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Chió’s Trick  for  Linear Equations  with  Integer Coefficients

 

Gaussian Elimination  solves a system  Ax = b  of linear equations for  x  by a sequence of rational 
operations  ( +, –, ·, / )  during which rounding errors occur unless some extra effort is put into 
performing the arithmetic exactly.  This effort may be worthwhile if the data  [A, b]  is known 
exactly,  particularly if the data consists entirely of integers.  In this case the arithmetic generates 
rational numbers stored as pairs of integers  “ in lowest terms ”  ( 

 

i.e.

 

  with no common divisor ).  
Reduction to lowest terms is time-consuming but necessary to prevent the pairs of integers from 
growing enormously too wide,  and it reveals a curious phenomenon:  the divisor integers take 
relatively few distinct values.  Chió’s  trick exploits this phenomenon to perform elimination 
using exclusively integer arithmetic with integers scarcely bigger than they have to be.

Since its appearance in  1853  Chió’s  trick has been rediscovered repeatedly  ( once by the  Rev.  
C.L. Dodgson  who wrote  

 

Alice in Wonderland

 

  and other amusements under his pen-name  
“Lewis Carroll” )  and often with incomplete,  incorrect or extremely complicated proofs of 
validity.  Let’s see whether these notes can do better.

 

Gaussian Elimination  as  Triangular Factorization

 

Nowadays many texts explain the relation between  Gaussian Elimination  and the  Triangular 
Factorization  PA = LU  wherein  P  is a permutation matrix that takes account of   “Pivotal”  row 
exchanges,  L  is  “Unit Lower Triangular”  ( it has  1 ’s  on its diagonal ),  and  U  is upper 
triangular.  Although  P  is a product of row exchanges performed as they are determined during 
the elimination process,  we can imagine that they had been applied in advance to produce a 
matrix  PA  whose linearly dependent rows,  if any,  are its last.  It is customary to take for granted 
also that the linearly dependent columns of  PA ,  if any,  are its last few,  as can be arranged by 
reordering columns if necessary.  In short,  all except perhaps the last few of the leading principal 
submatrices of  PA  are assumed invertible;  otherwise the factorization  PA = LU  becomes either 
impossible or non-unique.

Our treatment of  Chió’s  trick is also simplified by the assumption that all except perhaps the last 
few of the leading principal submatrices of  A  are invertible.  This simplification is tantamount to 
the application in advance of whatever row and/or column exchanges would otherwise be found 
during  Chió’s  elimination process to be necessary to ensure the assumption’s validity;  this is not 
a significant restriction so far as matrix computations are concerned.  However,  this restriction 
does prevent our treatment of  Chió’s  trick from being applied directly to explain how a similar 
trick works during the computations of greatest common divisors of pairs of polynomials,  and the 
computations of continued fraction expansions of rational functions.

Our treatment begins with a representation for the intermediate stages reached during the process 
of  Gaussian  elimination or,  equivalently,  triangular factorization.  For each  k = 1, 2, 3, …,  
after the first  k  unknowns kave been eliminated from all but the first  k  of the equations  Ax = b ,  
the remaining equations take the form  S

 

k

 

z

 

k

 

 = g

 

k

 

  wherein  z

 

k

 

  is obtained from  x  by deleting its 
first  k  components,  and  S

 

k

 

  is a  

 

Schur Complement

 

  derived from  A  by partitioning as follows:
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[A, b] =  .

Here  V

 

k

 

 = L

 

k

 

U

 

k

 

  is the first principal  k-by-k  submatrix of  A ;  its triangular factors are  L

 

k

 

  and  

U

 

k

 

 .  The existence of  V

 

k
–1

 

  is assured by our simplifying assumption,  which also ensures the 
existence of the factorization  V

 

k

 

 = L

 

k

 

U

 

k

 

 .   Because  L

 

k

 

  is unit triangular,  det(L

 

k

 

) = 1  and we 

find  det(U

 

k

 

) = det(L

 

k

 

)det(U

 

k

 

) = det(L

 

k

 

U

 

k

 

) = det(V

 

k

 

) 

 

≠

 

 0 ,  so  U

 

k
–1

 

  exists and  U

 

k
–1

 

L

 

k
–1

 

 = V

 

k
–1

 

 .  

