## The Reduced Row-Echelon Form is Unique

Any (possibly not square) finite matrix B can be reduced in many ways by a finite sequence of Elementary Row-Operations $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{m}}$, each one invertible, to a Reduced RowEchelon Form (RREF) $\mathrm{U}:=\mathrm{E}_{\mathrm{m}} \cdots \mathrm{E}_{2} \cdot \mathrm{E}_{1} \cdot \mathrm{~B}$ characterized by three properties:
1: The first nonzero element in any nonzero row is " 1 ".
2: Each nonzero row's leading " 1 " comes in a column whose every other element is " 0 ".
3: Each such leading " 1 " comes in a column after every preceeding row's leading zeros.
Here is an example of a matrix $U$ in RREF:

$$
U=\left(\begin{array}{lllllllllllll}
( & 0 & 0 & 1 & 2 & 0 & 3 & 0 & 4 & 0 & 5 & 6 & ) \\
( & 0 & 0 & 0 & 0 & 1 & 7 & 0 & 8 & 0 & 9 & 0 & ) \\
( & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & ) \\
( & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & )
\end{array}\right.
$$

That $B$ determines its RREF $U$ uniquely will be demonstrated below, even though $B$ does not determine uniquely the sequences of Elementary Row-Operations $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{m}}$ that reduce $B$ to $U$. In other words, if $V:=F_{n} \cdots F_{2} \cdot F_{1} \cdot B$ is another RREF of $B$ then, we shall prove, $V=U$ although $F_{1}, F_{2}, \ldots, F_{m}$ may differ from $E_{1}, E_{2}, \ldots, E_{m}$.

First confirm that $\mathrm{U}=\mathrm{C} \cdot \mathrm{V}$ and $\mathrm{V}=\mathrm{C}^{-1} \cdot \mathrm{U}$ where

$$
\mathrm{C}:=\left(\mathrm{E}_{\mathrm{m}} \cdots \mathrm{E}_{2} \cdot \mathrm{E}_{1}\right) \cdot\left(\mathrm{F}_{\mathrm{n}} \cdots \mathrm{~F}_{2} \cdot \mathrm{~F}_{1}\right)^{-1}=\mathrm{E}_{\mathrm{m}} \cdots \mathrm{E}_{2} \cdot \mathrm{E}_{1} \cdot \mathrm{~F}_{1}^{-1} \cdot \mathrm{~F}_{2}^{-1} \cdots \mathrm{~F}_{\mathrm{n}}^{-1}
$$

Our task is to infer that the two RREFs U and V are the same even though C need not be an identity matrix.

For any integer $\mathrm{j}>0$ let $\mathrm{l}_{\mathrm{j}}$ denote the $\mathrm{j}^{\text {th }}$ column of an identity matrix of whatever size is appropriate, so that $\mathrm{u}_{\mathrm{j}}:=\mathrm{U} \cdot \mathrm{l}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}}:=\mathrm{V} \cdot \mathrm{l}_{\mathrm{j}}$ and $\mathrm{c}_{\mathrm{j}}:=\mathrm{C} \cdot \mathrm{l}_{\mathrm{j}}$ are respectively the $\mathrm{j}^{\text {th }}$ columns of $\mathrm{U}, \mathrm{V}$ and C . Let us also note that if $\mathrm{v}_{\mathrm{j}}=\mathrm{o}$ for some j then $\mathrm{u}_{\mathrm{j}}=\mathrm{C} \cdot \mathrm{v}_{\mathrm{j}}=\mathrm{o}$ too; similarly if $u_{j}=o$ then $v_{j}=C^{-1} \cdot u_{j}=o$ too. Therefore, we may simplify our task by striking out columns of zeros from $\mathrm{B}, \mathrm{U}$ and V ; those columns will have corresponding indices, and striking them out will not invalidate anything said so far.

In the absence of zero columns, we can assume that the RREFs $U$ and $V$ have $u_{1}=v_{1}=l_{1}$. Therefore $c_{1}=C \cdot l_{1}=C \cdot v_{1}=u_{1}=l_{1}$ too. And if any column $v_{j}$ is a scalar multiple of $1_{1}$, say $\mathrm{v}_{\mathrm{j}}=\mu_{\mathrm{j}} \cdot \mathrm{l}_{1}$, then $\mathrm{u}_{\mathrm{j}}=\mathrm{U} \cdot \mathrm{l}_{\mathrm{j}}=\mathrm{C} \cdot \mathrm{V} \cdot \mathrm{l}_{\mathrm{j}}=\mathrm{C} \cdot \mathrm{v}_{\mathrm{j}}=\mu_{\mathrm{j}} \cdot \mathrm{C} \cdot \mathrm{l}_{1}=\mu_{\mathrm{j}} \cdot \mathrm{l}_{1}=\mathrm{v}_{\mathrm{j}}$ too. Similarly, with $\mathrm{C}^{-1}$ in place of $C$, if any column $u_{j}=\mu_{j} \cdot l_{1}$ then $v_{j}=u_{j}$ too. Therefore all the columns of $U$ and $V$ that are proportional to $l_{1}$ match. The first column not proportional to $l_{1}$ is $l_{2}$, and it appears in the same column positions in U and V if it appears at all. Since all columns of U and V that lie between the leading appearances of $1_{1}$ and $l_{2}$ are the same, striking them out of both U and V does no harm.

