Real Operator Norms in Complex Spaces

Every n-dimensional complex vector space \mathbb{C} contains many n-dimensional real vector spaces, each obtained as the set \mathbb{R} of all real linear combinations of the vectors in some complex basis chosen for \mathbb{C}. This process induces a definition for the complex conjugate $\overline{\mathbf{z}}$ of any vector \mathbf{z} in \mathbb{C} making \mathbf{z} the complex conjugate of $\overline{\mathbf{z}}$, so that \mathbb{R} contains all the vectors (including those basis vectors!) that are their own complex conjugates. \mathbb{B} contains both $\operatorname{Re}(\mathbf{z}):=(\overline{\mathbf{z}}+\mathbf{z}) / 2$ and $\operatorname{Im}(\mathbf{z}):=1 \cdot(\overline{\mathbf{z}}-\mathbf{z}) / 2$, so $\mathbf{z}=\operatorname{Re}(\mathbf{z})+\mathrm{l} \cdot \operatorname{Im}(\mathbf{z})$. Though \mathbb{C} contains \mathbb{R} it is not a subspace of \mathbb{C}.

A linear operator L that maps \mathbb{C} to itself has a complex conjugate $\overline{\mathrm{L}}$ defined by taking $\overline{\mathrm{L}} \cdot \mathbf{z}$ to be the complex conjugate of $L \cdot \overline{\mathbf{z}}$. A linear operator is deemed Real if it maps \mathbb{R} to itself. Both $\operatorname{Re}(\mathrm{L}):=(\overline{\mathrm{L}}+\mathrm{L}) / 2$ and $\operatorname{Im}(\mathrm{L}):=\mathfrak{r} \cdot(\overline{\mathrm{L}}-\mathrm{L}) / 2$ are instances of real linear operators; all these are their own complex conjugates. When restricted to \mathbb{R}, a real linear operator R can have only real eigenvalues if any, though R can have complex eigenvalues when it acts upon \mathbb{C}.

Nothing surprising has been said here yet. The surprise will come soon.
Let \mathbb{C} be a normed space; its norm $\|\ldots\|$ is inherited by \mathbb{R}, and $\|\operatorname{Re}(\mathbf{z})\| \leq(\|\overline{\mathbf{z}}\|+\|\mathbf{z}\|) / 2$; in general $\|\overline{\mathbf{z}}\|$ may differ from $\|\mathbf{z}\|$. A linear operator L that maps \mathbb{C} to itself inherits its operator (or lub- or sup-) norm from the vector norm thus:
$\|\mathrm{L}\|:=\max \|\mathrm{L} \cdot \mathbf{z}\| /\|\mathbf{z}\|$ over all nonzero \mathbf{z} in \mathbb{C}.
Evidently $\|\operatorname{Re}(\mathrm{L})\| \leq(\|\overline{\mathrm{L}}\|+\|\mathrm{L}\|) / 2$; in general $\|\overline{\mathrm{L}}\|$ may differ from $\|\mathrm{L}\|$. Every eigenvalue λ of L satisfies $|\lambda| \leq\|L\|$ because its associated eigenvector $\mathbf{z} \neq \mathbf{0}$ has $L \cdot \mathbf{z}=\lambda \cdot \mathbf{z}$. Also $|\lambda| \leq\|\overline{\mathrm{L}}\|$ because $\bar{\lambda}$ is an eigenvalue of $\overline{\mathrm{L}}$ with eigenvector $\overline{\mathbf{z}}$.

The same goes for a real linear operator $\mathrm{R}=\overline{\mathrm{R}}$; its every eigenvalue ρ, real or complex, must satisfy $|\rho| \leq\|R\|=\|\bar{R}\|$. However, another operator norm makes sense for real operators:

$$
[\mathrm{R}]:=\max \|\mathrm{R} \cdot \mathbf{x}\| /\|\mathbf{x}\| \text { over all nonzero } \mathbf{x} \text { in } \mathbb{R} .
$$

Evidently $[R] \leq\|R\|$, because $\mathbb{R} \subset \mathbb{C}$, and $|\rho| \leq[R]$ for every real eigenvalue ρ of R.
Surprise: $|\rho| \leq[R]$ for every eigenvalue ρ, real or complex, of real R.
Prof. Ridg Scott of the University of Chicago pointed out this surprise. Hereunder is a proof:
Suppose $\rho=\mu \cdot e^{\mathrm{l} \cdot \theta}$ is a non-real eigenvalue of R with $\mu>0$ and some real $\theta \neq 0$. Then the corresponding eigenvector \mathbf{z} must be non-real; in fact $\mathbf{z} \cdot e^{\imath \cdot \phi}$ must be a non-real eigenvector for every real ϕ. Therefore some such ϕ achieves a positive minimum for $\left\|\operatorname{Im}\left(\mathbf{z} \cdot e^{\imath \cdot \phi}\right)\right\|$. Some simplification is gained without loss of generality by assuming that a minimizing $\phi=0$. Now the imaginary part of the equation $\mathrm{R} \cdot \mathbf{z}=\mu \cdot \mathbf{z} \cdot e^{\mathrm{l} \cdot \theta}$ yields $\mathrm{R} \cdot \operatorname{Im}(\mathbf{z})=\mu \cdot \operatorname{Im}\left(\mathbf{z} \cdot e^{\mathrm{l} \cdot \theta}\right)$ whence follows $[\mathrm{R}] \geq\|\mathrm{R} \cdot \operatorname{Im}(\mathbf{z})\| /\|\operatorname{Im}(\mathbf{z})\|=\mu \cdot\left\|\operatorname{Im}\left(\mathbf{z} \cdot e^{1 \cdot \theta}\right)\right\| /\|\operatorname{Im}(\mathbf{z})\| \geq \mu$ because $\|\operatorname{Im}(\mathbf{z})\|$ was minimized. []

