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This is an  OPEN BOOK EXAM  to which you may bring any papers and textbooks.  Solve as many problems as you 
can in three hours.  If a problem seems too hard,  come back to it after trying another.  Complete solutions earn far 
more credit than partial or defective solutions,  so take your time and take pains to get them right.  On each page you 
hand in for a grade you must put your name and the number(s) of the problem(s) solved thereon to get credit.

 

Problem 0:

 

  Give concrete numerical examples of three systems  Ax = b  of linear equations,  one 
system under-determined,  a second system over-determined,  and a third both over- and under-
determined,  in which all elements of  A  and  b  are nonzero.  ( “ Over-determined ”  means some 
of the system’s equations are redundant.  “ Under-determined ”  means solutions are not unique.)

 

Solution 0:

 

  A = [1, 1]  and  b = [1]  for  under-determined.  A = b =   for over-determined.

A =   and  b =   for both over- and under-determined.

 

Problem 1:

 

  Acting upon the linear space of polynomials of degree at most  3 ,  the linear operator  

 

D

 

  maps a polynomial to its derivative.  What is  Jordan’s Normal Form  of  

 

D

 

 ?

 

Solution 1:

 

  These polynomials form a  4-dimensional space.

Since  

 

D

 

4

 

 = O 

 

≠

 

 

 

D

 

3

 

 ,  Jordan’s Normal Form  of  

 

D

 

  is   .

 

Problem 2:

 

  

 

K

 

  is a linear operator.  If  

 

KX

 

  is a basis for  Range(

 

K

 

)  and  

 

Z

 

  is a basis for  
Nullspace(

 

K

 

) ,  then  [

 

X

 

, 

 

Z

 

]  is a basis for  Domain(

 

K

 

) .  Prove it.

 

Solution 2:

 

  Check dimensions first:
Dimension(Range(

 

X

 

)) 

 

≥

 

 dimension(Range(

 

KX

 

)) = dimension(Range(

 

K

 

))
since  

 

KX

 

  is a basis for  Range(

 

K

 

) .  Since
dimension(Range(

 

K

 

)) + dimension(Nullspace(

 

K

 

)) = dimension(Domain(

 

K

 

)) ,
the number of  ( column )  vectors in  [

 

X

 

, 

 

Z

 

]  is at least  dimension(Domain(

 

K

 

)) .  All that is left to 
do to prove that  [

 

X

 

, 

 

Z

 

]  is a basis is to show that the vectors in it are linearly independent.  So 
suppose  

 

Xu

 

 + 

 

Zv

 

 = 

 

o

 

 ;  then  

 

KXu

 

 + 

 

KZv

 

 = 

 

KXu

 

 = 

 

o

 

  too since  

 

Z

 

  is a basis for  Nullspace(

 

K

 

) .  
But  

 

KX

 

  is a basis,  so  

 

u

 

 = 

 

o

 

 .  Therefore  

 

Zv

 

 = 

 

o

 

 ,  which means  

 

v

 

 = 

 

o

 

  too.  Therefore the 
vectors in  [

 

X

 

, 

 

Z

 

]  are independent;  they form a basis for  Domain(

 

K

 

) .

 

Problem 3:

 

  Prove  

 

Ptolemy’s Inequality

 

 :    ||z–x||·||y||  

 

≤

 

  ||y–x||·||z|| + ||z–y||·||x||   for any three 

nonzero vectors  x, y, z  in an  Euclidean  space,  with equality just when  x/||x||

 

2

 

 ,  y/||y||

 

2

 

  and  

z/||z||

 

2

 

  lie in that order on a straight line.

 

Solution 3:

 

  Into the Triangle Inequality  ||z–x|| 

 

≤

 

 ||y–x|| + ||z–y||  for   x := x/||x||

 

2

 

  etc.,  substitute

||y - x||

 

2

 

 =  1/||x||

 

2

 

 - 2x

 

T

 

y/(||x||·||y||)

 

2

 

 + 1/||y||

 

2

 

  =  (||y–x||/(||x||·||y||))

 

2

 

 ,  etc.
Equality in the triangle inequality occurs just when  x, y, z  lie in that order on a straight line.
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Problem 4:

 

  Given  2

 

x

 

2  real matrix  L =   exhibit a real orthogonal  Q  such that  LQ = QL

 

T

 

 .

 

Solution 4:

 

  Q =   =  Q

 

T

 

  =  Q

 

–1

 

  unless  

 

ρ

 

 = 

 

λ

 

–

 

µ

 

 = 0 ,  in which case set  Q := I .
( The first column of  Q  must be an eigenvector of  L .)

 

Problem 5:

 

  Suppose  E  is the matrix of a linear operator that maps one  Euclidean  space to 

another in such a way as preserves angles;  

 

i.e.

