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Gaussian Elimination  and  Triangular Factorization  are normally performed with pivotal row 
exchanges to prevent division by zero and fend against numerical instability.  These exchanges
are unnecessary when the square matrix  A = {a

 

ij

 

}  to be factored belongs to one of two classes 
of matrices with sufficiently prominent diagonal elements  a

 

ii

 

 .  For a matrix  A  in either class,
every  Schur Complement  of  A  belong to the same class,  as we shall prove for the first  Schur 

Complement  S := H – cr

 

T

 

/

 

µ

 

  of  

 

µ

 

  in the partitioned matrix  A =  .  More important,  we

shall prove the  Schur Complements  of matrices in both classes cannot grow much if at all;  how
this aids numerical stability by preventing rounding errors in  cr

 

T

 

/

 

µ

 

  from swamping the data in  
H  was known to  J. von Neumann  in  1946  though first explained by  J.H. Wilkinson  in  1959.

 

1.

 

  Matrices  A  Dominated by their Diagonals:

 

A  is  

 

Row-Dominated by its Diagonal

 

  when every
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A  is  

 

Column-Dominated by its Diagonal

 

  when every

 

γ

 

j

 

 :=  |a

 

jj
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ij

 

|  > 0 .
We shall prove first that  S  inherits the same kind of diagonal dominance from  A .  Column-
dominance will be treated since the treatment of row-dominance is very similar.  Let  S  and the
sub-arrays of  A  inherit their subscripts from  A ,  so that  S = {s

 

ij

 

}  and  H = {h

 

ij

 

} = {a

 

ij

 

}  for  

i > 1  and  j > 1 ,  and row  r

 

T

 

 = [r

 

2

 

, r

 

3

 

, …] = [a

 

12

 

, a

 

13

 

, …]  and similarly for column  c .  Then  
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|  > 0  for  j > 1 .  Now
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Therefore no column of  S  is less diagonally dominant than the same column of  A .  Finally we 
observe that  S  can’t grow much because …
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This says no column of the first  Schur Complement  S  has a bigger sum of magnitudes than has 
the same column of  A ,  whence the same follows for all subsequent  Schur Complements.

 

2.  Positive Definite Matrices  A :
Real matrix  A  is  Positive Definite  just when  xTAx > 0  for every real nonzero  x ,  and then 
every principal submatrix of  A  turns out to be positive definite too;  this is proved by setting to 
zeros the elements of  x  in rows that do not belong to the chosen submatrix.  Therefore  µ > 0  
and  H  is positive definite in the partition of  A  exhibited above.  Our first task is to show that 

the first  Schur Complement  S := H – crT/µ  is positive definite too.  Choose any real nonzero 

row  yT  of the same dimension as  rT  and from it construct  xT := [–yT(c + r),  2µyT ]  to find 

that  0 < xTAx = 4µ2yTSy – µ(yT(c–r))2 ;  evidently  yTSy > 0  too,  so  S  must be positive 
definite as claimed.  This implies that every  Schur Complement  must be positive definite too.

However,  Schur Complements  may grow unless  A  is  Symmetric  as well as positive definite 
real.  In this case  A = AT ,  r = c ,  H = HT ,  and  S = H – ccT/µ = ST  is also symmetric positive 
definite real;  moreover every diagonal element  sii =  hii – ci

2/µ  ≤ aii .  Consequently diagonal 
elements of successive  Schur Complements  form positive non-increasing sequences,  and off-
diagonal elements can’t grow much since each  |sij| < √(siisjj) ,  as can be inferred from  yTSy > 0
by setting only two elements of  y  to nonzero values  √sjj  and  ±√sii .  All this ensures that a  

Choleski  factorization  A = UTU  with triangular  U  exists,  but that is a story for another day.
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