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Noteson Vector and Matrix Norms

These notes survey most important properties of norms for vectors and for linear maps from one
vector space to another, and of maps norms induce between a vector space and its dual space.

Dual Spaces and Transposes of Vectors

Along with any space of real vectors x comesits dual space of linear functionals w' . The
representation of x by acolumn vector x, determined by a coordinate system or Basis, is

accompanied by a corresponding way to represent functionals w' by row vectors w' so that
alwaysw'x =w'x . A change of coordinate system will change the representations of x and
w' from x and w' to x=Cx and w' =w'C for some suitable nonsingular matrix C,

keeping wT'x =w'x . But between vectors x and functionals w' no relationship analogous

to the relationship between acolumn x andtherow X' that isits transpose necessarily exists.
Relationships can be invented; so can any arbitrary maps between one vector space and another.

For example, given acoordinate system, we can define afunctional x' for every vector x by

choosing arbitrarily anonsingular matrix T and letting x' be the functional represented by the
row (Tx)T in the given coordinate system. This defines alinear map X' = T(x) from the space
of vectors x toitsdual space; but whatever change of coordinates replaces column vector x

by % =CIx mustreplace (Tx)" by (Tx)T = (Tx)TC = (TCx)'C to get the same functional

x" . Thelast equations can hold for all % onlyif T=CTTC. Inother words, the linear map

T(X) defined by thematrix T in one coordinate system must be defined by T = CTTC inthe
other. Thisrelationship between T and T iscalled Congruence ( Sylvester's word for it).

Evidently matrices congruent to the same matrix are congruent to each other; can all matrices

congruent to agiven matrix T be recognized? Only if T=TT isrea and symmetric does this
guestion have asimple answer; itis Sylvester's Law of Inertia treated elsewherein this course.

The usual notation for complex vector spaces differs slightly from the notation for real spaces.

Linear functionals are written wH or w* instead of w', and row vectors are written w or
w* to denote the complex conjugate transpose of column w instead of merely its transpose

w'. (Matlab uses “w.’ " for w' and “w " for w*.) We'll usethe w* notation because

it is older and more widespread than w™ . Matrix T iscongruentto C*TC whenever C is
any invertible matrix and C* isits complex conjugate transpose. Most theorems are the same
for complex asfor real spaces; for instance Sylvester'sLaw of Inertia holds for congruences
among complex Hermitian matrices T = T* aswell asrea symmetric. Because many proofs
are simpler for real spaces we shall stay mostly with them.

Not al maps from avector space to its dual have been found useful; some useful maps are not
linear. Among the most useful maps, linear and nonlinear, are the ones derived from the
metrics or norms associated with different notions of length in vector spaces. Applications of
these norms and of their derived maps are the subject matter of the following notes.
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Norms
A norm isascalar function ||x|| defined for every vector x in some vector space, rea or

complex, and possessing the following three characteristic properties of length :

Positivity: O< |[X|]| <o exceptthat ||o]|=0.
Homogeneity: [AX|[= Al ||| for every scalar A .
Triangle inequality: [[x +y|I< |||+ |IvIl - ( Equality need not imply parallelism!)

Exercisel: Prove ||w—x|—|ly—zll| £ |w-y|| + |x—2z|| forany w, X, y, z inanormed space.

Three examples of norms defined on the space of column vectors x with elements &4, &o, ... &,
are |Xllp == (X« EP)YP for p=1or2, and |X|| := max, [Ex] . ( Can you verify that these
three ||...|[, are norms? Thetriangle inequality is the hard part; see below.) In this course we

shall discuss mostly these three norms, but there are lots of others. Every nonsingular linear
operator L convertsonenorm |[x|| into another norm x| := [|ILx|| . ( Why nonsingular?) Also
the maximum of two normsisathird and the sum of two normsis another. ( Can you see why?)

The Norm’s Unit-ball Q
Every norm hasitsown Unit-ball Q defined asthe set of all vectors x with |x]|<1. Some
writers use the words “Unit-sphere” to mean what we call its boundary 0Q , consisting of all
the norm’s unit vectors u with |ju]]=1. Our unit ball Q turnsout to be abounded closed
centrally symmetric convex body with an interior:
“Bounded” meansfor every x # 0 that Ax liesoutside Q forall A > /||| .
“Closed” meansthat Q includesitsboundary 0Q .
“Centrally Symmetric” meansthat if x liesin Q sodoes AX whenever |A\|=1;
for real vector spaces A =£1.
“Convex” meansthat if x and y bothliein Q then so must the line segment traced by
AX+ (1-A)y for 0<A<1; it'sbecause ||Ax + (L-A)y|| < AIX|| + (I-N)]|yll < 1.
“Interior” to Q iswhere o lies; thismeansfor every x and all nonzero A chosen
with |A| tiny enough ( smaller than 1/||x||) that Ax liesin Q too.

Conversely, given abounded closed centrally symmetric convex body Q with aninterior, a

norm ||...|| can be so defined that Q isitsunit-ball. Infact, define ||o]|:= 0 and for nonzero
vectors x define ||x|| to bethat positive value of & that puts x/¢ on the boundary 0Q . Such
a ¢ must exist because x/¢ liesinteriorto Q for all & big enough, and liesoutside Q for all
& tiny enough. Central symmetry implies homogeneity of ||...||. Convexity of Q impliesthe
triangle inequality thus. For any nonzero x and y we know that x/||x|| and y/|ly|| bothlieon
0Q . Therefore Ax/||x||+ (L-A)y/|ly|| liesin Q whenever 0<A <1, and surely liesthereif

A = |IXIFAIYIFFIXID » whereupon || AX/|Ix]] + (Z-A)Y/|lyll || £ 1 and the rest follows easily.

