
 

Math. 110 & 128                                                        Separate                                             May 17, 2002 12:24 pm

Prof. W. Kahan                                                                                                                                        Page 1/4

 

Separation of Clouds by a Plane

 

This note concerns attempts to draw a  (hyper-)plane  that partitions a given point-set into two 
subsets,  called  “clusters”,  like two clouds in an otherwise clear sky.  Of course,  such attempts 
are futile if the given points do not fall into two separable clusters,  so any partitioning algorithm 
described herein may be merely a solution in search of a problem.

Given are  K  points  z

 

1

 

, z

 

2

 

, z

 

3

 

, …, z

 

K

 

  in a  

 

Euclidean

 

  space of arbitrary but finite dimension.  
Actually each  z

 

k

 

  is a column vector drawn from the origin  o  to a point in that space,  but we 
shall ignore this distinction and assemble the vectors into a matrix  Z := [z

 

1

 

, z

 

2

 

, z

 

3

 

, …, z

 

K

 

]  
whose name shall be used for the point-set too.  We characterize any  (hyper-)plane  

 

∏

 

  in that 

space by choosing a nonzero linear functional  (row)  n

 

T

 

  and scalar constant  ß  thus:  every 

point  x  on  

 

∏

 

  satisfies  n

 

T

 

x = ß .  Such a plane  

 

∏

 

  partitions the point-set  Z  into two clusters 
distinguished well just when  ß  falls into a relatively wide gap between the elements of the row  

n

 

T

 

Z ;  were its elements sorted in monotonic order,  differences between elements that straddle  
ß  would be noticeably bigger than differences between adjacent elements on the same side of  
ß .  However,  point-sets cannot all be partitioned that well by planes.

 

Failure Modes:

 

Any algorithm designed to find a separating plane must fail or at least falter when no relatively 

wide gap exists among the elements of  n

 

T

 

Z  no matter how  n

 

T

 

  is chosen.  This can happen 
when clouds overlap a little;  perhaps two clouds would be well-separated if some relatively few 
points were deleted from  Z .  Even if the clouds are quite distinct they can be situated,  like the  
“c”  and  “O”  in the character  “

 



 

”,  where no plane can separate them.  Perhaps the given point-
set consists of three or more well-separated clusters;  then separating planes may be abundant 
though none is so much better than all others that it deserves to be singled out by the algorithm.

Evidently separation is a matter of degree,  and sometimes ill-defined even when conspicuous.

Moreover,  separation alone lends itself to misinterpretation.  For instance,  a border separates 
the  U.S.A.  from  Mexico,  and separates also almost all of their citizens although many of each 
country’s citizens reside on the other’s side of the border.  A census that counted just adult 
bodies would over-estimate the numbers of eligible voters in border states.  Here is another 
instance:  Suppose the scores achieved by a student on each of several standardized tests are 
assembled into a column vector  z ;  and suppose the array  Z  is assembled from the scores of  
K  students coming from two different high-schools,  but mixed up so that nobody knows from 
which school any particular score-vector comes.  Suppose too that the score-vectors form two 
clusters that both abut a separating plane though their centers are well-separated,  suggesting 
strongly that the students come from two distinct populations.  If someone jumped to the 
conclusion that each cluster’s students almost all come from the same high-school,  he would 
over-estimate the differences between the two high-schools’ students’ scores by attributing to 
one high-school all the scores on its side of the separating plane,  thus omitting this school’s 
scores on the other side of the plane while attributing to it some of the other school’s scores.
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Dividing Points on a Line into Two Clouds:

 

Let  “ n

 

T

 

x = ß ”  be the equation of a plane  

 

∏

 

  that does partition set  Z  into two clusters,  and 

suppose  n

 

T

 

  is known;  how can  ß  be determined?  The elements of row  n

 

T

 

Z  can be viewed 
as a set of points on a line and,  ideally,  ß  divides that set into two clusters,  one substantially 
above and the other substantially below  ß .  This much separation is probably too much to 
demand.  Instead,  a value  ß  can be deemed acceptable if it lies in a neighborhood where 

elements of  n

 

T

 

Z  are sparse compared with neighborhoods above and below  ß  where elements 
are dense.  Here  “neighborhood”,  “sparse”  and  “dense”  are terms too vague to define an 
algorithm;  they merely convey the intention behind the procedure to be described next.

