Real Operator Norms in Complex Spaces

Every n-dimensional complex vector space \mathbb{C} contains many n-dimensional real vector spaces, each obtained as the set \mathbb{R} of all real linear combinations of the vectors in some complex basis chosen for \mathbb{C} . This process induces a definition for the complex conjugate \overline{z} of any vector z in \mathbb{C} making z the complex conjugate of \overline{z} , so that \mathbb{R} contains all the vectors (including those basis vectors !) that are their own complex conjugates. \mathbb{R} contains both $Re(z) := (\overline{z} + z)/2$ and $Im(z) := \iota(\overline{z} - z)/2$, so $z = Re(z) + \iota \cdot Im(z)$. Though \mathbb{C} contains \mathbb{R} it is *not* a subspace of \mathbb{C} .

A linear operator L that maps \mathbb{C} to itself has a complex conjugate \overline{L} defined by taking $\overline{L} \cdot \mathbf{z}$ to be the complex conjugate of $L \cdot \overline{\mathbf{z}}$. A linear operator is deemed *Real* if it maps \mathbb{R} to itself. Both $Re(L) := (\overline{L} + L)/2$ and $Im(L) := \iota \cdot (\overline{L} - L)/2$ are instances of real linear operators; all these are their own complex conjugates. When restricted to \mathbb{R} , a real linear operator R can have only real eigenvalues if any, though R can have complex eigenvalues when it acts upon \mathbb{C} .

Nothing surprising has been said here yet. The surprise will come soon.

Let \mathbb{C} be a normed space; its norm $\|...\|$ is inherited by \mathbb{R} , and $\|\operatorname{Re}(\mathbf{z})\| \le (\|\overline{\mathbf{z}}\| + \|\mathbf{z}\|)/2$; in general $\|\overline{\mathbf{z}}\|$ may differ from $\|\mathbf{z}\|$. A linear operator L that maps \mathbb{C} to itself inherits its operator (or *lub*- or *sup*-) norm from the vector norm thus:

 $\|L\| := \max \|L \cdot \mathbf{z}\| / \|\mathbf{z}\| \text{ over all nonzero } \mathbf{z} \text{ in } \mathbb{C}.$ Evidently $\|Re(L)\| \le (\|\overline{L}\| + \|L\|)/2$; in general $\|\overline{L}\|$ may differ from $\|L\|$. Every eigenvalue λ of L satisfies $|\lambda| \le \|L\|$ because its associated eigenvector $\mathbf{z} \ne \mathbf{0}$ has $L \cdot \mathbf{z} = \lambda \cdot \mathbf{z}$. Also $|\lambda| \le \|\overline{L}\|$ because $\overline{\lambda}$ is an eigenvalue of \overline{L} with eigenvector $\overline{\mathbf{z}}$.

The same goes for a real linear operator $\mathbf{R} = \overline{\mathbf{R}}$; its every eigenvalue ρ , real or complex, must satisfy $|\rho| \le ||\mathbf{R}|| = ||\overline{\mathbf{R}}||$. However, another operator norm makes sense for real operators: $[\![\mathbf{R}]\!] := \max ||\mathbf{R} \cdot \mathbf{x}|| / ||\mathbf{x}||$ over all nonzero \mathbf{x} in \mathbb{R} .

Evidently $[\![R]\!] \leq |\![R]\!|$, because $\mathbb{R} \subset \mathbb{C}$, and $|\rho| \leq [\![R]\!]$ for every *real* eigenvalue ρ of R.

Surprise: $|\rho| \leq [R]$ for every eigenvalue ρ , real or complex, of real R.

Prof. Ridg Scott of the University of Chicago pointed out this surprise. Hereunder is a proof:

Suppose $\rho = \mu \cdot e^{\iota \cdot \theta}$ is a non-real eigenvalue of R with $\mu > 0$ and some real $\theta \neq 0$. Then the corresponding eigenvector \mathbf{z} must be non-real; in fact $\mathbf{z} \cdot e^{\iota \cdot \phi}$ must be a non-real eigenvector for every real ϕ . Therefore some such ϕ achieves a *positive* minimum for $||Im(\mathbf{z} \cdot e^{\iota \cdot \phi})||$. Some simplification is gained without loss of generality by assuming that a minimizing $\phi = 0$. Now the imaginary part of the equation $\mathbf{R} \cdot \mathbf{z} = \mu \cdot \mathbf{z} \cdot e^{\iota \cdot \theta}$ yields $\mathbf{R} \cdot Im(\mathbf{z}) = \mu \cdot Im(\mathbf{z} \cdot e^{\iota \cdot \theta})$ whence follows $[[\mathbf{R}]] \ge ||\mathbf{R} \cdot Im(\mathbf{z})|| - ||Im(\mathbf{z})|| = \mu \cdot ||Im(\mathbf{z} \cdot e^{\iota \cdot \theta})||/||Im(\mathbf{z})|| \ge \mu$ because $||Im(\mathbf{z})||$ was minimized. []