Unit-balls can be very diverse. For instance, the unit-balls €, belonging to the norms ||... |,
defined abovefor p=1,2 and « have very different shapes when the dimension n islarge.
Q,, has 2n facetsand 2" vertices, whereas Q, has 2" facetsand 2n vertices, and 0Q, isa
very smooth sphere in between. To appreciate these shapes draw picturesof Q, for n=2 or
3; then Q, isasquareor cube, Q; isadiamond or octahedron, and Q, isacircular disk or
solid sphere respectively. Shapes like these will predominate in the following notes.
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Continuity and Topological Equivalence of Norms

Despite the diverse shapes of unit-balls, all vector norms ||...|| have many common properties.
Oneis Continuity; thisisproved by substituting w =y =0 in Exercise1 above to deduce
that | |IX|]|—lzll | £ lIx=z|| . Thisshowsthat [[x|| can be kept ascloseto ||z|]| asonelikes by
keeping |x—z|| small enough, by keeping x inasufficiently tiny ball shaped like Q centered
a z. Butif Q canbearbitrarily needle-like or arbitrarily flattened, why can’'t ||x|| change
arbitrarily violently when x changes arbitrarily little measured by some other metric? That can
happen in infinite-dimensional spaces but not in a space of finite dimension n, and hereiswhy:

First choose any basis B =[by, by, ..., by] and then substitute b/|lb;|| for every b; to force
every |lbj][=1. Inthisbasisthe components &; of any vector x =3 b;§; = Bx formacolumn
vector x . Define [IX|l = IB™ Xl = [IXlles = max; [§] and [IXIly := [IB™Xlly = [Ixll = ¥; 1§,
two new norms to compare with  [[x|| = I3 bj&;ll < % lIbjl 1§ = % &1 = [IX[lz < nl|X[lo, . Then
[IXI =11zl | = |IX=2]| < [X—2ll1 < n|[X—Z|l, , which confirmsthat |[x|| isa continuous function of
the components §; of x andof x in every basis. (If n wereinfinite, [|x|| might change
arbitrarily violently even though every change in every component &; of x isarbitrarily tiny.)

Because every x satisfies |[x|| < ||x||y < n|X|l, theunit-ball Q of ||x|| contains the unit-ball
Q,=BQ; of |||y, and Q; contains (1/n)Q,, , afractional copy of the unit-ball Q. =BQ,,
of |[X|l. - ( Canyou seewhy?) Thisphenomenon istypical; given any two normsfor afinite-

dimensional vector space, some small positive multiple of either’s unit-ball always fitsinside
the other. Hereiswhy:

For any two norms ||...|| and |...| , let’sconsider the quotient |[x|l/|x| . As X runsthrough all
nonzero vectors this quotient sweeps through arange of positive values which is the same range
as ||u|//lu] sweepsout while u :=x/|X||, runsthrough all unit vectorson 0Q,, . Every such

u =Bu for aunit column u on 9Q,, , and vice-versa, sotherangein question isswept out by
the quotient ||Bull/|Bu] while u runsover al of Q. . Two paragraphs ago we saw why ||Bul|

must be a continuous function of u, and the same goesfor |Bu|; and since both norms are
positive their quotient is continuous too. Boundary 0Q,, isaclosed bounded set in afinite-
dimensional space, so every continuous function thereon achieves its maximum and minimum
values somewhere on 9Q,, ; in particular the quotient’s maximum M = ||B0|/|Bd] > 0 and
minimum p = ||BU||/|BU] > 0 are achieved respectively at some unit columns 0 and U ( not
determined uniquely ). Therefore O<pu < |[X|//[x] <M foral x#o0, andeach “ <” signturns
into “ =" for some x. Theseinequalitiestell us something geometrical about the norms’ unit-
balls, Q for ||...|| and Q for |...]; you should confirm now that MQ barely contains Q
which barely contains pQ . Here “barely” means boundaries touch.

The foregoing paragraph isimportant for two reasons. First, its style of reasoning will recur.
Second, it showsthat all finite-dimensional vector norms are Topologically Equivalent : if an
infinite sequence of vectors converges when distance from its limit is measured in one norm,
then convergence occurs no matter what norm is used to measure distance. Do you see why?

( Different norms defined for an infinite-dimensional vector space do not have to be Topologically Equivalent.)
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Lagrange's Identities, and Cauchy’s and Holder’'s Inequalities

These are stated and proved here for columns w ={w} and x={¢;} of complex numbers of

which w; and &; aretheir complex conjugates and ww; = [wj? and ; = |§[* their squared

magnitudes. First, ageneralization of |[X||%|[w]||Z — [xsw|? = |xxw|[? from Euclidean 3-space is
Lagrange's|dentity: w*w x*x — W*x? = 3; 3y W& —wi&;[?/2.

It is proved by expanding the double-sum’s |...[* and collecting terms. In matrix termsit says

wWrW x*x — w*x[? = Trace((wx" —xwT)* (wx" —xwT))/2. Another version, more natural, is

WFW X*X — Re((W*x)?) = Trace((wx* —xw*)* (wx* —xw*))/2. Since Trace(M*M) isthe sum

of squared magnitudes of any matrix M ’s elements it must be nonnegative, whence follows

Cauchy’sInequality: [w*x| < V(w*wx*x) = |w*||5 |IX]l> -
This becomes equality only if w or x isascalar multiple of the other. Cauchy’s Inequality
implies (‘and can be proved equivalent to) the triangle inequality for ||x||, = V(x*x) because
(Wl + 1% = W + XIlo? = 2(Iwllplixll, — Re(w*x)) = 2(Iw [lalixll = w*x]) 20
Note the implicit definition of [w* ||, := |lw||, = V(w*w) here. Itisaspecia case. We shall see
that other norms |w*|| of rows are not computed from the same formulas ||w|| asfor columns.

