Gaussian Elimination and Triangular Factorization are normally performed with pivotal row exchanges to prevent division by zero and fend against numerical instability. These exchanges are unnecessary when the square matrix $A=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$ to be factored belongs to one of two classes of matrices with sufficiently prominent diagonal elements a_{ii}. For a matrix A in either class, every Schur Complement of A belong to the same class, as we shall prove for the first Schur Complement $S:=H-\mathrm{cr}^{\mathrm{T}} / \mu$ of μ in the partitioned matrix $\mathrm{A}=\left[\begin{array}{cc}\mu \mathrm{r} \\ \mathrm{r} \\ \mathrm{c} & \mathrm{H}\end{array}\right]$. More important, we shall prove the Schur Complements of matrices in both classes cannot grow much if at all; how this aids numerical stability by preventing rounding errors in $\mathrm{cr}^{\mathrm{T}} / \mu$ from swamping the data in H was known to J. von Neumann in 1946 though first explained by J.H. Wilkinson in 1959.

1. Matrices A Dominated by their Diagonals:

A is Row-Dominated by its Diagonal when every $\quad \rho_{\mathrm{i}}:=\left|\mathrm{a}_{\mathrm{i}}\right|-\sum_{\mathrm{j} \neq \mathrm{i}}\left|\mathrm{a}_{\mathrm{ij}}\right|>0$.
A is Column-Dominated by its Diagonal when every $\quad \gamma_{\mathrm{j}}:=\left|\mathrm{a}_{\mathrm{jj}}\right|-\sum_{\mathrm{i} \neq \mathrm{j}}\left|\mathrm{a}_{\mathrm{ij}}\right|>0$.
We shall prove first that S inherits the same kind of diagonal dominance from A . Columndominance will be treated since the treatment of row-dominance is very similar. Let S and the sub-arrays of A inherit their subscripts from A, so that $S=\left\{\mathrm{s}_{\mathrm{ij}}\right\}$ and $\mathrm{H}=\left\{\mathrm{h}_{\mathrm{ij}}\right\}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$ for $\mathrm{i}>1$ and $\mathrm{j}>1$, and row $\mathrm{r}^{\mathrm{T}}=\left[\mathrm{r}_{2}, \mathrm{r}_{3}, \ldots\right]=\left[\mathrm{a}_{12}, \mathrm{a}_{13}, \ldots\right]$ and similarly for column c . Then $\mathrm{s}_{\mathrm{ij}}=\mathrm{h}_{\mathrm{ij}}-\mathrm{c}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}} / \mu$, and $\gamma_{1}=|\mu|-\sum_{\mathrm{i}>1}\left|\mathrm{c}_{\mathrm{i}}\right|>0$, and $\gamma_{\mathrm{j}}=2\left|\mathrm{~h}_{\mathrm{jj}}\right|-\left|\mathrm{r}_{\mathrm{j}}\right|-\sum_{\mathrm{i}>1}\left|\mathrm{~h}_{\mathrm{ij}}\right|>0$ for $\mathrm{j}>1$. Now

$$
\left|\mathrm{s}_{\mathrm{jj}}\right|-\sum_{\mathrm{i} \neq \mathrm{j}}\left|\mathrm{~s}_{\mathrm{ij}}\right| \geq\left(\left|\mathrm{h}_{\mathrm{j} j}\right|-\left|\mathrm{c}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} / \mu\right|\right)-\left(\sum_{\mathrm{i}>1}\left(\left|\mathrm{~h}_{\mathrm{ij}}\right|+\left|\mathrm{c}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}} / \mu\right|\right)-\left(\left|\mathrm{h}_{\mathrm{j} j}\right|\left|+\left|\mathrm{c}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} / \mu\right|\right)\right)\right.
$$

$$
=\gamma_{j}+\left|r_{j}\right|\left(1-\sum_{i>1}\left|c_{i} / \mu\right|\right)=\gamma_{j}+\gamma_{1}\left|r_{j} / \mu\right| \geq \gamma_{j}>0 .
$$

Therefore no column of S is less diagonally dominant than the same column of A . Finally we observe that S can't grow much because ...

$$
\sum_{\mathrm{i}>1}\left|\mathrm{~s}_{\mathrm{ij}}\right| \leq \sum_{\mathrm{i}>1}\left|\mathrm{~h}_{\mathrm{ij}}\right|+\sum_{\mathrm{i}>1}\left|\mathrm{c}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}} / \mu\right|=\sum_{\mathrm{i}>1}\left|\mathrm{~h}_{\mathrm{ij}}\right|+\left(1-\gamma_{1} /|\mu|\right)\left|\mathrm{r}_{\mathrm{j}}\right| \leq \sum_{\mathrm{i}}\left|\mathrm{a}_{\mathrm{ij}}\right| .
$$

This says no column of the first Schur Complement S has a bigger sum of magnitudes than has the same column of A, whence the same follows for all subsequent Schur Complements.

2. Positive Definite Matrices A:

Real matrix A is Positive Definite just when $\mathrm{x}^{\mathrm{T}} \mathrm{Ax}>0$ for every real nonzero x , and then every principal submatrix of A turns out to be positive definite too; this is proved by setting to zeros the elements of x in rows that do not belong to the chosen submatrix. Therefore $\mu>0$ and H is positive definite in the partition of A exhibited above. Our first task is to show that the first Schur Complement $\mathrm{S}:=\mathrm{H}-\mathrm{cr}^{\mathrm{T}} / \mu$ is positive definite too. Choose any real nonzero row y^{T} of the same dimension as r^{T} and from it construct $x^{T}:=\left[-y^{T}(c+r), 2 \mu y^{T}\right]$ to find that $0<x^{T} A x=4 \mu^{2} y^{T} S y-\mu\left(y^{T}(c-r)\right)^{2}$; evidently $y^{T} S y>0$ too, so S must be positive definite as claimed. This implies that every Schur Complement must be positive definite too.

However, Schur Complements may grow unless A is Symmetric as well as positive definite real. In this case $A=A^{T}, r=c, H=H^{T}$, and $S=H-c^{T} / \mu=S^{T}$ is also symmetric positive definite real; moreover every diagonal element $\mathrm{s}_{\mathrm{ii}}=\mathrm{h}_{\mathrm{ii}}-\mathrm{c}_{\mathrm{i}}^{2} / \mu \leq \mathrm{a}_{\mathrm{ii}}$. Consequently diagonal elements of successive Schur Complements form positive non-increasing sequences, and offdiagonal elements can't grow much since each $\left|\mathrm{s}_{\mathrm{ij}}\right|<\sqrt{ }\left(\mathrm{s}_{\mathrm{ii}} \mathrm{s}_{\mathrm{jj}}\right)$, as can be inferred from y^{T} Sy >0 by setting only two elements of y to nonzero values $V_{\mathrm{s}_{\mathrm{jj}}}$ and $\pm \mathrm{V}_{\mathrm{ii}}$. All this ensures that a Choleski factorization $A=U^{T} U$ with triangular U exists, but that is a story for another day.

