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This is a  CLOSED BOOK EXAM  to which you may bring NO textbooks and  ONE  sheet of notes.  Solve problem  
1  first,  and then as many subsequent problems as you can,  in three hours.  If a problem seems too hard,  come back 
to it after trying another.  Complete solutions earn far more credit than partial or defective solutions,  so take your 
time and take pains to get them right.  On each page you hand in for a grade you must put your name and the 
number(s) of the problem(s) solved thereon to get credit.

 

1:

 

  What makes matrix notation so valuable,  namely the ability to represent so many things by 
matrices,  can also make it confusing;  the notation does not say what the matrix represents.  A 
real matrix  L  may represent,  among other things,  …

 

•0:

 

  a change of coordinates  (basis)  in a real vector space,

 

•1:

 

  a linear map  

 

L

 

  from one real vector space to another,

 

•2:

 

  a linear map  

 

L

 

  from one  Euclidean  vector space to another,

 

•3:

 

  a linear map  

 

L

 

  of a real space to itself,

 

•4:

 

  a linear map  

 

L

 

  from a real vector space to its dual space,

 

•5:

 

  a quadratic form  £(

 

x

 

)  for vectors  

 

x

 

  in a  non-Euclidean  real space,  or

 

•6:

 

  a quadratic form  £(

 

x

 

)  for vectors  

 

x

 

  in an  Euclidean  space.
Changes of coordinates in the relevant space(s) affect  L  differently in each case;  for each case 
explain how,  and describe  (without proof)  as many as you can of the attributes of  L  unaltered 
by such changes.

 

Solution:

 

  Let the nonsingular matrices  E  and  F  represent changes of coordinates,  and let  L  
be the matrix that represents,  after changes of coordinates,  whatever  L  represented before.

 

1•0:

 

  If  

 

B

 

  is one basis for a vector space,  

 

B

 

L  a second,  and  (

 

B

 

L)E = 

 

B

 

L  a third,  it could 
have been reached directly from the first basis by using  L := LE .  All that  L  and  L  need have 
in common are their dimension and the nonvanishing of their determinants.

 

1•1:

 

  If  

 

L

 

  maps a vector space with basis  

 

B

 

  to another space with basis  

 

C

 

  then  

 

L

 

  is 

represented by the matrix  L := 

 

C

 

–1

 

LB

 

  because  

 

C

 

y = 

 

y

 

 = 

 

Lx

 

 = 

 

LB

 

x  for column-vectors  x  
and  y  that satisfy  y = Lx .  Changing bases from  

 

B

 

  to  

 

B

 

E  and from  

 

C

 

  to  

 

C

 

F  changes  L  

to  L := F

 

–1

 

LE .  This is an  

 

Equivalence

 

;  it has to preserve only dimensions and rank.

 

1•2:

 

  If  

 

L

 

  maps one  Euclidean  space with orthonormal basis  

 

B

 

  to another with orthonormal 
basis  

 

C

 

 ,  changes to new orthonormal bases  

 

B

 

E  and  

 

C

 

F  that preserve the root-sum-squares 

formula for length must be accomplished by orthogonal matrices:  E

 

T

 

 = E

 

–1

 

  and  F

 

T

 

 = F

 

–1

 

 .  

Such changes of bases change the matrix  L := 

 

C

 

–1

 

LB

 

  that represents  

 

C

 

–1

 

LB

 

  to    L := F

 

–1

 

LE .
This is an  

 

Orthogonal Equivalence

 

;  it has to preserve only dimensions and singular values.

 

1•3:

 

  If  

 

L

 

  maps a vector space with basis  

 

B

 

  to itself,  

 

L

 

  is represented by matrix  L := 

 

B

 

–1

 

LB

 

 .