Angle arccos( Re(w*x)/(Jw||-|Ix|l) ) between vectors w and x ana Euclidean or Unitary spaceisreal because

of Cauchy’sInequality, which was proved by H.A. Schwarz for integrals aswell as sums, and was discovered

alsoby Bunyakovsky; al three names get attached toit. Analogousinequalitiesapply to ||... ||, forevery p=1;

itstriangle inequality isalso called Minkowski’s Inequality, anditsanalog of Cauchy’sInequality iscalled
Hdlder's Inequality: w*x| < [w*[lplIx]lo := [Wllglix]l, for g:=1+ U(p-1)=1.

Note that the formulato compute [w*||, fromrow w* is not the same as the formulato compute ||wl|, from

column w unless q=p=2; seebelow. Classnoteson Jensen'sInequality, or textsabout Normed Spaces, or
Functional Analysis, or Inequalities, supply proofsof Minkowski’'s and Hdolder's inequalities, either of which
can be deduced from the other. Neither will figure much in these notesfor p and q different from 1, 2 and .

The Dual Norm
Givenanorm |[x|| for area space of vectors x, its Dual Norm is another norm induced over

the dual space of linear functionals w' thus:

W]l := max w'x| = maxw'x maximized over al x in Q.
(For complex spaces ||w*|| := max [w*x| = max Re(w*x) over all x in Q.) Pleasedo verify
that these definitions have all three of the characteristic properties norms must have, and that

max (w*x| really equals max Re(w*x) ; IT'SIMPORTANT! Provided the vector space hasfinite
dimension, the asserted maxima exist because they are maxima of continuous functions of x

over aclosed bounded region Q ; but no simple formulafor ||WT|| need exist. Fortunately, a
simple formula does exist for the norms dual to ||...||, defined above:

T

Letrow w' =[wy, W, ..., Wy ; then [wT]}, turnsout to bejust [wlly with q:= 1+ 1/(p-1)
forevery p=1, thoughwecareaboutonly p=1, 2 and o . Inthese cases observe that

W'|l, =(maxw'x overal x with |X|l,<1)=(maxw'u overal u with |jul,=1)
p P : ) . p
= max [w,] when p=1, ('You can verify thiseasily, so do so.)
= Sk wid when p=o, ('You can verify thiseasily, so do so.)
= V( 3k |Wk|2) when p=2. ('You can verify thiseasily, so do so.)
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Thecase p=2 followsfrom Cauchy’sInequality, which isthe special casefor ||...||, of what
iscalled, for normsin general,

Holder’s Inequality: w'

x < [wTl|Ix|| foral w' and x.

This follows immediately from the definition of the dual norm |jw']|. Moreover we may verify
easily (andyoushoulddoso) for al threenorms ||... ||, that

IIXll, = max w'x over all w' with [wT[l,<1,
which suggests that the relationship between dua norms ||...|| and ||...T|| may be symmetrical.
Thelast relation istrue not just for ||...||, and ||...T||p but for all pairs of dual norms, though the general proof

must be postponed until the Hahn-Banach theorem has been presented.

Support-Planes
Now some geometrical properties of dual norms can be described. They will be described for

real 2- and 3-dimensional spaces though analogous descriptions apply to al finite dimensions.

Let uT bean arbitrarily chosen unit-functional (|ju’||=1). Let v beaunit-vector (|v||=1)
on the boundary 0Q that maximizes

u'v=uT||Ivll=1= maxu'x overal x with |[x||=1.
For each constant A the equation u'™x =\ describesalineor plane in the space of vectors X .

Corresponding to different values A are different members of afamily of parallel lines or
planes. Two of those lines or planes touch the unit-ball Q and sandwich it between them; their

equationsare u'x =+1. Toconfirmthat Q liesbetween them, observefor every +x in Q
that uT(=x)<u'l|Exll<1, so -1<u'x<1. Andto verify that those two lines or planes
touch dQ notethat u'(+v) =+1; each of them touches dQ but not the interior of Q .

Theline or plane whose equation is u'x = +1 issaidto support Q at +v respectively; itis
tangent to 0Q thereonly if visnot avertex (corner) of Q. Thusthe association of Q’s
support-lines or support-planes with their points of contact can be viewed as an association of

unit-functionals u’ with unit-vectors v on 9Q . Thisassociation is one-to-one only if Q is
rotund, which means smooth (no vertices nor edges) and strictly convex (no facets nor

edges) ; otherwise v cannot determine u' uniquely at edges or vertices, and u' cannot
determine v uniquely at edges or facetsof 0Q , asthese diagrams show.

V4|l = |Vl = 1
Ty=g  Mall= vl
Vi Vo
Q
T, —
ux=-1
T _ OTX =-1
=1 I = o = 1
First choose uT; thenfind v. First choose v ; then find ul.
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One of these diagrams takes for granted something unobvious that requires proof. Inthefirst
diagram, an arbitrary unit-functional u' ischosen first, so |u’||=1, and then at least one
unit-vector v on 9Q isfoundto maximize u'v =|jv]|=1. All other vectors x must satisfy
u'™x < |||l ; in other words, theinterior of Q liesentirely on one side of the support-line or
support-plane whose equation is u'x =1 and which touches 9Q at the point(s) v thusfound.

For the second diagram an arbitrary unit-vector v with ||v|| =1 ischosenfirst on dQ, and
then at least one unit-functional u' (so |ju'||=1) isfound to maximize

u'v=maxw'v overal w' with [w'||=1;
thismaximum u'v < [Ju|l|v|= 1. But the diagram assumes u'v=1. Whyisn't uTv<1?