Let  s

 

T

 

 := [s

 

1

 

, s

 

2

 

, …, s

 

K

 

]  be the row obtained from  n

 

T

 

Z  by sorting it into,  say,  ascending 
order,  so that  s

 

1

 

 

 

≤

 

 s

 

2

 

 

 

≤

 

 … 

 

≤

 

 s

 

K

 

 .  If  1 

 

≤

 

 i < j 

 

≤

 

 K ,  the  

 

Average Gap

 

  between  s

 

i

 

  and  s

 

j

 

  is 
defined here to be  (s

 

j

 

 – s

 

i

 

)/(j–i) ;  it is roughly the reciprocal of the average density of elements 

of  n

 

T

 

Z  between  s

 

i

 

  and  s

 

j

 

 .  For some integer  k  between  1  and  K ,  a plot of  (s

 

i+k

 

 – s

 

i

 

)/k  
against  i = 1, 2, …, K–k  should show comparatively small  Average Gaps  where elements of  

n

 

T

 

Z  are dense in the neighborhood between  s

 

i

 

  and  s

 

i+k

 

,  and large  Average Gaps  where 
elements are sparse.  If  Z  deserves to be partitioned into two clusters by  

 

∏

 

 ,  the plot should 
show a pronounced peak between two regions where the  Average Gap  is comparatively low.

If the increment  k  is chosen too big,  the fluctuations in the plot of  Average Gap  will be too 
few and too subdued to locate a gap between clusters.  If  k  is chosen too small,  the plot of  
Average Gap  my fluctuate too wildly to locate that separating gap.  A plausible initial choice 
for the increment  k  is roughly  

 

√

 

K ,  and a plausible initial estimate for the separating gap is 
within the neighborhood where the  Average Gap  is maximized between neighborhoods where 
the  Average Gap  is comparatively low.  If  k  is big enough,  the maximizing neighborhood 
will be determined uniquely;  then,  plotting the  Average Gap  again around that neighborhood 
with a smaller choice of increment  k  will produce a narrower maximizing neighborhood with a 
bigger  Average Gap.

Thus,  plots of  Average Gap  for a sequence of diminishing incrememts  k  will produce a 
nested sequence of narrowing neighborhoods with growing  Average Gaps  all bigger than those 
in neighborhoods on both sides.  When  k  gets down to  1  the separating gap in which  ß  
belongs will have been located.

 

Finding the Direction of a Separating Plane:

 

In a  Euclidean  space,  where the length of a vector  x  is  ||x||: = 

 

√

 

(x

 

T

 

x) ,  the vector  n  is 

normal  (perpendicular)  to the plane  

 

∏

 

  whose equation is   n

 

T

 

x = ß .  The distance from  

 

∏

 

  to 

a point  z  is   ||z–

 

∏

 

|| := |n

 

T

 

z–ß|

 

/

 

||n||   because   x := z – n(n

 

T

 

z–ß)

 

/

 

n

 

T

 

n   is the point  in  

 

∏

 

  closest 
to  z .  This is so because  x  satisfies the equation of  

 

∏

 

 ,  and every other point  x  in  

 

∏

 

  can 

easily be shown to satisfy  ||z–x||

 

2

 

 = ||z–x + x – x||

 

2

 

 = ||z–x||

 

2

 

 + ||x–x||

 

2

 

 

 

≥

 

 ||z–x||

 

2

 

 .
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An alternative form of the equation of  

 

∏

 

  is  n

 

T

 

(x–c) = 0  for any point  c  in  

 

∏

 

 ,  for which  

n

 

T

 

c = ß .  This alternative form lends itself better to the solution of a  

 

Least-Squares Problem

 

:

Given  n 

 

≠

 

 o  and a set  (matrix)  Z := [z

 

1

 

, z

 

2

 

, z

 

3

 

, …, z

 

K

 

]  of points,

choose  c  to minimize  

 

∑

 

j 

 

||z

 

j

 

–

 

∏

 

||

 

2

 

 .

This sum of squared distances can be rewritten as

 

∑

 

j 

 

||z

 

j

 

–

 

∏

 

||

 

2

 

 =  

 

∑

 

j 

 

(n

 

T

 

(z

 

j

 

 – c))

 

2

 

/

 

nTn  =  nT(Z – cuT)(Z–cuT)Tn/nTn

in which  uT := [1, 1, …, 1]  with  K  elements.  A minimizing choice for  c  turns out to be  
ç := Zu/K ,  regardless of  n .  This  ç  is the average  (or  mean)  of the points  Z ,  their center of 
gravity.  It minimizes the sum-of-squares because

(Z – cuT)(Z–cuT)T =  (Z – çuT)(Z–çuT)T + K(c–ç)(c–ç)T .

