Math. H110 Geometry of Elementary Operations September 22, 1998

Geometry of Elementary Operations

Notation:
We write x = Bx for avector in ageometrical space, perhaps the plane or our familiar 3-
dimensional space, wherein basis B connects x with the column vector x of its components

viaan invertible linear transformation. Similarly w' =w'B™ isalinear functional acting upon
vectors in the geometrical space and represented by arow vector w' viathe same basis B .

Hence, w'x =w'x ; infact, all expressionsinvolving geometrical entitieslike x and w' in

this note are computed by replacing those entities symbols by their numerical representatives x

and w' . Solong aswe stick with just one basis B we might as well avoid the bother of typing
boldface characters, whenever we see “ x” we shall let the context determine whether this
refers to the column vector x or to the geometrical vector X .

Theequation “ r'x = constant” confines x to a line if the whole spaceis 2-dimensional, a
plane if 3-dimensional, an hyperplane if the dimension exceeds 3. In this note the word
“ plane” will be used as an abbreviation for “ line or plane or hyper-plane.”

Elementary Projectors:

For any vector ¢ and functional r' suchthat r'c#0, let P:=cr'/rTc. Then P projects
any vector z onto y =Pz asfollows: Find the plane, inthe family of parallel planes whose

equations are “ r'x = constant ", that passesthrough z; itsequationis “ r'x =r"z”. Find the
line through the origin o parallel to c; itsparametric equationis “ x =cA” wherein A runs

through all real scalars. Thelineand planeintersect at y = c(r'z/r'c) = Pz because vy is
paralel to ¢ and r'y =rTz. Somewriterscall P a “projector”, somea “projection”.

In short, elementary projector P collapses the whole vector spaceto aline through o parallel
to ¢, andthedirection of collapseis parallel to the planes “ r'x = constant ”. Draw a picture.

Notethat | # P=P?# O. Thisrelation characterizes every projector. Another projector is
Q:=1-P=I-cr'/rc. Confirmthat it satisfies |1 #Q=Q?% O too. It collapses the whole
gpaceintotheplane “ r'x=0", and the direction of collapseis paralel to c, first because
rTQz=0'z=0 and second because z—Qz = Pz isparalel to c. Draw a picture again.

Unlike the projectors in most introductory texts, ours need not be orthogonal; we can use any

direction ¢ notintheplane “ r'x=0", and project parallel to the planeonto ¢ via P, or else
parallel to ¢ ontotheplanevia Q. Our Affine vector space need not be Euclidean.

The projectors Pand Q arecalled complementary ( not spelt “ complimentary ) because
P+Q =1 . They decompose an arbitrary vector z into two components;, Pz isthe component

paralel to ¢, and Qz isthe componentintheplane “r'x=0".

Exercise: Verify PQ=QP=0; what does this mean geometrically?
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Elementary Reflectors:

A reflector isalinear operator W that satisfies W2 =1#W . Somewriterscall W a
“reflection” or, if British, a “reflexion”. Anexampleis -, which reflects through the

origin o (itreflects z to -z). All elementary reflectors havethe form W :=1—2crT/rTc
with r'c20, so W=1-2P=2Q-1. Every elementary reflector |eaves a plane unchanged;

the plane' sequationis “ r'x=0" since Wz =z for every vector z inthisplane. Every
vector z not in this plane has a nonzero component Pz parallel to ¢ pointing out of this
plane; W reversesthat component: z=Pz+Qz so Wz=WPz+WQz=-Pz+ Qz. For

1 010
example take rT:[_ll()] and c=|_1/,0 W=|100 . ThisW isa
0 001

permutation matrix that swaps the first two elements of a ( row or column) vector. In general,
every permutation of two elementsis areflector, leaving unchanged the plane of vectors with
those elements equal, and reversing vectors with only those elements nonzero and of opposite

sign. In most introductory texts, reflectorsareall orthogonal reflectorswith ¢=(r")" inan
Euclidean space; but our reflectors work in amore general Affine space and can reverse any

direction ¢ not inthe mirror-plane “ r'x =0". Draw a picture.