The dotted line shows what would happen were the maximized u'v < 1: The support-line or support-plane whose

equationis u'x =1 would touch dQ elsewherethanat v. What seems so obvious in the diagram, namely that
every v ontheboundary 0Q isapoint of contact with at least one of Q 's support planes, needs aproof, and it
is difficult enough to deserve being named after the people who first got it right in the late 1920s.

The Hahn-Banach Theorem: |y||=maxw'v overal w' with |w'||=1; in other words,
every point on 0Q istouched by at least one support-line or support-plane of Q .

Proof: Sincethis max w'v < max [wT||V]| = [Iv]|, the proof merely requires the construction

of amaximizing unit-functional u™ with |ju’]|=1 and uTv =|v||. No generality islost by
assuming |[v||=1. The construction proceeds through a sequence of subspaces of ever greater
dimensions. Thefirst subspaceis 1-dimensional consisting of scalar multiples pv of v. On

this subspace u'(pv) = p follows from aninitial assignment u'v :=|jv]|= 1 consistent with the
requirement that |ju||= 1. Subsequent subspaces will be spanned by more leading elements of
an arbitrary basis [v, b, bg, ...] whilethe components u'v=1, u'b,, u'bs, ... of u' for
that basis are determined in turn until the definition of uT extends over the whole space.

Suppose uT has been defined upon a subspace S that includes v, and |uTx| < ||x|| for every
X in S aswell as u'v=|v|[=1. If S isnot yetthewhole vector space there must be some
nonzero vector b notin S. Our first task isto choose u'b := 3, without changing u'S , in
such away that |[uT(s+b)| < ||s+b|| for every s in S. Weadready know u'(s-t) < ||s—t|| for all
sand t in S, andthisimplies uT(s—t) < ||(s+b)—(t+b)|| < ||s+b]| + |{t+b]|, which impliesin

turnthat —|jt+b||— ut < |ls+b||—u's. Therefore the least upper bound of the last inequality’s
left-hand side cannot exceed the greatest lower bound of itsright-hand sideas s and t run
independently through S. Any number 3 between those bounds must satisfy

—it+b]|—u"t <B< ||stb||—u's forevery sand t in S.
This choicefor u'b := R ensuresthat
—it+b||< uTt + RB=uT(t+b) and u'(stb)=u's+R <|[s+b| forevery sand t in S,
which boils down to |uT(s+b)|s |[stb|| forevery s in S, asdesired. Forevery x =s+ b in
the bigger subspace S+ {pb} wefind [u'x| = |p|-u’(s/p + b)| < [u||s/1 + b|| = ||x]| again.
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Thus can the components u'v, u'b,, u'bg, ... of u' bechosen successively until all of

them have been so defined that |uTx| < [|x|| for every x in the whole vector space and
u'v =|v||, which iswhat the theorem asserts. End of proof.

The assertion just proved is a special case, attributed to Minkowski, that conveys the essence of the Hahn-
Banach theorem, whichis usually stated in amore general way valid for infinite-dimensional spaces and for other
convex bodies besides unit-balls of norms. The theorem was first proved only for real vector spaces;, Bohnenblust
and Sobczyk proved itsvalidity for complex spacestooin 1938. The following simplification of their approach
began to appear in textslike W. Rudin’s Real and Complex Analysis 2d. ed. (1974, McGraw-Hill) inthe 1970s.

Thenormonthedua Z* of acomplex normed vector space Z was defined above to be
[[w*[| := max [w*z| = max Re(w*z) overadl z in Z with ||z||=1.

( Did you verify this?) Now, given any nonzero complex vector t in Z, we shall prove that
[[t]| = max |w*t] = max Re(w*t) over al w* in Z* with |w*||=1.

Proof: The complex version shall be deduced from the real by associating the complex spaces Z and Z* with real

counterparts Z and ZT that have respectively the same vectors and functionals with the same norms. Begin by
choosing any basisfor Z that has t among the basis vectors. The set of all real linear combinations of these basis
vectors ( multiplying them by only real scalar coefficients) constitutes areal vector space X with t among its
vectors. Each z in Z isalinear combination of basis vectors with complex coefficients whose real and imaginary
parts, taken separately, decompose z into z=x+1y where 1=v(-1) and x and y comefrom X and are
determined uniquely by z. This decomposition associateseach z in Z with z:=[x;y] inarea space Z of
pairs of vectorsfrom X ; real Z hastwicethe dimension of complex Z and inheritsits norm thus: ||z|| :=||Z|| .
And Z inherits t :=[t; 0] . (Although Z and Z seem to have the same vectors under different names, the
spaces are different because multiplying avector in Z by acomplex scalar multiplies the vector’ s associatein Z
by alinear operator not areal scalar: (B + 1I)(X +1y) in Z associateswith [Rx—1y; ux+Ry] in Z.)

What about dual spaces? Space X' dual to X consists of real-valued linear functionals obtained by decomposing
complex linear functionalsfrom Z* thus: Applying each ¢* in Z* toany x in X defines a'x := Re(c*x) and
b'x :=—Im(c*x) ; that a' and b' realy arelinear functionalsin X' iseasy to verify. Conversely every two
members a' and b" of X" determinealinear functional ¢* :=a' —ib" in Z* whosevalueatany z=x+1y
in Z is c*z=a'x+b'y +1(@a’y-b"x) . Theseformulasalso associate ¢ :=[a',b"] in ZT witheach ¢* in Z*
thus: ¢’z := Re(c*z) = aTx+bTy. Notethat Im(c*z) = —Re(ic*z) = —Re(c*(12)) =—c's where s in Z isthe
associate of 1z in Z . Conversely each c' =[a,b'] in ZT determines ¢ in Z from the preceding formula for
c*z. The same result can be obtained without decomposing ¢ from a definition Re(c*z) :=c'z and an identity
c*z = Re(c*Z) — IRe(c*(12)) ; thisidentity requires ¢! to be applied twice, first to the real associate z of z, and
second to the real associate of 1z. Finally [|cT]| = maxyy=q ¢72 = max)-1 Re(c*2) = [|c|| .