The surprize is nontrivial; examples of norms $\|\ldots\|$ that have $[R]<\|R\|$ do exist, but they are not the most familiar norms $\|\ldots\|_{1},\|\ldots\|_{2}$ and $\|\ldots\|_{\infty}$. The reader is invited to find examples before turning over the page.

Examples:

Let $\mathbb{C}:=\mathbb{C}^{2}$, the space of complex 2-columns $\mathrm{z}:=\left[\begin{array}{l}\zeta \\ \omega\end{array}\right]$. Its usual norm is $\|\mathrm{z}\|_{2}:=\sqrt{ }\left(|\zeta|^{2}+|\omega|^{2}\right)$ but here we shall use $\|\mathrm{z}\|:=\|\mathrm{U} \cdot \mathrm{z}\|_{2}$ in which $\mathrm{U}:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Now $\mathbb{R}=\mathbb{R}^{2}$, the space of real 2columns x , with the inherited norm $\|\mathrm{x}\|=\sqrt{ }\left(\mathrm{x}^{\mathrm{T}} \cdot \overline{\mathrm{U}}^{\mathrm{T}} \cdot \mathrm{U} \cdot \mathrm{x}\right)=\sqrt{ }\left(\mathrm{x}^{\mathrm{T}} \cdot \operatorname{Re}\left(\overline{\mathrm{U}}^{\mathrm{T}} \cdot \mathrm{U}\right) \cdot \mathrm{x}\right)=\sqrt{ }\left(\mathrm{x}^{\mathrm{T}} \cdot \mathrm{V}^{2} \cdot \mathrm{x}\right)$ in which $V:=\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{2}\end{array}\right]$. The inherited operator norm for complex 2-by-2 matrices L turns out to be $\|\mathrm{L}\|=\left\|\mathrm{U} \cdot \mathrm{L} \cdot \mathrm{U}^{-1}\right\|_{2}$ which is the larger singular value of $\mathrm{U} \cdot \mathrm{L} \cdot \mathrm{U}^{-1}$. For real 2-by-2 matrices R restricted to act upon only real 2 -columns, the inherited operator norm is $[\mathrm{R}]=\left\|\mathrm{V} \cdot \mathrm{R} \cdot \mathrm{V}^{-1}\right\|_{2}$.

Complex conjugation can change $\|\ldots\|$. For instance $\mathrm{z}:=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ has $\|\mathrm{z}\|=\sqrt{5} \neq\|\overline{\mathrm{z}}\|=1$. And $\mathrm{L}:=\left[\begin{array}{cc}1 & 0 \\ 1+\mathrm{t} & 1\end{array}\right]$ has $\|\mathrm{L}\|=(1+\sqrt{3}) / \sqrt{2} \neq\|\overline{\mathrm{L}}\|=(3+\sqrt{\overline{11}}) / \sqrt{2}$.

Next, [R] will be compared with $\|R\|$ and $\sigma(R):=\max \{$ eigenvalues of $R \mid\}$, including complex as well as real eigenvalues of real matrix R. (Many writers call $\sigma(R)$ the "Spectral Radius" of R ; some other writers call $\|\mathrm{R}\|_{2}$ its "Spectral Radius". Let's not use the term.)

- $R:=\left[\begin{array}{cc}\beta & -2 \alpha \\ \alpha & \beta\end{array}\right]$ has $\sigma(R)=[R]=\|R\|=\sqrt{ }\left(2 \alpha^{2}+\beta^{2}\right)$, and complex eigenvalues if $\alpha \neq 0$.

$$
\text { No instance } R \text { has } \sigma(R)<[R]=\|R\| \text {. }
$$

- $\sigma\left(\mathrm{V}^{2}\right)=\left[\mathrm{V}^{2}\right]=2<\left\|\mathrm{V}^{2}\right\|=(1+\sqrt{5}) / \sqrt{2}$.
- $R:=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right] \quad$ has $\sigma(R)=1<[R]=\sqrt{3}<\|R\|=\sqrt{6}$, and real eigenvalues.
- $R:=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ has $\sigma(R)=\sqrt{2}<[R]=(1+\sqrt{17}) / \sqrt{8}<\|R\|=2$, and imaginary eigenvalues.
- $R:=\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]$ has $\sigma(R)=\sqrt{3}<[R]=\sqrt{6}<\|R\|=(\sqrt{15}+\sqrt{3}) / 2$, and complex eigenvalues.

For more about how [R] and $\|\mathrm{R}\|$ differ, with citations of similar work going back to 1994, see "Real and Complex Operator Norms" by Olga Holtz \& Michael Karow (2004) posted at arXiv:math/0512608v1 .

