementary shear to have only one 

nonzero element in  s  and one in  tT ,  but this restriction gains nothing.  What is common to all 
elementary operators?  Each of them,  of every kind,  is determined by an operator of rank  1 .

r
T

0 1 0= c
0

1

0

= M µ( )
1 0 0

0 µ 0

0 0 1

=

t
T

0 1 0= s
6

0

7

= S
µ

I µst
T

+
1 6µ 0

0 1 0

0 7µ 1

= =
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Conclusion:
Every nonsingular  ( invertible )  square matrix is a product of  Elementary  Reflectors,  
Dilatators,  and  Shears.  This is so because a product of these elementary row operations 
suffices to reduce the matrix to its  Reduced Row Echelon Form,  which must be the identity 
matrix  I  if the original matrix is invertible.  Hence,  the original matrix is a product of these 
operations’ inverses,  all of them elementary too.  Similarly,  every invertible linear operator 
mapping a finite-dimensional space to itself is a product of  Elementary  Reflectors,  Dilatators,  
and  Shears.  This is so because it is true for the square nonsingular matrix that represents the 
linear operator in any basis for the space.  Work through the details.  The following may help.

REVIEW:  Change of Basis as a Nonsingular Matrix:
Suppose  B  is one basis for a vector space,  and  E  another. Since every basis vector  e  in  E  is 

expressible in terms of a column vector  c = B–1e ,  collecting those columns produces a matrix 

C = B–1E  that appears in changes of coordinates as follows:

Let  x = Bx  be any vector in the space,  and  x  its column vector of coordinates in the basis  B .  
Since  E  is a basis too,  x = Ex  for some other column vector  x .  The relation between  x  and  

x  is this:  Bx = Ex ,  so  x = B–1Ex = Cx .  And  C–1 exists because  x = E–1x = E–1Bx = C–1x  
is determinable from every  x .

Conversely,  any invertible matrix  C  is the matrix that changes coordinates to  x = B–1x  with 

one basis  B  from  x = E–1x  with another basis  E = BC ;  x = Cx .

Exercise:  If  uT = uTB–1  in one basis  B ,  but   uT = uTE–1  in another basis  E = BC ,  how do 

we compute  uT  given  uT  and  C ?  How do we compute  uTx = uTx  given  uT  and  x  and  C ?

Now let  L  be any linear operator that maps the vector space to itself.  This  L  is representable 
by a matrix  L  determined from a basis  B  of the vector space thus:  if  x = Bx  maps to  y = Lx  

representable by column vector  y = B–1y ,  then  y = B–1Lx = B–1LBx = Lx  for the matrix  

L := B–1LB .  A change of basis from  B  to  E = BC  changes the matrix representing  L  from  

L  to  L := E–1LE = C–1LC  and the coordinates of  y  become  y = Lx ;  can you confirm this?

Exercise:  If linear operator  Q  maps a space with basis  B  linearly to another space with basis  
H  of perhaps different dimension,  what matrix  Q  represents  Q  in these bases?

Thus,  a nonsingular matrix can represent a few things:  a change of basis,  an invertible map 
from a space to itself,  an invertible map from one space to another of the same dimension,  … .  
Out of context,  a matrix does not say what it represents.  The mathematically interesting 
question about it is this:

Given a matrix that represents a linear map between two spaces,  and given a 
characterization of the spaces but not the relevant basis or bases,  what geometrical 
properties of the linear map can be inferred without knowing the basis or bases?