Strictly speaking, spaces X and X' areextraneous, introduced here only in the hope that they help make the
relationship between Z and Z easier to understand by making it more concrete. This relationship amounts to two
one-to-one, invertible and norm-preserving maps, one map between al of complex space Z and all of real space

Z , the other map between their dual spaces, suchthat ¢’z = Re(c*7) .

Back to the proof of the complex Hahn-Banach theorem. Itsreal version provides at least onereal ¢’ in ZT to
satisfy ¢t =|[t]| and |c"z| < ||z|| for every Z in Z, so ||Ic'||=1. Theassociated ¢* in Z* has

lic*|l = llc™|l = 1 and Re(c*t) =c't = |jt]| = |it]| ; moreover Im(c*t) =0 because otherwise |c*t| = | |[t]| + Im(c*t)i |
would exceed |[t|| contradicting |ic*||=1. Therefore c*t = |[t|| = maxy =1 Re(w*t) asclaimed. End of proof.
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Duality or Polarity with respect tothe Norm
Analogous to theinvolutory ( self-inverting) map between columns and rows effected by
complex conjugate transposition is a map between any normed space Z of vectors z and its
dual space Z* of functionals w* inspired by the symmetry we have just established in the
formulas  [w*[| = max = Re(W*z) and ||z|| = maxy« =1 Re(W*2) . The constraints
[|...]| =1 areinessentia in these formulas, which can be rewritten in the equivaent forms
[W* || = max o Re(W*2)/|lzll and  |jzl| = Maxy« 0« Re(W* 2)/[lw*|
to show how each nonzero w* determines at least one maximizing direction z, and each
nonzero z determines at least one maximizing direction w* . When this maximization occurs,
nonzero lengths can be assigned to satisfy the
Duality Equations: w*z = |[w*|||z]] and |w*||=]z|]|# 0,
andthen w* and z are said to be Dual with respect to the norm. Thiskind of duality isalso
called Polarity sometimes. These duality equations determine either w* or z asageneraly
nonlinear function of the other, and not always uniquely; for instance, given anonzero w* ,
choose any unit-vector u that maximizes Re(w*u) to determine z := ||w*|ju .

Examples. Firstfor p=2, thenfor p=1, andthenfor p=c , weshall see how, given
either of w* and z, to determine the other so that they will be dual with respect to the norm
[|...llp - Inall casesthe column vector z has components {4, {5, {3, ..., and therow w* has

components wy, Wy, W, ... where «y isthe complex conjugate of .
For p=2, [w*l=V3jlwf and |izll, = VE; g ; dudshave o =;.
For p=1, [w*[ly=max;|wl and ||z]ly=3;[|; duashave either
o = [[z]l1-¢; /|Zj| whenever {; #0, and otherwiseany |w)|<||z||y will do, or
;=0 unless |®| = [w*|ly, andthenany ¢;/wy 20 with 3;j/wy =1 will do.
For p=o swap w and z inthecase p=1.
Thecases p=1 and p=, likethetwo diagrams earlier, illustrate how neither z nor w*
need determineits dual uniquely if the unit-ball has vertices or edges or flat facets.

Exercise 2: Verify that the Duality Equations are satisfied by the alleged dual pairs w* and z defined above.

Exercise3: Tabulate, for p and q taking values 1,2 and o independently, ppq:=max |iz||/l|zllq as z runs
over al nonzero complex n-dimensional column vectors.

Exercize4: Twogivennorms |...|| and [...] on afinite-dimensiona vector space induce norms ||...*|| and
]...*] respectively onthe dual space; explainwhy maX,xo |1z|l/[z] = maXyszr [W* [/|W*]| .

Exercise5: Givenonenorm ||...|| and an invertible linear operator R, define anew norm |z] := [|[Rz]| for all
vectors z in some space. How is |...*| related to |...*|| onthe dual space? Given also nonzero z and w* dual
with respect to ||...||, find anonzero pair dual with respectto |...| .

Exercise6: Explain why the set of vectors z dual to a given nonzero functional w* must constitute a convex set.

Exercise7: Show that ||z + pv|| = ||z|| for all scalars p if andonly if w*v =0 fora w* dualto z. Then v is
called orthogonal to z. Inthat case, must z beorthogonal to v ? Justify your answer. Thisexerciseis hard!
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Duality or Polarity, and the Derivative of a Norm

The non-uniqueness in the determination of either of a pair of dual vectors by the other, and of
either of a support line/plane and its point of contact by the other, isacomplication that afflicts
notation, terminology and proofsto the detriment of pedagogy. Let’sleave these complications
to courses more advanced than thisone; see texts about convexity and convex bodies.

For the sake of simplicity in our discussion of differentiability, we shall assume areal vector
space of finite dimension with arotund unit-ball Q . If itisnot rotund, Q can be made that
way by dlightly rounding its vertices and edges and dlightly puffing out its facets, just as perfect
cubes must be rounded off alittle to make a usable pair of dice. Then the lines/planes that
support Q can beregarded all astangents, each onetouching 0Q at just one point. A

tangent’ s orientation and its point of contact determine each other uniquely and continuously
each as afunction of the other; since an analytical proof of this claim istoo tedious an argument
about compact sets to reproduce here its confirmation is left to courses and texts about real
analysis and convex bodies, or to the reader’ s geometrical intuition about smooth rotund bodies.