In short,  among all parallel planes with the same normal  n ,  the plane that minimizes the sum 
of squared distances from the point-set  Z  passes through its center of gravity regardless of  n .

A plane that partitions the points  Z  into two separated clusters should be as far as possible from 
both clusters while passing between them,  though it need not pass through  Z’s  center of 
gravity.  This thought motivates the following  MaxiMin Problem:

   Choose the normal  n  to a plane  ∏  through  ç  in such a way as to maximize  ∑j ||zj–∏||2 .

In other words,  choose  c  and  n  to find  maxn minc n
T(Z–cuT)(Z–cuT)Tn/nTn .  This sum-of-

squares is maximized when the normal  n = ñ ,  an eigenvector of  (Z – çuT)(Z–çuT)T  belonging 
to its largest eigenvalue;  another way to put it is that the maximizing  ñ  is the singular vector 

belonging to the biggest singular value of  Z – çuT .  In its  Singular Value Decomposition  

Z – çuT = PVQT ,  where  PTP = QTQ = I  (an identity matrix)  and  V  is a positive diagonal 

matrix with the nonzero singular values of  Z – çuT  on its diagonal in descending order,  ñ  is 
the first column of  P .

If we presume that this  ñ  is the normal to a plane  ∏  that partitions  Z  into two clusters,  the 
choice of  ß  to select  ∏  can be achieved as discussed earlier.

Example:
A perfectly partitionable set  Z = [b, b, …, b, d, d, …, d]  consists of  M  repetitions of a point  b  
and  K–M  repetitions of another point  d .  Now  ç := (Mb + (K–M)d)/K  is the center of gravity 

of  Z ,  so  b = ç – (K–M)e  and  d = ç + Me  where  e := (d–b)/K .  Then  Z – çu = erT  where  

rT  is a row starting with  M  repetitions of  M–K  followed by  K–M  repetitions of  M .  The 

singular vector belonging to the biggest  (and only nonzero)  singular value of  erT  is  e ,  which 
is the best normal for a plane that separates  d  from  b .  On the other hand,  any normal not 
perpendicular to  e  would work too if not so well,  so this example is not a hard test of the 
procedure described above.
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Warning:
Despite its success on one example,  the procedure described above has a disquieting property.  
If an invertible linear operator  L  maps the set  Z  to another set  LZ  it should map a separating 

plane  ∏  to another separating plane  L∏  of the set  LZ .  The equation  “ nTx = ß ”  satisfied 

by points  x  in  ∏  should transform into an equation  “ nTL–1y = ß ”  satisfied by points  
y = Lx  on  L∏ .  But the procedure described above will generally get a normal different from  

nTL–1  for the plane that separates the clusters of  LZ ;  the new separating plane will not match  
L∏  in general,  nor will the two clusters of  LZ  be images of the two clusters of  Z .

Perhaps  LZ  does not deserve to be separated by  L∏ .  Suppose the points of  Z  are the four 
vertices of a nondegenerate tetrahedron with one vertex at the origin  o .  Any such tetrahedron 
can be mapped to any other by an invertible linear transformation  L .  A tetrahedron whose 
vertex at  o  is well separated from the three others can be mapped to a tetrahedron whose vertex 
at  o  is close to two others but far from the third.  This is a case when the clustering of a point-
set is changed drastically by a linear map tantamount to a non-orthogonal change of coordinates.

A nonlinear map can change clustering utterly;  for instance,  the  “c”  and  “O”  in the character  
“ ”  that cannot be separated by a line are mapped to easily separable sets by a change to polar 
coordinates centered inside the  “c”.  In general,  attempts to separate non-convex clusters by a 
plane seem unlikely to succeed unless the clusters can be circumscribed by nonintersecting 
convex surfaces mostly farther apart than their diameters,  not like two coins lying flat one on 
the other.

In other words,  the separability of a point-set into two clusters may depend upon the coordinate 
system chosen for the points.  Also important is the precision with which points are located,  
since the gap between clusters may be misleading if the points’ locations are in error by much 
more than the gap.  The procedure described above makes sense only if the choice of coordinate 
system has this property:  The  (in)significance  of a small perturbation of any point’s position is 
roughly independent of the point and of the perturbation’s direction,  and therefore determined 
almost entirely by the perturbation’s length in roughly the same way for every point.