Changing to a new basis  

 

B

 

E  changes  L  to  L := E

 

–1

 

LE .  This  

 

Similarity

 

  need preserve only 
the  Jordan Normal  form in which the order of  Jordan  blocks is immaterial.  Because  L  is 
real,  complex eigenvalues and eigenvectors,  if any,  come in complex conjugate pairs which 
can be exhibited without any complex arithmetic by the real  Jordan Normal  form with  2-by-2  
real blocks on the diagonal instead of  1-by-1  complex eigenvalues.
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1•4:

 

  If  

 

L

 

  maps a real vector space with basis  

 

B

 

  to its dual,  where the dual basis is  

 

B

 

–1

 

 ,  the 
scalar-value of the bilinear form  

 

Lxy

 

 ,  acting linearly upon each vector  

 

x

 

 = 

 

B

 

x  and  

 

y

 

 = 

 

B

 

y ,  
is obtained from their column vectors of coordinates and a matrix  L  that represents  

 

L

 

  thus:  

 

Lxy

 

 = (Lx)

 

T

 

y .  To obtain  L  given  

 

L

 

 ,  substitute various unit column-vectors for  x  and  y .  

Changing to a new basis  

 

B

 

E  changes  x  to  x := E

 

–1

 

x ,  y  to  y := E

 

–1

 

y ,  and  L  to  

L := E

 

T

 

LE ,  so that  

 

Lxy

 

 = (L

 

 

 

x)

 

T

 

y  too.  This  

 

Congruence

 

  relation between  L  and  L  is an 
equivalence,  so it preserves the dimension and rank of  L  as well as the  

 

Signature

 

  of its 

symmetric part  (L

 

T

 

+L)/2 ;  see  1•5.

 

1•5:

 

  The quadratic form  £(

 

x

 

)  is obtained,  for vectors  

 

x

 

 = 

 

B

 

x  in a real space with basis  

 

B

 

 ,  

from the column  x  that represents  

 

x

 

  and a matrix  L  that represents  £  thus:  £(

 

x

 

) = x

 

T

 

Lx .  

Only the symmetric part  (L

 

T

 

+L)/2  of  L  matters here,  so we might as well assume they are the 
same.  To obtain  L  given  £ ,  proceed as in  1•4  from the symmetric bilinear form defined by  

Lxy := (£(x+y) – £(x–y))/4 .  Changing to a new basis  BE  changes  L  to  L := ETLE  and 
preserves its dimension,  symmetry and signature  (the numbers of  L’s  positive,  negative and 
zero eigenvalues —  see 1•6).

1•6:  Continuing from  1•5,  if the space is  Euclidean  the change from one orthonormal basis  

B  to another,  BE ,  requires that  E  be orthogonal:  ET = E–1 .  Now the congruence  L = ETLE  
is an  Orthogonal Similarity  that preserves the eigenvalues,  all real,  of symmetric matrix  L .

=====================================================================

2:  Suppose that  F = LCRT  in which  L,  C  and  R  all have the same rank and  C  is square and 

invertible.  Explain why   L† = (LTL)–1LT ,  R† = (RTR)–1RT  and  F† = R†TC–1L† .

Explanation:  Not  “ (A·B)† = B†A† ”,  which is often false;  try  ((uvT)(wxT)† .  The formulas 

for  L†  and  R†  follow from the observation that  L,  C  and  R  all have the same number of 

columns,  and that number is their rank,  so  (…)–1’s  exist.  Let  G := R†TC–1L† .  Since  C  and  

R†R = L†L = I  have the same dimensions,  GF = R†TC–1L†LCRT = R†TRT = RR† = (GF)T .  

Similarly  FG = LL† = (FG)T .  Then  FGF = LL†LCRT = F ,  and similarly  GFG = G .  

Therefore  G  satisfies all four equations that determine the  Moore-Penrose Pseudo-inverse  F†  
of  F  uniquely.

=====================================================================
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3:  Given constants  µ0,  µ1,  µ2  and  µ3 ≠ 0  set  xn+1 := µ0xn + µ1xn–1 + µ2xn–2 + µ3xn–3  for
n = 3, 4, 5, …  in turn.  Show for all these  n  that,  regardless of  x0,  x1,  x2  and  x3,  

det( )/(–µ3)n   is independent of  n .

Proof:  Let  Xn+3  be the matrix in the determinant,  and set  M :=  .  Then it is easy to

verify that  Xn+3 = Xn+2·M = X3·Mn .  Therefore  det(Xn+3) = det(X3)·det(Mn) = det(X3)·(–µ3)n .

