Lectures: Tues. - Thurs. 8 - 9:30 am. in 61 Evans; Discussion section: Wed. 8 - 9 am. in 81 Evans.

Matlab will be used for computational examples. For notes see http://www.cs.berkeley.edu/~wkahan/MathH110

Vector spaces:

Abstract linear spaces, subspaces, dimension, basis Dual spaces, inner/scalar product, outer product/dyad Cross-product in Euclidean 3-space

Abstract Linear Maps/Transformations:

Domain, codomain/target-space, kernel/nullspace, range Sums and products of linear maps, inverses Representation by matrices dependent upon bases Change of basis, canonical bases (anticipating later developments)

Elementary row and column reductions to canonical forms

Row echelon form, column echelon form, diagonal form Rank, equality of row rank and column rank, nullity Triangular factorizations and variants of Gaussian Elimination, Fredholm's Alternatives

Determinants

Determinant as ratio of volumes, obtainable from triangular factors Determinantal expansions, Cramer's rule, Jacobi's formula for derivative

Convexity

Convex body as convex hull of points, as intersection of half-spaces Support planes, separating planes Linear programming, the Simplex algorithm

Normed linear spaces

Vector norms, triangle inequality, convergence, completeness, compactness Dual norms, operator/matrix norms, projections Nearness to singularity, norm of inverse, ill conditioned linear systems Euclidean and Unitary spaces, orthogonal maps, transpose of matrix Gram-Schmidt orthogonalization, positive definite matrices, Cholesky factorization Least Squares, Linearly constrained least squares

Eigenvalues and Eigenvectors

Triangularization by similarity, block triangularization Characteristic polynomial, Cayley-Hamilton theorem Jordan's normal form, irreducible invariant subspaces, continuity and derivatives of eigenvalues Real symmetric matrices, variational derivation of eigenvalues Singular value decomposition

Applications to ... (as time permits)

Positivite matrices, Perron-Frobenius theory, stochastic matrices Linear differential equations, matrix exponentials

...

Text: The best text would be *Linear Algebra* by P.D. Lax (1997, Wiley) but for the fact that it is a graduate level text more likely to be appreciated after than before this course. And it has no drill problems. Better to buy any text that covers most the topics and is cheap enough to throw away afterwards; then buy Lax's text for a reference.

Prof. W. Kahan