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The Reduced Row-Echelon Form is Unique

 

Any  (possibly not square)  finite matrix  B  can be reduced in many ways by a finite sequence 
of  

 

Elementary Row-Operations

 

  E

 

1

 

, E

 

2

 

, ..., E

 

m

 

 ,  each one invertible,  to a  

 

Reduced Row-
Echelon Form

 

  (RREF)   U :=  E

 

m

 

···E

 

2

 

·E

 

1

 

·B   characterized by three properties:
  1:   The first nonzero element in any nonzero row is  “1” .
  2:   Each nonzero row's leading  “1”  comes in a column whose every other element is  “0” .
  3:   Each such leading  “1”  comes in a column after every preceeding row's leading zeros.
Here is an example of a matrix  U  in  RREF :

 

                        (  0  0  

 

1

 

  2  0  3  0  4  0  5  6  )
                  U  =  (  0  0  0  0  

 

1

 

  7  0  8  0  9  0  )
                        (  0  0  0  0  0  0  0  0  

 

1

 

  1  2  )
                        (  0  0  0  0  0  0  0  0  0  0  0  )

 

That   B  determines its  RREF  U  uniquely  will be demonstrated below,  even though  B  does 
not determine uniquely the sequences of  Elementary Row-Operations   E

 

1

 

, E

 

2

 

, ..., E

 

m

 

  that 
reduce  B to  U .  In other words,  if  V := F

 

n

 

···F

 

2

 

·F

 

1

 

·B   is another  RREF of  B  then,  we shall 
prove,  V = U  although  F

 

1

 

, F

 

2

 

, ..., F

 

m

 

  may differ from  E

 

1

 

, E

 

2

 

, ..., E

 

m

 

 .

First confirm that   U = C·V   and   V = C

 

–1

 

·U   where

C :=  (E

 

m

 

···E

 

2

 

·E

 

1

 

)·(F

 

n

 

···F

 

2

 

·F

 

1

 

)

 

–1

 

  =  E

 

m

 

···E

 

2

 

·E

 

1

 

·F

 

1
–1

 

·F

 

2
–1

 

···F

 

n
–1

 

 .
Our task is to infer that the two  RREFs  U and V  are the same even though  C   need not be an 
identity matrix.

For any integer  j > 0  let  l

 

j

 

  denote the  j

 

th

 

  column of an identity matrix of whatever size is 

appropriate,  so that  u

 

j

 

 := U·l

 

j

 

 ,  v

 

j

 

 := V·l

 

j

 

  and  c

 

j

 

 := C·l

 

j

 

  are respectively the  j

 

th

 

  columns of  
U ,  V  and  C .  Let us also note that if  v

 

j

 

 = o  for some  j  then  u

 

j

 

 = C·v

 

j

 

 = o  too;  similarly if  

u

 

j

 

 = o  then  v

 

j

 

 = C

 

–1

 

·u

 

j

 

 = o  too.  Therefore, we may simplify our task by striking out columns of 
zeros from  B ,  U  and  V ;  those columns will have corresponding indices,  and striking them 
out will not invalidate anything said so far.

In the absence of zero columns,  we can assume that the  RREFs  U  and  V  have  u

 

1

 

 = v

 

1

 

 = l

 

1

 

 .  
Therefore  c

 

1

 

 = C·l

 

1

 

 = C·v

 

1

 

 = u

 

1

 

 = l

 

1

 

 too.  And if any column  v

 

j

 

  is a scalar multiple of  l

 

1

 

 ,  say  

v

 

j

 

 = 

 

µ

 

j

 

·l

 

1

 

 ,  then  u

 

j

 

 = U·l

 

j

 

 = C·V·l

 

j

 

 = C·v

 

j

 

 = 

 

µ

 

j

 

·C·l

 

1

 

 = 

 

µ

 

j

 

·l

 

1

 

 = v

 

j

 

  too.  Similarly,  with  C

 