The continuous one-to-one association between tangents to rotund 0Q and their points of
tangency, between dual pairs of unit-functionals u™ and unit-vectors v, extendsto all pairs of
dual functionals w' and vectors x satisfying the

Duality Equations w'x = |w'|lx|| and [wT]|= |||
because these now determine either w' or x uniquely from the other. Can you see how? The
importance of this duality to applications of norms can be gauged from the fact that ||x|| isnow
differentiable if nonzero, and its derivativeinvolves the functional w' dual to x thus:

difx|| = wTdx/||x]]| .
To seewhy thisformulaisvalid, fix nonzero vectors x and h arbitrarily and, for any real
scalar A, let w'y bedua to x+Ah so w'y (x+Ah) = [wy[[Ix+Ah]| and |wT,]| = [[x+Ah]] .
The rotundity of Q implies w'y —w' as A—> 0. Foral A #0, Holder's inequality says
[x+AR]| = [x-Ahfl < Wy AR/ w5l =w Ty (x-Ah)[w [l = 2aw T b/ jjwTy|

and similarly with —A inplaceof A . Henceif A >0

W' /Wl s (ARl = [x-Ah[2)) < wTy Y[yl
Letting A —> O+ implies wh/||x]| = wTh/|wT|| = d|x+Ah|/dA a A =0. Since h isarbitrary,
this confirmsthat  d||x|| = w dx/||x]] .

Derivativesand Gradients are often mixed up. Let f(x) beany differentiable real scalar
function defined over a space of real vectors x . The derivative f'(x) belongsto the dual space
because scalar df(x) = f'(x)dx . Thegradient Grad f(x) isavector in the same spaceas X,
not initsdual space, defined to have the directioninwhich f(x) increases most rapidly, and a
norm equal to that rate of change. More precisely, Grad f(x) is parald to the unit-vector u
that maximizes df(x+Au)/dA a A =0, and this maximum equals ||Grad f(x)|| .

Exercise8: Show why Grad f(x) isthe vector dual to f'(x) with respect to the norm.

Therefore Grad ||x|| = x/|[x]| . And when x runsover a Euclidean space, Grad f(x) = f'(x)T.
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Auerbach’sTheorem for a Real Rotund Unit-ball Q : It can be circumscribed by at least
one parallelepiped whose faces support Q at their midpoints.

Proof: Of al the parallelepipeds circumscribing ( barely containing) Q, the one(s) with
minimum content ( areaor volume) has/have the desired supporting properties, aswe shall
see after finding one. ( Others have the desired propertiestoo but oneis all we need.)

Choose an arbitrary basis in which vectors ¢ can be represented by column vectors ¢ and

functionals rT by row vectors r' ; of course ||c||=|lc|| and ||r"||=|IrT||. For any square
matrix C:=[cy, €y, ..., ¢l whosecolumnsall havelength ||cj|| = 1 thereisasquare matrix R

whose rows rTj are dual to the corresponding columns ¢; of C; this meansevery rTJ- G=1

and |IrTj|| = i/l = 1. Also, unless det(C) =0, thereisaninverse matrix Q=C™ whose
rows q'; satisfy q'j¢=(1if i=j, else 0). Now choose C to maximize det(C). The
maximum is achieved because it is the maximum of a continuous function det(...) over a
closed bounded set of columns all of length 1. Varying columns ¢; infinitesimally by dc;
causes log det(C) tovary, accordingto Jacobi’s formulafor adeterminant’s derivative, by
dlog det(C) = Trace(C™dC) = 3" dg; . Keeping ||g+dg|| = 1 constrains dg; to satisfy
dlicil| = r'; dg; /licjll = 0 . Whenever every dc; satisfiesthis constraint, ¥;q";jdc; =0 because of
the maximality of log det(C) . Therefore every pair {rTj, qu} must be a pair of parallel rows;

T

and since 1’ ¢ :qu ¢; =1 weconclude that R=Q=C" row by row.

Now we revert from rows and columns to functionals and vectors, and interpret geometrically
the configuration that has been found. A basis C =[cy, ¢, ..., cp] of unit vectors ¢ and adual
basis R of unit functionals r'; have been found to satisfy r';¢j=(1 if i=j, else 0) and
Il = llgll = 1. The 2n equations r';x = +1 arethe equationsof 2n (hyper)planes that
support Q, touching itsboundary 0Q at 2n points +c; respectively, each exactly midway
between al the other planes because rTj c;=0 foral j#i. Thus, each contact point *c; is
the midpoint of aface of aparallelepiped 0Q,, that circumscribes Q ; that faceliesin the

plane rT;x = +1 between n-1 pairsof planes r';x==+1 for j#i. End of proof.

Incidentally, the content (volume) inside the circumscribing parallelepiped 0Q,, can be shown to be 2"/det(R) ,
which is minimized when det(R) is maximized. Anargument very similar to the foregoing leads to the same
conclusion R=C™ where C isthe matrix whose columns are dual to the rowsof R with respect to the norm.

An Auerbach Basis isabasislike C =[cq, C,, ..., C,] above of unit vectors each orthogonal

(inthesenseof Exercise7) to al the others. Auerbach’s theorem, which has been proved
also for non-rotund unit-balls, complex spaces, and infinite dimensions, ensuresthat at least
onesuch C exists. It associates every column n-vector x with avector x = Cx for which
[Xlleo := [Xllo S @new norm whose unit-ball’s boundary 0Q,, isthe theorem’s circumscribing

parallelepiped. A third normis |||y := |||y ; itsunit-ball isthe convex hull of all vectors *c; .

Exercised:  Showthat [Xly/n < [Klle < IXIl < [Ixll < nlixll. for every x. (Seep.3)
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Matrix Norms
The trouble with matrix normsistheir abundance. They are so numerous that they overwhelm

typography’ s capacity to differentiate among them without a plethora of subscripts and/or nonce-
symbols. However, for two reasons, only afew of those many matrix norms get much use:

» Only afew matrix norms are easy to compute, and another is not difficult; and ...