Why are Elementary Reflectors and Projectors called “Elementary” ?
Let C:=(cy, Cy, ..., C) bea “row” of k linearly independent vectors ¢; drawn from an n-dimensional vector

space; weassume O<k<n. This C servesasabasisfor a k-dimensional subspace S of the n-dimensional
space. Many abasis (C, C) =(cy, Cy, ---, Ci, Cks1s --+» Cy) fOr the n-space can be built up from C by augmenting it

successively by vectors ¢, Cgtq, ..., C, €ach chosen to belinearly independent of all its predecessors though
otherwise arbitrary. Let RT bethe “column” of thefirst k linear functionals (“rows’) r'q, r'5, ..., T, in

(C, O, whenceit followsthat RTC =1, the k-by-k identity matrix, and R'C = O . ( Canyou see
why?) Finally let P:=CR" . Itisaprojector because Oz P>=P#1|. (Whyis P#|?) Complementary to P
isthe projector Q:=1—P; and W :=1-2P=2Q—1 isareflector because W?=1 #W . ( What isthe inverse of
areflector W?) P and W leave unchanged the (n—k)-dimensional subspace S spanned by C, which turns out
to be also the plane of all vectors s that satisfy R's=o0. ( Can you see why?)

In short, the n-space has been decomposed into a sum of two complementary subspaces S and S ( neither of
which determines the other because they need not be orthogonal ), and projector P collapsesthe spaceinto S
along lines parallel to S. Complementary projector Q collapsesthe space into S along lines parallel to S.
Reflector W reflects the space in the mirror S along lines parallel to S. Although these operators preserve
subspaces more general than the lines or hyperplanes preserved by elementary operators, these non-elementary
operators can be decomposed into elementary operators, aswe shall see now.

Let B = cerj for j=1,2,...,k. Evidently B = sz isan elementary projector; moreover PP =0 if i#j;
can you see why? These elementary projectors are said to annihilate each other. Thus P=P;+P,+ ... + P, is
the sum of elementary and mutually annihilating projectors. Similarly W isaproduct of k elementary reflectors
W;:=1-2P inany order! ( Confirmthat W;W; =W,;W;; they commute.) Finally we have anontrivial theorem:

Every projector can be decomposed into a sum of elementary and mutually annihilating projectors.

Every reflector can be decomposed into a product of elementary and commuting reflectors.

Every reflector or projector decomposes the space into complementary subspaces S and S as above.
This could be proved now, but its proof will become simpler after we have studied eigenvalues and eigenvectors.
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Elementary Dilatators, Expansionsand Compressions:

For any elementary projector P:=cr'/rTc asdefined above, and for any nonzero scalar |,

let M(W =1+ (U-1)P=Q+ uP. Theelementary reflector W = M(-1) isaspecia case. In
genera, the dilatator M() expands (if |u|>1) or compresses (if |u|<1) the space
parallel to ¢ whilekeeping theplane” r'c=0" unchanged. If u <0 thedilatator also reflects
the space in that unchanged plane. Other writersuse “dilator”, “dilation”, “dilatation”,
“expander”, “expansion”, “compressor” or “compression” inplaceof “dilatator”, or restrict
themto Euclidean spacewith c¢=(r")" orthogonal ( perpendicular) totheplane “r’z=0"
left unchanged. Our ¢ need not be orthogonal. Draw picturesto illustrate diverse dilatators.

Exercise: Confirmthat M(u) M(A) = M(pA) and therefore M(p)™ = M(1/p) .

0 100
Example: For (o= [0 10] and ¢ = |1/, M(W) = |op 0| istheelementary operation
0 001

that multiplies the second row or column of a 3-by-3 matrix by . Every elementary row
operation that multiplies arow by a nonzero constant is a dilatator analogous to this one.