=====================================================================

4:  An  Unreduced Upper-Hessenberg Matrix  is a square matrix with no zeros on the first sub-
diagonal and zeros everywhere below it.  The  Jordan-Normal Form  of a  Derogatory  matrix 
has at least two different  Jordan-Blocks  with the same eigenvalue.  Are there any derogatory 
unreduced  Hessenberg  matrices?  Justify your answer.

Answer:  No.  Consider any derogatory  N-by-N  matrix  B .  It must have at least one 
eigenvalue  ß  for which  B–ßI  (which has the same rank as the  Jordan Normal  form to which 
it is  Similar)  has rank less than  N–1  because two or more  Jordan Blocks  of  B–ßI  have zeros 
on their diagonals.  But the first sub-diagonal of an unreduced  N-by-N  upper  Hessenberg  
matrix  H  is the diagonal of an  (N–1)-by-(N–1)  submatrix with nonzero determinant,  which 
implies  rank(H–ßI) ≥ N–1  for every scalar  ß .

=====================================================================

5:  In a vector space,  a set is called  “Connected”  if every two of its members are joined by 
some continuous path consisting entirely of members of that set.  In the space of all real  N-by-
N  matrices the orthogonal matrices do not form a connected set;  prove this,  and also prove that 
the  N-by-N  complex unitary matrices do form a connected set.

Proof:  Since  det(…)  is a continuous function of its argument,  and since every real orthogonal 
matrix has determinant  +1  or else  –1 ,  the two kinds of orthogonal matrices cannot form one 
connected set.

Now let  P = P*–1  be any  N-by-N  unitary matrix;  it has a  Schur  decomposition  P = QUQ*  

in which  Q  is unitary and  U  is upper-triangular.  However,  it is easy to verify that  U* = U–1  
must be simultaneously upper- and lower-triangular,  and is therefore a diagonal matrix which 
can be written  U = exp(ıH)  for some real diagonal  H  and  ı = √(–1) .  For  0 ≤ µ ≤ 1  set  
P(µ) := Qexp(ıµH)Q*  to describe a continuous path from  P(0) = I  to  P(1) = P .  Given any two 
unitary  N-by-N  matrices  B  and  C  ,  set  P := B*C  to obtain a continuous path  BP(µ)  from  
B = BP(0)  to  C = BP(1) .  End of proof.

(More generally,  the invertible matrices form a connected subset among  N-by-N  complex matrices,  but not 
among real.  Can  you see why?)

xn 3+ xn 2+ xn 1+ xn

xn 2+ xn 1+ xn xn 1–

xn 1+ xn xn 1– xn 2–

xn xn 1– xn 2– xn 3–
µ0 1 0 0

µ1 0 1 0

µ2 0 0 1

µ3 0 0 0
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6:  The  Schur Complement  of the scalar  ß  in the complex square matrix  B :=   is

E := F – cr*/ß .  Here  r*  is the complex conjugate transpose of  r .  Now,  assuming that  
Re{ z*Bz/z*z } ≥ µ > 0  for every nonzero complex vector  z  of the appropriate dimension,  
prove that the same is true with  E  in place of  B .  (Hint:  Try a real non-symmetric matrix  B  
and real  z  first.)  What does that assumed inequality imply about the diagonal elements of the 
upper-triangular factor  U  in the factorization  B = L·U  with a unit-lower-triangular  L ?

Proof:  For any scalar  π  and nonzero vector  z  of the appropriate dimension,  define  

ƒ(π, z) := [π*, z*]B /(|π|2 + z*z)  =  ( ß|π|2 + π*r*z + πz*c + z*Fz)/(|π|2 + z*z) ,  noting that  

Re{ƒ} ≥ µ  no matter how  π  and  z  are chosen.  In particular  Re{ß} ≥ µ > 0 .  Consequently  

z*Ez/z*z =  (z*Fz – z*cr*z/ß)/z*z =  (1 + |π|2/z*z)ƒ(π, z) – (ßπ + r*z)(ßπ* + z*c)/(ßz*z) .  Now 

set  π := –r*z/ß  or  –(z*c/ß)*  to find then  z*Ez/z*z = (1 + |π|2/z*z)ƒ(π, z) ,  so its real part can 
be no less than  µ ,  as claimed.  This inequality implies the same inequality for every diagonal 
element of the upper-triangular factor  U ,  the first of which is  ß  and the rest are the upper-left 
corner elements of successive  Schur  complements.  Compare the class notes on  “Diagonal 
Prominence”.