» These can approximate the rest well enough for most practical purposes.
Justification for the last reason explains why a substantial fraction of the theory of matrix norms
concerns the closeness with which one can approximate another. It's avast theory overflowing
with terms and concepts. Only afew pages worth can be touched in these notes.

Auerbach’s Theorem and Ex. 9 have shown why, with the choice of an apt Auerbach Basis,
any vector norm ||x|| for abstract n-dimensional vectors x can be approximated within a

factor n*V2 by |x|l, or |Ix|l; applied tothe column x that represents x in the apt coordinate
system. Finding an apt basisisthe costly part of this approximation. Fortunately, simply

rescaling whatever basisis aready in use (thisis tantamount to a change to more convenient
units for variables) often gets adequate approximations from simple normslike |x|l, and [Ix|; -

Since m-by-n matrices L, representing linear operators L in chosen bases for their domain
and target-space, also constitute a vector space of dimension m:n, either the largest magnitude
or the sum of magnitudes of m-n linear combinations of the elementsof L can approximate

any norm ||L|| within afactor (m-n)ﬂ/ 2 accordi ng to Auerbach’s Theorem. Actualy, far
less work sufficesto approximate any |[L|| far better, the more so asdimensions m and n get
bigger. Thiswill bejust one payoff from arelatively brief foray into the theory of matrix norms.

In this theory the norm function ||...|| isheavily Overloaded; this meansthat the function’s
definition and computation depend upon the Linguistic Type of its argument. We have seen

thisalready; |Ir'|] may be computed from the elements of therow T representing functional

r’ very differently than |[x|| is computed from the elements of the column x representing
vector x. Now another ||L|| will be computed from the matrix L representing linear operator
L . Andif vector y =L -x intherangeof L isrepresented by acolumn vy itselements may
figurein the computation of |ly|| differently than column x figuresin the computation of ||x||
for x inthedomainof L ; evenif itsrange and domain have the same dimension the two
gpaces can have different norms. An assertion so simpleas “ |[L-X|| < |IL||-|x]|” islikely to
involve three different norms, and their computation from representing arrays L-x, L and X
will generally change when bases for the domain and target space of L change. What a mess!

READERS BEWARE! Always keep the context of ||...|['s argument in mind to
identify its linguistic type and hence determine which normis at issue.

The mental burden imposed because the meaning of “ ||...||” depends upon the linguistic type
of its argument has turned out to be less annoying than the notational clutter that used to be
created when each linear space’ s norm had to have its own distinctive name. Some unavoidable
clutter will afflict these notes whenever different norms for the same linear space are compared.

The oldest matrix norm isthe Frobenius Norm [|B|l := V(trace(BT-B)) = V( 3; 3 by;%) . (For
complex matrices B replace bijz by |bij|2 .) Since ||B||r isthe Euclidean norm applied to a
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column containing al the elementsof B, it satisfies the three laws that every norm must satisfy:

Positivity: o > ||B]|> 0 except [[O]|=0.
Homogeneity: [[L-B|| = |ul-IB]| for every scalar .
Triangle Inequality: IB+C|| < |IB]l + [|C]] -

Another property, desirable for every matrix norm, is possessed by the Frobenius norm:

Multiplicative Dominance:  |[B-C||c < ||B||e||C||c for al multipliable B and C.

Proof: Let by" denoterow # of B, andlet ¢j denote column # of C. Then
IB-Clle? =3 3 (0 "-)? < 3 3 (b7 b)(qj ) by Cauchy's inequality
= (2 b b)Y §"-c) = IBI*IICl*, as claimed.

Exercise10:  Forarank 1 matrix b-c' show that [|b-c'[|z = [Ibll-licT Il = [Ibll-lICT Ik -

By analogy with the Frobenius norm’s descent from the Euclidean vector norm, two other
matrix norms are the biggest-magnitude norm ||Bly := max; max; [b;| and the total-magnitudes

norm [Blls := 2 2 Ib;| . However, for dimensions 2 or greater, ...

Exercise 11: Show that ||...||s possesses Multiplicative Dominance but ||...||y, does not.

Evaluate maxg.czo [1B-Clis/(IBllsIClls) and maxg.cxo IB-Clhw/(IBllw-ICll) . and describe
the maximizing matrices B and C. Then show that ||B||, := [|B[l-(number of B’s columns)
isamatrix norm that does possess Multiplicative Dominance. The number of rows works too.

Thefour norms  ||...Jle, [I-.-lls» II---lm a@nd |l...]|, act upon matrices of arbitrary dimensions
(finiteinthe case of ||...||,). Thiswill betrue of practically all the matrix norms discussed in
these notes, though a matrix norm can be defined more narrowly to act only upon matrices of a
specified shape and/or dimensions. In particular, anorm ||...|| that acts only upon square
matrices of a specific dimension can always be scaled, aswasdonein Ex. 11, to possess
Multiplicative Dominance thusly: Find [ := maxg.czo [IB-CI/(IB|IFIC|l) for square matrices
B and C of that specific dimension, and thenreplace ||...|| by [|... |t := II...]]H -

Consequently thereis little incentive to study matrix norms lacking multiplicative dominance,
and we shall avoid most of them.

A property resembling multiplicative dominance is possessed by any matrix norm ||...|| that is
Subordinate to two vector normsin the sensethat ||L-x|| < ||[L||-|[x]| for &l matrices L and

column vectors x of dimensions acceptable to their respective norms. ||...||r is subordinate to
[I.--]l, . Many writers prefer the phrase “Compatible with” instead of “Subordinate to”. What

happens next depends upon which came first, the vector norms or the matrix norm.
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Operator Norms
Given two normed vector spaces with one norm ||x|| for vectors x in one space and another

possibly different norm |ly|| for vectors y inthe other space, anorm ||L || := maXye [|IL X]I/[X]|
isinduced upon linear maps L from the first space to the second, and another perhaps fourth
norm  [|K || := maXyzq IK-y|/lly]l isinduced upon linear maps K from the second to the first.

