Diagonal Prominence

Gaussian Elimination and Triangular Factorization are normally performed with pivotal row exchanges to prevent division by zero and fend against numerical instability. These exchanges are unnecessary when the square matrix $A = \{a_{ij}\}$ to be factored belongs to one of two classes of matrices with sufficiently prominent diagonal elements a_{ii}. For a matrix A in either class, every Schur Complement of A belong to the same class, as we shall prove for the first Schur Complement $S := H - cr^T / \mu$ of μ in the partitioned matrix $A = \begin{bmatrix} \mu & r^T \\ c & H \end{bmatrix}$. More important, we shall prove the Schur Complements of matrices in both classes cannot grow much if at all; how this aids numerical stability by preventing rounding errors in $\mbox{cr}^T\!/\!\mu\,$ from swamping the data in H was known to J. von Neumann in 1946 though first explained by J.H. Wilkinson in 1959.

1. Matrices A Dominated by their Diagonals:

A is *Row-Dominated by its Diagonal* when every A is *Column-Dominated by its Diagonal* when every We shall prove first that S inherits the same kind of diagonal dominance from A. Columndominance will be treated since the treatment of row-dominance is very similar. Let S and the sub-arrays of A inherit their subscripts from A, so that $S = \{s_{ij}\}$ and $H = \{h_{ij}\} = \{a_{ij}\}$ for i>1~~and~~j>1 , and row $~r^T=[r_2,\,r_3,\,\ldots]=[a_{12},\,a_{13},\,\ldots]$ and similarly for column ~c . Then $s_{ij} = h_{ij} - c_i r_j / \mu \ , \ \text{and} \ \ \gamma_1 = |\mu| - \sum_{i>1} |c_i| > 0 \ , \ \text{and} \ \ \gamma_j = 2|h_{jj}| - |r_j| - \sum_{i>1} |h_{ij}| \ > 0 \ \ \text{for} \ \ j > 1 \ . \ Now$
$$\begin{split} |s_{jj}| - \sum_{i \neq j} |s_{ij}| &\geq (|h_{jj}| - |c_j r_j / \mu|) - (\sum_{i>1} (|h_{ij}| + |c_i r_j / \mu|) - (|h_{jj}|| + |c_j r_j / \mu|)) \\ &= \gamma_j + |r_j|(1 - \sum_{i>1} |c_i / \mu|) = \gamma_j + \gamma_1 |r_j / \mu| \geq \gamma_j > 0 . \end{split}$$
Therefore no column of S is less diagonally dominant than the same column of A. Finally we

observe that S can't grow much because ...

 $\sum_{i>1} |s_{ii}| \leq \sum_{i>1} |h_{ii}| + \sum_{i>1} |c_i r_i / \mu| = \sum_{i>1} |h_{ii}| + (1 - \gamma_1 / |\mu|) |r_i| \leq \sum_i |a_{ii}| \; .$ This says no column of the first Schur Complement S has a bigger sum of magnitudes than has the same column of A, whence the same follows for all subsequent Schur Complements.

2. Positive Definite Matrices A :

Real matrix A is *Positive Definite* just when $x^{T}Ax > 0$ for every real nonzero x, and then every principal submatrix of A turns out to be positive definite too; this is proved by setting to zeros the elements of x in rows that do not belong to the chosen submatrix. Therefore $\mu > 0$ and H is positive definite in the partition of A exhibited above. Our first task is to show that the first Schur Complement $S := H - cr^{T}/\mu$ is positive definite too. Choose any real nonzero row y^T of the same dimension as r^T and from it construct $x^T := [-y^T(c + r), 2\mu y^T]$ to find that $0 < x^{T}Ax = 4\mu^{2}y^{T}Sy - \mu(y^{T}(c-r))^{2}$; evidently $y^{T}Sy > 0$ too, so S must be positive definite as claimed. This implies that every Schur Complement must be positive definite too.

However, Schur Complements may grow unless A is Symmetric as well as positive definite real. In this case $A = A^T$, r = c, $H = H^T$, and $S = H - cc^T/\mu = S^T$ is also symmetric positive definite real; moreover every diagonal element $s_{ii} = h_{ii} - c_i^2/\mu \le a_{ii}$. Consequently diagonal elements of successive Schur Complements form positive non-increasing sequences, and offdiagonal elements can't grow much since each $|s_{ij}| < \sqrt{(s_{ij}s_{ij})}$, as can be inferred from $y^TSy > 0$ by setting only two elements of y to nonzero values $\sqrt{s_{ij}}$ and $\pm \sqrt{s_{ij}}$. All this ensures that a *Choleski* factorization $A = U^T U$ with triangular U exists, but that is a story for another day.