The foregoing theme will be extended by induction. Suppose that the first $k$ columns of the RREFs U and V match the first k columns of an identity matrix whose first $\mathrm{k}-1$ columns also match those of C , and $\mathrm{U}=\mathrm{C} \cdot \mathrm{V}$. We have just seen that this is the case for $\mathrm{k}=2$ unless

U and V have fewer than k nonzero rows. Then we see $\mathrm{c}_{\mathrm{k}}=\mathrm{C} \cdot \mathrm{l}_{\mathrm{k}}=\mathrm{C} \cdot \mathrm{v}_{\mathrm{k}}=\mathrm{u}_{\mathrm{k}}=\mathrm{l}_{\mathrm{k}}$. Now consider any subsequent column $\mathrm{v}_{\mathrm{j}}$ (with $\mathrm{j}>\mathrm{k}$ ) whose elements beyond the $\mathrm{k}^{\text {th }}$ all vanish; then $u_{j}=C \cdot v_{j}=v_{j}$ because only the first $k$ columns of $C$ matter to $C \cdot v_{j}$, and those columns match an identity matrix. Similarly, any subsequent column $u_{j}$ (with $j>k$ ) whose elements beyond the $\mathrm{k}^{\text {th }}$ all vanish must match $\mathrm{v}_{\mathrm{j}}$. Therefore, all columns of U and V that lie between the leading appearances of $l_{k}$ and $1_{k+1}$ are the same; we may strike them out and continue the induction. The process stops when the nonzero rows are exhausted. Therefore $\mathrm{U}=\mathrm{V}$ after certain identical columns have been struck out, so $\mathrm{U}=\mathrm{V}$ after they are restored. End of proof.

Corollary: The RREF of B is unchanged when it is pre-multiplied by an invertible matrix. The proof is the same as before except for a change in its definition of $C$.

## Uses for the Reduced Row-Echelon Form:

Having proved that every matrix $B$ has its own unique RREF $U$, we show next how $U$ helps us determine the degrees of freedom available to solutions $x$ of a system " $B \cdot x=y$ " of linear equations. First premultiply by a product $H$ of elementary operations to change $B$ into its RREF $U=H \cdot B$, simultaneously changing y into $z:=H \cdot y$, without changing any solutions $x$; if $B \cdot x=y$ then $U \cdot x=H \cdot B \cdot x=H \cdot y=z$, and if $U \cdot x=z$ then $B \cdot x=H^{-1} \cdot U \cdot x=H^{-1} \cdot z=y$. Such a solution x can exist just when z has no nonzero element in any row where U has only zeros; then elements of $x$ in rows corresponding to columns of U with a leading " 1 " are determined from equation " $\mathrm{U} \cdot \mathrm{x}=\mathrm{z}$ " by back substitution after all other elements of x have been chosen arbitrarily. The solution $x$ is unique just when none of its elements can be choosen arbitrarily; that will be the case just when every column of $U$ has just one nonzero element and no row has more than one. Otherwise the equation " $\mathrm{U} \cdot \mathrm{v}=\mathrm{o}$ " will have nonzero solutions $v$ that can be added to any solution $x$ of " $B \cdot x=y$ " and still leave
$U \cdot(x+v)=U \cdot x=z$ so $B \cdot(x+v)=H^{-1} \cdot U \cdot(x+v)=H^{-1} \cdot U \cdot x=B \cdot x=y$ too.

## Fredholm's Alternatives:

Ivar Fredholm (1866-1927) enunciated these to characterize the solvability of integral equations and of infinite systems of linear equations without using determinants nor inverses.