Also  L

 

k

 

 := C

 

k

 

U

 

k
–1

 

  and  [U

 

k

 

, g

 

k

 

] := L

 

k
–1

 

[R

 

k

 

, r

 

k

 

] .  The  Schur  complement of  V

 

k

 

  in  A  is  S

 

k

 

  

determined from  [S

 

k

 

, g

 

k

 

] :=  [H

 

k

 

, h

 

k

 

] – C

 

k

 

V

 

k
–1

 

[R

 

k

 

, r

 

k

 

] .   ( Check it all out!)

What happens when  k  advances to  k+1 ?  L

 

k

 

  becomes the leading  (k+1)-by-(k+1)  principal 
submatrix of  L

 

k+1

 

 ,  and  U

 

k

 

  does likewise for  U

 

k+1

 

 .  The rest is best explained by partitioning

[S

 

k

 

, g

 

k

 

] =   .

First  ß

 

k

 

  becomes the last element  u

 

k+1,k+1

 

  of  U

 

k+1

 

 ;  the rest of the last column of  U

 

k+1

 

  comes 
from the first column of  U

 

k

 

 .  The rest of   [U

 

k

 

, g

 

k

 

]  becomes the first  k  rows of  [U

 

k+1

 

, g

 

k+1

 

] ,  

whose last row comes from  [p

 

T
k

 

, 

 

π

 

k

 

] .  The last row of  L

 

k+1

 

  is formed by appending  1  to the 
first row of  L

 

k

 

 ,  whose remaining rows form the first  k  columns of  L

 

k+1

 

 ,  whose last column is  

q

 

k

 

/

 

ß

 

k

 

 .  Finally another pass of elimination produces the recurrence

[S

 

k+1

 

,  g

 

k+1

 

] :=  [W

 

k

 

, w

 

k

 

] – (q

 

k

 

/

 

ß

 

k

 

)[p

 

T
k

 

, 

 

π

 

k

 

] .

 

VERIFY THE FOREGOING PARAGRAPH TO CONFIRM YOUR UNDERSTANDING
OF THE PROCESSES OF ELIMINATION AND TRIANGULAR FACTORIZATION

 

For future reference note that    ß

 

k

 

 = u

 

k+1,k+1

 

  =  det(U

 

k+1

 

)/det(U

 

k

 

)  =  det(V

 

k+1

 

)/det(V

 

k

 

) .

Since  V

 

k
–1

 

 = Adj(V

 

k

 

)

 

/

 

det(V

 

k

 

) ,  we see that  S

 

k

 

 = H

 

k

 

 – C

 

k 

 

Adj(V

 

k

 

)

 

 

 

R

 

k

 

/

 

det(V

 

k

 

)  is a rational 

function of the elements of  A  with common

 

† denominator  det(Vk) .  Therefore all elements of

[Tk, uk] := det(Vk)[Sk, gk] =  det(Vk)[Hk, hk] – Ck Adj(Vk) [Rk, rk ]
are polynomials in the elements of  A ,  and the reduced equations  Skzk = gk  are equivalent to 
equations  Tkzk = uk  all of whose coefficients are,  like those of  [A, b] ,  integers.

This is what  Chió’s  trick does,  but not directly.  If we tried to compute polynomials  Tk  and  uk  
directly using only additions,  subtractions and multiplications,  but no divisions,  the arithmetic 
work would grow horrendously with  k .  Chió’s  trick works faster by using divisions too.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
† Footnote:  Though  Vk

–1 = Adj(Vk)/det(Vk)  and  Sk = Hk – Ck
 Adj(Vk) Rk/det(Vk)  are rational functions  “ of the 

elements of  A  with common denominator  det(Vk) ”  some elements of  Vk
–1  and  Sk  may,  after reduction to lowest 

terms,  have denominators that properly divide  det(Vk) .  This certainly happens when  Vk  is triangular,  for instance.