–1

 

  in 
place of  C ,  if any column  u

 

j

 

 = 

 

µ

 

j

 

·l

 

1

 

  then  v

 

j

 

 = u

 

j

 

  too.  Therefore all the columns of  U and V  
that are proportional to  l

 

1

 

  match.  The first column not proportional to  l

 

1

 

  is  l

 

2

 

 ,  and it appears 
in the same column positions in  U and  V  if it appears at all.  Since all columns of  U and V  
that lie between the leading appearances of  l

 

1

 

 and l

 

2

 

  are the same,  striking them out of both  U 
and V  does no harm.

The foregoing theme will be extended by induction.  Suppose that the first  k  columns of the  
RREFs  U  and  V  match the first  k columns of an identity matrix whose first  k–1  columns 
also match those of  C ,  and  U = C·V .  We have just seen that this is the case for  k = 2  unless  
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U  and  V  have fewer than  k  nonzero rows.  Then we see  c

 

k

 

 = C·l

 

k

 

 = C·v

 

k

 

 = u

 

k

 

 = l

 

k

 

 .  Now 

consider any subsequent column  v

 

j

 

  (with  j > k)  whose elements beyond the  k

 

th

 

  all vanish;  
then  u

 

j

 

 = C·vj = vj  because only the first  k  columns of  C  matter to  C·vj ,  and those columns 
match an identity matrix.  Similarly,  any subsequent column  uj  (with  j > k)  whose elements 

beyond the  kth  all vanish must match  vj .  Therefore,  all columns of  U and V  that lie between 
the leading appearances of  lk  and  lk+1  are the same;  we may strike them out and continue the 
induction.  The process stops when the nonzero rows are exhausted.  Therefore  U = V  after 
certain identical columns have been struck out,  so  U = V  after they are restored.  End of proof.

Corollary:  The  RREF  of  B  is unchanged when it is pre-multiplied by an invertible matrix.  
The proof is the same as before except for a change in its definition of  C .

Uses for the  Reduced Row-Echelon Form:
Having proved that every matrix  B  has its own unique  RREF  U ,  we show next how  U  helps 
us determine the degrees of freedom available to solutions  x  of a system  “ B·x = y ”  of linear 
equations.  First premultiply by a product  H  of elementary operations to change  B  into its  
RREF  U = H·B ,  simultaneously changing  y  into  z := H·y ,  without changing any solutions  

x ;  if  B·x = y  then  U·x = H·B·x = H·y = z ,  and if  U·x = z  then  B·x = H–1·U·x = H–1·z = y .  
Such a solution  x  can exist just when  z  has no nonzero element in any row where  U  has only 
zeros;  then elements of  x  in rows corresponding to columns of  U  with a leading  “1”  are 
determined from equation  “ U·x = z ”  by  back substitution  after all other elements of  x  have 
been chosen arbitrarily.  The solution  x  is unique just when none of its elements can be 
choosen arbitrarily;  that will be the case just when every column of  U  has just one nonzero 
element and no row has more than one.  Otherwise the equation  “ U·v = o ”  will have nonzero 
solutions  v  that can be added to any solution  x  of  “ B·x = y ”  and still leave  

U·(x+v) = U·x = z  so  B·(x+v) = H–1·U·(x+v) = H–1·U·x = B·x = y  too.

Fredholm's Alternatives:     
Ivar Fredholm  (1866-1927)  enunciated these to characterize the solvability of integral 
equations and of  infinite  systems of linear equations without using determinants nor inverses.
  1)  At least one solution  x  of   “ B·x = y ”   exists  if and only if

every solution  wT  of   “ wT·B = oT ”   also makes  wT·y = 0 .
  2)  If a solution  x  exists,  it is unique  if and only if

“ B·v = o ”   has no nonzero solution  v .