1) At least one solution $x$ of " $B \cdot x=y$ " exists if and only if
every solution $w^{T}$ of " $w^{T} \cdot B=o^{T}$ " also makes $w^{T} \cdot y=0$.
2) If a solution $x$ exists, it is unique if and only if
" $\mathrm{B} \cdot \mathrm{v}=\mathrm{o}$ " has no nonzero solution v .
Proof: We have seen how any nonzero solution v of " $\mathrm{B} \cdot \mathrm{v}=\mathrm{o}$ " can be added to one solution x of " $\mathrm{B} \cdot \mathrm{x}=\mathrm{y}$ " to get another; conversely if " $\mathrm{B} \cdot \mathrm{x}=\mathrm{y}$ " has different solutions $\mathrm{x}=\mathrm{x}_{1}$ and $x=x_{2}$ then " $B \cdot v=0$ " must have a nonzero solution $v:=x_{1}-x_{2}$. Thus, alternative 2) is confirmed. As for 1 ), observe first that if $y=B \cdot x$ then $w^{T} \cdot y=w^{T} \cdot B \cdot x$ so every solution $w^{T}$ of " $w^{T} \cdot B=o^{T}$ " does make $w^{T} \cdot y=0$. Conversely if every such solution $w^{T}$ makes $w^{T} \cdot y=0$, the existence of at least one solution $x$ of " $B \cdot x=y$ " follows from the RREF $\mathrm{U}:=\mathrm{H} \cdot \mathrm{B}$ thus: ( This proof is valid only for finite systems!)

Suppose the contrary, that no such solution $x$ existed. Then $z:=H \cdot y$ would have to have a nonzero element $\mu$ in a row where $U$ has only zeros. Let 1 be that column of an identity matrix with its nonzero element in the same row, so $1^{T} \cdot \mathrm{z}=\mu$ and $\mathrm{I}^{\mathrm{T}} \cdot \mathrm{U}=\mathrm{o}^{\mathrm{T}}$. Then for a solution $\mathrm{w}^{\mathrm{T}}:=1^{\mathrm{T}} \cdot \mathrm{H}$ of " $\mathrm{w}^{\mathrm{T}} \cdot \mathrm{B}=\mathrm{o}^{\mathrm{T}}$ " we would find $\mathrm{w}^{\mathrm{T}} \cdot \mathrm{y}=\mu \neq 0$, contradicting "Conversely if ..." above. End of proof.

## Uses for the Row-Rank:

The Row-Rank of B is the number of nonzero rows in its RREF. It has been used to characterize the solvability of linear systems for over two centuries.

Evidently " $\mathrm{B} \cdot \mathrm{x}=\mathrm{y}$ " is consistent ( has at least one solution ) just when matrices B and ( B y) have the same row-rank. This can be confirmed most easily by reducing ( B y) to its RREF, which reduces $B$ to its RREF at the same time. (Can you see why?)

Evidently a solution $x$ of " $B \cdot x=y$ " is unique just when no nonzero vector $v$ satisfies " $B \cdot v=o$ ", so $x$ is unique just when the row-rank of $B$ equals its number of columns. (Can you see why?)

Whenever the row-rank of B is interesting, namely when it is less than the lesser of B's dimensions, it turns out to be a discontinuous function of the elements of B. (Can you see why?) Then the computation of row-rank is very vulnerable to rounding errors, which undermine its usefulness for deciding solvability.

## Column Rank = Row Rank = Rank :

By exchanging the words "row" and "column" above, we can define the Reduced ColumnEchelon Form (RCEF) of the matrix B and its Column Rank. In general, the RCEF and RREF of B need not be the same unless B is nonsingular (invertible), as we shall see. Though not necessarily the same, the RCEF and RREF of B have something in common: their rank. This comes about because of the Corollary above which implies that row/column rank is unchanged by pre/post multiplication by invertible matrices, respectively; furthermore, the RCEF of the RREF of B can easily be seen to equal the RREF of the RCEF of B , and this twice-reduced form consists of zeros everywhere except possibly in the first few diagonal positions where the number of " 1 " entries is the same as the number of nonzero rows or columns. Thus, row rank equals column rank, which justifies calling them both just "rank."

A square matrix B is nonsingular when its finite rank equals its dimension, in which case its RREF and RCEF must both be the identity matrix I ; in other words, $\mathrm{E} \cdot \mathrm{B}=\mathrm{I}=\mathrm{B} \cdot \mathrm{F}$ for products E and F of elementary invertible matrices. Then $\mathrm{F}=\mathrm{E} \cdot \mathrm{B} \cdot \mathrm{F}=\mathrm{E}$ is called $\mathrm{B}^{-1}$, the inverse of B . Its existence is a nontrivial theorem which cannot be deduced from either equation " $\mathrm{E} \cdot \mathrm{B}=\mathrm{I}$ " or " $\mathrm{B} \cdot \mathrm{F}=\mathrm{I}$ " separately since either equation can be satisfied and the other not if B is not square or its dimensions are infinite. ( Can you see how?)

Exercise: Suppose B has finite dimensions and that P•B•Q = I. Must $\mathrm{B}^{-1}=\mathrm{Q} \cdot \mathrm{P}$ ? Justify your answer.