Vk Rk rk

Ck Hk hk

Lk O

Lk I

Uk Uk gk

O Sk gk

⋅=

βk p
T

k πk

qk Wk wk
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Chió’s  Trick
It is an algorithm that,  for each  k = 1, 2, 3, …  in turn,  shall be shown to compute the coefficients  
[Tk, uk]  of a set of equations  Tkzk = uk  with the same solution  zk  as the reduced set  Skzk = gk  
obtained from  Gaussian Elimination,  but the elements of  Tk := det(Vk)Sk  are polynomials in the 

elements of  A  instead of rational functions like the  Schur  complement  Sk = Hk – Ck
 Vk

–1Rk .  
Let us disregard the right-hand side columns  b, hk, rk, gk, gk, uk  for the time being since they’re 
just along for the ride.

Chió’s  algorithm defines a sequence of matrices  A(k)  with elements  a(k)ij  thus:
a(0)00 := µ(0) := 1 ;
A(1) := A   so  a(1)ij := aij  for all  i > 0  and  j > 0 ;
for  k = 1, 2, 3, …  in turn,

a(k+1)ij := ( a(k)kk·a(k)ij – a(k)ik·a(k)kj )/a(k–1)(k–1)(k–1)   for all  i > k  and  j > k .
Of course,  the algorithm would fail if any  a(k–1)(k–1)(k–1) = 0 ,  so this will have to be proved 
impossible because of our simplifying assumption about invertible leading principal submatrices.

Partitioning   A(k) =    provides a compact description of  Chió’s  algorithm:

A(k+1) := ( µ(k)M(k) – f(k)m
T

(k) )/µ(k–1) .
Our inductive proof of its effectiveness begins with the induction hypotheses that  µ(k) = det(Vk)  
and that  A(k) = µ(k-1)Sk-1 = Tk-1 ,  i.e.,  that

   =  µ(k-1)  .

These hold at  k = 1  because  µ(0) = 1  and  A(1) = A = S0 ,  so  µ(1) = µ(0)ß0 = a11 = det(V1) ≠ 0 .  
Now suppose the hypotheses hold for  k = 1, 2, …, K  and recall from  “ future reference ”  that  
ßK–1 = det(VK)/det(VK–1) = µ(K)/µ(K–1) .  Then

A(K+1) = ( µ(K)M(K) – f(K)m
T

(K) )/µ(K–1)   from  Chió’s  algorithm,

=  µ(K–1)( ßK–1WK–1 – qK–1pT
K–1 )   from the second induction hypothesis,

=  µ(K) ( WK–1 – (qK–1/ßK–1)pT
K–1 )   because   ßK–1 = µ(K)/µ(K–1) ,

=  µ(K) SK  =  TK   from the recurrence for  SK  and definition of  TK .
This confirms the second induction hypothesis for  k = K+1 ,  from which the observation that  
µ(K+1) = µ(K)ßK = det(VK+1)  confirms the first.  End of proof.

To deal with the right-hand side columns  b, …, uk  just do unto  [A, b]  whatever row operations  
Chió’s  algorithm does unto  A .  Thus  Chió’s  algorithm reduces the given linear system  Ax = b  
through a sequence of ever smaller systems  Tkzk = uk  whose elements are polynomials in the 

data  [A, b] ;  in fact   [Tk, uk] =  det(Vk)[Hk, hk] – Ck Adj(Vk) [Rk, rk ]  is of total degree  k+1 .  If 

the division by  µ(k–1)  were omitted from  Chió’s  algorithm,  the total degree would be  2k  
instead.  This is why,  when  k  is big,  Chió’s  trick saves a lot of work during exact computation 
with integers or symbolic algebraic data.

µ k( ) m
T

k( )

f k( ) M k( )
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T
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f k( ) M k( )

βk 1– p
T
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