=====================================================================

7:  P  and  Q  are  Orthogonal Projectors  from an  Euclidean Space  into itself;  this means that  

PT = P = P2  and  QT = Q = Q2 .  The norm  ||…||  is the biggest singular value.  Prove that …
a)   ||P–Q|| ≤ 1 .
b)   If  Rank(P) ≠ Rank(Q)  then  ||P–Q|| = 1 ,  but not conversely.
c)   If  ||P–Q|| < 1  then    Rank(P) = Rank(Q)  and

    no nonzero vector in  Range(Q)  is orthogonal to  Range(P) .
d)  The converse of  (c).  (This is harder.)

Proof 7(a):  Since  P–Q  is real symmetric,  its singular values are the magnitudes of its 
eigenvalues.  All the eigenvalues of positive semidefinite  P  are zeros or ones,  and likewise for  
Q ;  therefore no eigenvalue of  P–Q  can exceed  1 ,  nor fall below  –1 .  Therefore  ||P–Q|| ≤ 1 .

7(b):  If,  say,  Rank(P) > Rank(Q) ,  then  Range(P)  and  Nullspace(Q)  must have a nonzero 
intersection since their dimensions add up to more than the dimension of the space;  therefore  
Qx = o ≠ Px = x  for some  x  in that intersection,  and  1·||x|| ≥ ||P–Q||·||x|| ≥ ||(P–Q)x|| = ||x|| ≠ 0  
and consequently  ||P–Q|| = 1 .  The converse is untrue because  ||P–Q|| = 1  for projectors   

P =    and   Q =    that have the same rank  1 .

Proof 7(c):  Let  q = Qq ≠ o  be any nonzero vector in  Range(Q) .  Now,  Pq = PTq = o  if  q  is 
orthogonal to  Range(P) ,  and then  ||P–Q||·||q|| ≥ ||(P–Q)q|| = ||q|| ≠ 0  so  ||P–Q|| = 1 ;  therefore 
if  ||P–Q|| < 1  no nonzero  q  in  Range(Q)  can be orthogonal to  range(P) ,  and vice-versa  
(swapping  Q  and  P ),  and  Rank(P) = Rank(Q)  because of part  (b).

β r*

c F

π
z

1 0

0 0

0 0

0 1
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7(d):  Conversely,  suppose  ||P–Q|| = 1 .  Then  (P–Q)x = ±x ≠ o  for at least one eigenvector  
x .  There are now two cases to consider:  In the first case  (P–Q)x = –x  and then  Px = o  and  

x = Qx ≠ o  because  0 ≤ ||Px||2 = xTPx = xTQx – xTx ≤ xTx – xTx = 0 ;  this  x  must be in  
Range(Q)  and orthogonal to  Range(P) .  In the second case  (P–Q)x = +x  and then similarly  
Qx = o  and  x = Px ≠ o ;  this means that  Range(P)  and  Nullspace(Q)  have a nonzero 
intersection.  This can occur if  Range(Q)  is a proper subspace of  Range(P) ,  in which case  
Rank(P) > Rank(Q) ,  and then no nonzero vector in  Range(Q)  need be orthogonal to  
Range(P) .  But otherwise,  when  r := Rank(P) = Rank(Q)  too in the second case,  then also  
n := Nullity(P) = Nullity(Q) ,  and then
       0 =  n+r – Dim(Range(P)) – Dim(Nullspace(Q)) …     ( n+r = Dim(whole space) )

<  n+r – Dim(Range(P)) – Dim(Nullspace(Q)) + Dim( Range(P)∩Nullspace(Q) ) 

=  n+r – Dim( Range(P) + Nullspace(Q) )  =  Dim( (Range(P) + Nullspace(Q))⊥  )  

=  Dim( Range(P)⊥ ∩Nullspace(Q)⊥  )  =  Dim( Nullspace(P)∩Range(Q) ) .
Therefore some vector in  Range(Q)  is orthogonal to  Range(P) ,  as claimed.