Proof:  We have seen how any nonzero solution  v  of  “ B·v = o ”  can be added to one solution  
x  of  “ B·x = y ”  to get another;  conversely if  “ B·x = y ”  has  different  solutions  x = x1  and  
x = x2  then  “ B·v = o ”  must have a nonzero solution  v := x1–x2 .  Thus,  alternative  2)  is 

confirmed.   As for  1),  observe first that if  y = B·x  then  wT·y = wT·B·x  so every solution  wT  

of  “ wT·B = oT ”  does make  wT·y = 0 .  Conversely if every such solution  wT  makes  

wT·y = 0 ,  the existence of at least one solution  x  of  “ B·x = y ”  follows from the  RREF  
U := H·B  thus:  ( This proof is valid only for finite systems!)
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Suppose the contrary,  that no such solution  x  existed.  Then  z := H·y  would have to have a 
nonzero element  µ  in a row where  U  has only zeros.  Let  l  be that column of an identity 

matrix with its nonzero element in the same row,  so  lT·z = µ  and  lT·U = oT .  Then for a 

solution  wT := lT·H  of  “ wT·B = oT ”  we would find  wT·y = µ ≠ 0 ,  contradicting  
“Conversely if ...”  above.  End of proof.

Uses for the  Row-Rank:
The  Row-Rank  of  B  is the number of nonzero rows in its  RREF.  It has been used to 
characterize the solvability of linear systems for over two centuries.

Evidently  “ B·x = y ”  is  consistent  ( has at least one solution )  just when matrices  B  and   
(B  y)   have the same  row-rank.  This can be confirmed most easily by reducing   (B  y)   to its  
RREF ,  which reduces  B  to its  RREF  at the same time.  ( Can you see why? )

Evidently a solution  x  of  “ B·x = y ”  is unique just when no nonzero vector  v  satisfies  
“ B·v = o ” ,  so  x  is unique just when the  row-rank  of  B  equals its number of columns.  
( Can you see why? )

Whenever the  row-rank  of  B  is interesting,  namely when it is less than the lesser of  B’s  
dimensions,  it turns out to be a discontinuous function of the elements of  B .  ( Can you see 
why?)  Then  the computation of  row-rank  is very vulnerable to rounding errors,  which 
undermine its usefulness for deciding solvability.

Column Rank  =  Row Rank  =  Rank :
By exchanging the words  “row”  and  “column”  above,  we can define the  Reduced Column-
Echelon Form  (RCEF)  of the matrix  B  and its  Column Rank.  In general,  the  RCEF  and  
RREF  of  B  need not be the same unless  B  is nonsingular  ( invertible ),  as we shall see.  
Though not necessarily the same,  the  RCEF and RREF  of  B  have something in common:  
their rank.  This comes about because of the  Corollary  above which implies that  row/column  
rank is unchanged by  pre/post multiplication by invertible matrices,  respectively;  furthermore,  
the  RCEF of the RREF  of  B  can easily be seen to equal the  RREF of the RCEF  of  B ,  and 
this twice-reduced form consists of zeros everywhere except possibly in the first few diagonal 
positions where the number of  “1”  entries is the same as the number of nonzero rows or 
columns.  Thus,  row rank equals column rank,  which justifies calling them both just  “rank.”

A square matrix  B  is  nonsingular  when its finite rank equals its dimension,  in which case its  
RREF  and  RCEF  must both be the identity matrix  I ;  in other words,  E·B = I = B·F  for 

products  E  and  F  of elementary invertible matrices.  Then  F = E·B·F = E  is called  B–1 ,  the 
inverse of  B .  Its existence is a nontrivial theorem which cannot be deduced from either 
equation  “ E·B = I ”  or  “ B·F = I ”  separately since either equation can be satisfied and the 
other not if  B  is not square or its dimensions are infinite.  ( Can you see how?)

Exercise:  Suppose  B  has finite dimensions and that  P·B·Q = I .  Must  B–1 = Q·P ?  Justify 
your answer.