Elementary Shears:

Choose now any nonzero vector s and functional t" constrained by t's=0. In other words
choose first any plane “ t™x = 0" through o and then any nonzero vector s in that plane.
Now an elementary shear S*:=1+ pst’ dlidesan arbitrary vector z to y:= Sz by adding
to z amultipleof s proportional to the distance between the two parallel planes “ t'™x=0"
and “t"™x=t"z", onethrough o and the other through z. Draw pictures.

A good way to visualize the effect of an elementary shear isto imagine a deck of playing cards
stacked straight so that the stack’ s sides ook like rectangles. Shearing the deck slides the cards,
keeping their respective edges parallel, in such away that the stack’s sides remain

parallelograms. The bottom card stays fixed in the plane“ t'x = 0".

Exercises Verify HSB=g"*8  and (F)1=sH,

) 6 = [reuo
Example: For t' = [g10] ad s= g/, S =l+pst =g 1 o Iisthe
7 07u1

elementary row operation that adds 6 times the second row to thefirst and 7y timesthe
second row to thethird of a 3-by-3 matrix. Every elementary row operation that adds multiples
of one row to othersis analogously premultiplication by ashear. The inverse operation,
subtracting, isashear too. Analogous such elementary operations upon columns amount to
postmultiplications by shears. Some writersrestrict an elementary shear to have only one

nonzero element in s and onein t', but this restriction gains nothing. What is common to all
elementary operators? Each of them, of every kind, isdetermined by an operator of rank 1.
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Conclusion:

Every nonsingular (invertible) square matrix isa product of Elementary Reflectors,
Dilatators, and Shears. Thisis so because a product of these elementary row operations
suffices to reduce the matrix to its Reduced Row Echelon Form, which must be the identity
matrix | if the original matrix isinvertible. Hence, the original matrix is a product of these
operations’ inverses, all of them elementary too. Similarly, every invertible linear operator
mapping afinite-dimensional spaceto itself isaproduct of Elementary Reflectors, Dilatators,
and Shears. Thisisso becauseit istrue for the square nonsingular matrix that represents the
linear operator in any basis for the space. Work through the details. The following may help.

REVIEW: Change of Basis asa Nonsingular Matrix:
Suppose B isone basisfor avector space, and E another. Since every basisvector e in E is

expressible in terms of a column vector ¢=Bte, collecting those columns produces a matrix
C=BE that appearsin changes of coordinates as follows:

Let x =Bx be any vector inthe space, and x its column vector of coordinatesin the basis B .
Since E isabasistoo, x = Ex for some other column vector x . Therelation between x and

% isthiss BXx=Ex, s0 x=B1Ex =Cx. And Cexistsbecause » = E1x = E1Bx = C1x
is determinable from every x .

Conversely, any invertible matrix C isthe matrix that changes coordinatesto x = B~Ix with
onebasis B from x = E~x with another basis E=BC; x =Cx .

Exercise. If u' =u'B™? inonebasis B, but u' =u'E™? in another basis E =BC, how do

we compute u' given uT and C? How dowe compute u'x=u'x given u' and x and C?

Now let L beany linear operator that maps the vector spaceto itself. This L isrepresentable
by amatrix L determined from abasis B of the vector space thus: if x =Bx mapsto y =Lx

representable by column vector y =B~ly , then y =B 1Lx =BLBx = Lx for the matrix
L:=B7LB. A change of basisfrom B to E = BC changesthe matrix representing L from
L to L :=E!LE = CILC and the coordinates of y become y =Lx ; can you confirm this?

Exercise: If linear operator Q maps aspace with basis B linearly to another space with basis
H of perhaps different dimension, what matrix Q represents Q in these bases?

Thus, anonsingular matrix can represent afew things: achange of basis, an invertible map
from a spaceto itself, an invertible map from one space to another of the same dimension, ... .
Out of context, amatrix does not say what it represents. The mathematically interesting
guestion about it isthis:

Given amatrix that represents a linear map between two spaces, and given a
characterization of the spaces but not the relevant basis or bases, what geometrical
properties of the linear map can be inferred without knowing the basis or bases?
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