 

,   cos(

 

/

 

(Ex, Ey)) = cos(

 

/

 

(x, y)) :=  x

 

T

 

y/(||x||·||y||)  for 
all nonzero column vectors  x  and  y .  Must  E  have orthogonal columns all of the same 
Euclidean  length?  Explain why.

 

Solution 5:

 

  Yes,  and here is why:  Set  M := E

 

T

 

E = M

 

T

 

 ;  then all nonzero  x  and  y  must satisfy  

(y

 

T

 

Mx)

 

2

 

/(y

 

T

 

My x

 

T

 

Mx) = (y

 

T

 

x)

 

2

 

/(y

 

T

 

y x

 

T

 

x) .  Therefore  y

 

T

 

Mx = 0  if and only if  yTx = 0 .  Since 

this is true for every  yT ,  one of  Fredholm’s Alternatives  implies that  Mx = µx  for some scalar  
µ  which may,  for all we know so far,  vary with  x .  Since this is true for every  x ,  every 

nonzero  x  is an eigenvector of  M ,  which implies that  M = µI .  Therefore  ETE = µI ,  and  

µ > 0  because  0 < ||Ex||2 = xTETEx = µxTx ,  so  E ’s  columns are orthogonal with length  √µ .

Alternative solution 5:  Let  uj  be the  j-th  column of the identity matrix so that  Euj  is the  j-th  
column of  E .  Euj  is orthogonal to  Euk  whenever  j ≠ k  because  uj  is orthogonal to  uk .  And  
Euj+Euk  is orthogonal to  Euj–Euk  for a similar reason;  this makes  ||Euj|| = ||Euk|| .

Problem 6:  Linear operator  L  maps one  Euclidean  vector space to another;  what is the 

maximum value taken by  uTLv  as  u  and  v  run over all unit-vectors  ( uTu = vTv = 1 ) ?

Solution 6:  The maximum of  uTLv  over all unit-vectors  u  and  v  is the biggest singular value  
µ  of  L .  This is so because orthonormal coordinate systems can be chosen in the domain and 
target spaces of  L  that represent it by a diagonal matrix  L  of singular values,  and then  

(uTLv)2 ≤ uTu(Lv)TLv  ( by  Cauchy’s  inequality —  see the previous problem )  is maximized 
when  u  and  v  each has just one nonzero component  ( 1 )  in a location corresponding to the
biggest singular value(s)  µ .

Alternative solution 6:  Assume  L ≠ O  lest the problem be trivial.  Let  H :=  .  By

definition,  the nonzero singular values of  L  are the positive eigenvalues of  H .  An orthonormal 
basis can be chosen to represent  H  by a diagonal matrix of  H ’s  eigenvalues;  then for every  

y ≠ o  we find that  yTHy/yTy  is a weighted average of those eigenvalues maximized when  y  has 

one nonzero component for the biggest eigenvalue,  and then this maximum  yTHy/yTy  is the 

biggest singular value of  L .  Let  yT = [uT, vT]  and  µ := yTHy/yTy = 2uTLv/(uTu + vTv)  be the 

maximizing vector and maximized value.  Replacing  u  by  u/√uTu  and  v  by  v/√vTv  increases  

µ  unless  uTu = vTv ,  so this must already hold.  Again,  max uTLv = µ .

λ 0

ρ µ
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Problem 7:  The  3-by-3  nilpotent matrix  N  satisfies  N3 = O ≠ N2 .  The set of all matrices  P  
that  commute  with  N  ( they satisfy  NP = PN )  constitutes a subspace in the  9-dimensional 
space of  3-by-3  matrices;  what is the subspace’s dimension,  and why?

Solution 7:  The subspace’s dimension is  3  and here is why:  Choose a coordinate system that 
exhibits  N  in its  Jordan Normal Form,  which is one  3-by-3  Jordan  block.  Then it is easy to 
show that  P  must be a quadratic polynomial in  N  by solving  NP = PN  for  P  element by 
element from lower left by diagonals to upper right in that coordinate system.

Problem 8:  Explain why the identity   =    implies that the matrix 

products  BC  and  CB ,  if both exist,  have the same  nonzero  eigenvalues.  If  B  and  C  are 
square too,  BC  and  CB  have the same eigenvalues;  then must  BC  and  CB  be  Similar  too?  

Say why.  Try simple examples like  B = [1, 0]  and  C =   before jumping to conclusions.

Solution 8:  If both exist,  BC  and  CB  must be square though perhaps of different dimensions.  