The surprise is nontrivial; examples of norms $\|...\|$ that have $[\![R]\!] < \|R\|$ do exist, but they are not the most familiar norms $\|...\|_1$, $\|...\|_2$ and $\|...\|_{\infty}$. The reader is invited to find examples before turning over the page.

Examples:

Let $\mathbb{C} := \mathbb{C}^2$, the space of complex 2-columns $z := \begin{bmatrix} \zeta \\ \omega \end{bmatrix}$. Its usual norm is $||z||_2 := \sqrt{(|\zeta|^2 + |\omega|^2)}$ but here we shall use $||z|| := ||U \cdot z||_2$ in which $U := \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix}$. Now $\mathbb{R} = \mathbb{R}^2$, the space of real 2columns x, with the inherited norm $||x|| = \sqrt{(x^T \cdot \overline{U}^T \cdot U \cdot x)} = \sqrt{(x^T \cdot Re(\overline{U}^T \cdot U) \cdot x)} = \sqrt{(x^T \cdot V^2 \cdot x)}$ in which $V := \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$. The inherited operator norm for complex 2-by-2 matrices L turns out to be $||L|| = ||U \cdot L \cdot U^{-1}||_2$ which is the larger singular value of $U \cdot L \cdot U^{-1}$. For real 2-by-2 matrices R restricted to act upon only real 2-columns, the inherited operator norm is $[\![R]\!] = ||V \cdot R \cdot V^{-1}||_2$.

Complex conjugation can change $\|...\|$. For instance $z := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has $\|z\| = \sqrt{5} \neq \|\overline{z}\| = 1$. And $L := \begin{bmatrix} 1 & 0 \\ 1+t & t \end{bmatrix}$ has $\|L\| = (1+\sqrt{3})/\sqrt{2} \neq \|\overline{L}\| = (3+\sqrt{11})/\sqrt{2}$.

Next, [R] will be compared with ||R|| and $\sigma(R) := \max\{|\text{eigenvalues of } R|\}$, including complex as well as real eigenvalues of real matrix R. (Many writers call $\sigma(R)$ the "Spectral Radius" of R; some other writers call $||R||_2$ its "Spectral Radius". Let's not use the term.)

• $\mathbf{R} := \begin{bmatrix} \beta & -2\alpha \\ \alpha & \beta \end{bmatrix}$ has $\sigma(\mathbf{R}) = \llbracket \mathbf{R} \rrbracket = \|\mathbf{R}\| = \sqrt{(2\alpha^2 + \beta^2)}$, and complex eigenvalues if $\alpha \neq 0$. No instance **R** has $\sigma(\mathbf{R}) < \llbracket \mathbf{R} \rrbracket = \|\mathbf{R}\|$.

•
$$\sigma(V^2) = [V^2] = 2 < |V^2| = (1 + \sqrt{5})/\sqrt{2}$$
.

- $\mathbf{R} := \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ has $\sigma(\mathbf{R}) = 1 < \llbracket \mathbf{R} \rrbracket = \sqrt{3} < \lVert \mathbf{R} \rVert = \sqrt{6}$, and real eigenvalues.
- $\mathbf{R} := \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ has $\sigma(\mathbf{R}) = \sqrt{2} < \llbracket \mathbf{R} \rrbracket = (1 + \sqrt{17})/\sqrt{8} < \lVert \mathbf{R} \rVert = 2$, and imaginary eigenvalues.

•
$$\mathbf{R} := \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$
 has $\sigma(\mathbf{R}) = \sqrt{3} < \llbracket \mathbf{R} \rrbracket = \sqrt{6} < \lVert \mathbf{R} \rVert = (\sqrt{15} + \sqrt{3})/2$, and complex eigenvalues.

For more about how $[\![R]\!]$ and $\|R\|$ differ, with citations of similar work going back to 1994, see "Real and Complex Operator Norms" by Olga Holtz & Michael Karow (2004) posted at arXiv:math/0512608v1.