The identity is a  Similarity  because  =  ,  so    and    have the same 

eigenvalues.These eigenvalues are zeros and the eigenvalues of  CB ,  or of  BC ;  therefore  CB  
and  BC  have the same nonzero eigenvalues.  But they are not necessarily similar,  not even if 

they have the same dimensions.  For example take  B =   and  C =   to find  BC = B ≠ O  

but  CB = O .  ( However,  if  B  and  C  are square and either is invertible then  BC  is  Similar to  

CB = B–1(BC)B .)

Problem 9:  Suppose  H  and  W–H  are real symmetric positive definite matrices;  why must  

H–1 – W–1  be positive definite too?

Solution 9:  Since  H  is positive definite,  there is a congruence that diagonalizes  W  and  H  

simultaneously;  say  H = CT–1IC–1  and  W = CT–1VC–1  for some diagonal matrix   V .  ( For 

instance,  the  Choleski  factorization of  H = UTU  and the eigensystem factorization of  

UT–1WU–1 = QVQT  with  QT = Q–1  provide  C = U–1Q .)  Since  W–H = CT–1(V–I)C–1  is 
positive definite,  so is its congruent  V–I ,  which means every diagonal element of  V  exceeds  

1 .  Now  H–1 – W–1 = C(I – V–1)CT  is positive definite because its congruent  I – V–1  is.

Alternative solution 9:  Identity   H–1 – W–1 =  W–1(W–H)W–1 + W–1(W–H)H–1(W–H)W–1  

expresses  H–1 – W–1  as a sum of positive definite matrices and thus positive definite.  Another 

identity   H–1 – W–1 =  H–1(H–1 + (W–H)–1)–1H–1   works too but is harder to derive.

CB O

B O

I C

O I

O O

B BC

I C–

O I

0

1

I C

O I

1–
I C–

O I

CB O

B O

O O

B BC

0 0

1 0

1 0

0 0
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Problem 10:  Given matrices  F, g, b  and  C ,  none of them square,  show that a solution-pair  

{u, n}  of the equations  FTFu – CTn = FTg  and  Cu = b ,  if any solution-pair exists,  must 

minimize the sum of squares  (Fu – g)T(Fu – g)  over all  u  constrained by  Cu = b .  If this 
constraint is not inconsistent,  why must a finite solution-pair  {u, n}  always exist?

Solution 10:  Suppose  {û, ñ}  is a solution-pair;  it satisfies  FT(Fû–g) = CTñ  and  Cû = b .  Then 
any other  u  satisfying the constraint  Cu = b = Cû  must have

       (Fu–g)T(Fu–g) – (Fû–g)T(Fû–g) =  (F(u–û) + Fû–g)T(F(u–û) + Fû–g) – (Fû–g)T(Fû–g)

=  (F(u–û))TF(u–û) + 2(Fû–g)TF(u–û)

=  (F(u–û))TF(u–û) + 2ñTC(u–û)

=  (F(u–û))TF(u–û)  ≥  0 .

Therefore the minimum value of  (Fu–g)T(Fu–g)  subject to the constraint  Cu = b  is achieved 
when  u = û .

According to  Fredholm’s Alternatives,  the constraint  Cu = b  is satisfiable  ( not inconsistent )  if 

and only if  vTb = 0  whenever  vTC = oT .  Analogously,  the equation   =   is 

satisfiable if and only if  wTFTg + vTb = 0  whenever   =  .  This last 

equation implies  wTFTF – vTC = oT  and  wTC = oT ,  which implies  wTFTFw = vTCw = 0 ,  

which implies  wTFT = oT ,  which implies  vTC = oT ,  which implies  vTb = 0  when the 

constraint is satisfiable,  which implies  wTFTg + vTb = 0  and therefore finite solution-pairs  
{u, n}  must exist.

( This solution is closely analogous to the solution of the unconstrained  Least-Squares  problem.)

–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–•–

The exam was deemed long enough that the next problem was not needed,  but it is included here 
just for the record.

Problem -1:  A skew-symmetric bilinear operator  W  is defined for any linear functional  

wT ≠ oT  thus:   Wxy := xwTy – ywTx = –Wyx .  How does the  Range  of  W  compare with the  

Nullspace  of  wT ,  and why?

Solution -1:  They are the same;  here is why:  Evidently  wTWxy = 0  for all  x  and  y ,  so the  

Range  of  W  is contained in the  Nullspace of  wT .  On the other hand,  for every  z  in the  

Nullspace of  wT  ( so that  wTz = 0 ),  and for any  v  such that  wTv ≠ 0  ( such a  v  must exist 

because  wT ≠ oT ),  set  u := v/wTv  to infer that  Wzu = z  and hence the  Nullspace  of  wT  is 
contained in the  Range  of  W .  Therefore the two subspaces are the same.
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