These induced norms are called “Operator Norms” and “Lub Norms® (after “Least Upper
Bound”, which replaces “max” when dimensions are infinite) and “Sup Norms® (likewise).

Exercise 12: Confirm that each operator norm obeys all norms’ three laws, namely Positivity,
Homogeneity and the Triangle Inequality. Confirm that, asalinear map from a space to
itself, theidentity | hasoperator norm [|I||=1, and that therefore ||...[|=, ||...lls and |l...||,

from Ex. 11 cannot be operator normsfor dimensions 2-by-2 or greater.

What about Multiplicative Dominance? Operator norms have asimilar but subtly different
multiplicative property whose description requires a third space of vectors z and itsnorm ||z|| .
Three operator norms are induced for maps from the first to the second, from the second to the
third, and from thefirst to the third; and three more are induced in the opposite directions. All
six are given the same heavily overloaded name ||...||. If z=B-y and y = C-x thenwefind

Operator Norms are Multiplicative: ||B-C|| < ||B||-[IC]| .

Proof: If B-C #0O then
[IB-Cll = Xy [IB-C-X|V[IX]| = MéXyzog.y=c x (IB-YIIYID-ICxIVIIX]
< MaXyzog y20 (IIBYIVIYIN-IC X/ ]x]| = IIBIIICI| as claimed.

Note that this proof involvesfive generally different norm functions, namely |[|B-C]||, |[XI,
1Byl =1lzll, ICxI|=IIvll. |IBll and ||[C]||. Somehow the grammer of abstract linear algebra has
ensured that the right ones were invoked. Still, when you use the inequality ||B-C|| < ||B]|*||C||
you should check that the norm applied to the target space of C isthe same asis applied to the
domain of B just asyou would check that their spaces dimensions match before multiplying.

Exercise 13:  Show that ||Bly := max; max; |b;;| is the operator norm for matrices B construed
aslinear maps y = B-x from a space of columns x normed by |[x||; to aspace of columns y
normed by |ly|l., SO thisoperator norm is as multiplicative as are all operator norms, though it
lacks multiplicative dominance if the matched dimensionis 2 or bigger.

Exercise 14: Explain why, if alinear operator B maps a normed space to itself and has a
compatible ||B||< 1, then I-B isinvertible. However, if asquare matrix B maps one

normed space to another with a different norm, then I-B can be non-invertible despite that,
for acompatible matrix norm, ||B||<1=||l||; givean example. Hint: 2-by-2, and Ex. 13.

Exercise 15: Confirm these equivaent expressions for an operator norm:

1Bl = MaXyso [1B-XI[IXI| = MaX =1 [1B-XI| = MaX=ptyza W' BX = maxyrzo7 W -BIl/[Iw
Five different norms appear here; identify each one’s domain. Confirm also that every operator
norm satisfies |[x-w'|| = |[x||-|w"|| and identify the three norms domains.

.
Il
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When aMatrix Norm is Given First
Operator norms are induced by vector normsin the operators domain and target spaces. This

process is partly reversible. Suppose [B] isagiven matrix norm specified for square matrices
B and possessing multiplicative dominance: [B-C] <[B]-[C] for al square matrices B and C

of the same dimension. Choose anonzerorow r' of the samedimensionand let ||| := [x-r")

for column vectors x of the same dimension. This vector norm induces a new operator norm:
[IBI| := MaXyzq [IB-XIV|IX]| = MaXyeo [BXrT1/[x1T] < [B] .

Thus does a given multiplicatively dominant matrix norm [...] induce avector norm ||...|| that

induces an operator norm ||...|| no greater than the given matrix norm [...] no matter which

arbitrarily fixed row rT was chosen. Consequently there is a sense in which operator norms are
minimal among matrix norms possessing multiplicative dominance.

Exercise 16: Confirmthat if [...] aboveisaready an operator norm then itsinduced operator

norm ||...||=1...] . Why isthis equation violated when the given operator norm [...] = ||...|lu ?
Exercise 17:  Describe the operator norm ||...|| induced by [...] =||...|ls . Then describe the
operator norm |[|...|| induced by [...] =||...|[r. Ineach casetheinduced ||...|| costsalot more

thanitsgiven [...] to compute when the dimensionisbig.

Formulasfor Familiar Operator Norms
Each subscript p and g below will be chosen from the set {1, 2, ©} to specify familiar vector

normslike |||, and ||WT||q defined in these notes' early sectionstitled “Norms’ and “The
Dual Norm”. These norms’ induced operator norms [|B||ng := maxx¢0||B-x||p/||x||q will be

identified by pairs of subscripts except when the two subscripts are equal, in which case we
may sometimes abbreviate “ [B||,," to “ [[Blf," at therisk of conflicts with afew other writers

who sometimes write “ [|B||;" for our “ [B|s”, “|[IBll.," for our “|[B]ly" , and more often
“11B|l,” forour “ |[BJ|" introduced two pages ago.

Exercise18:  Confirm the following five formulasin which matrix B has elements by; :

* |IBllo = max; ¥ Il =[BTl the biggest row-sum of magnitudes.

* [IBlly = max; ¥ byl = IBll, . the biggest column-sum of magnitudes.
O BT .
B O

* ||B|l> = (the biggest singular value of B) = ||BT||2, the biggest eigenvalue of

* [IBllo1 = max; max; |by;| = the biggest magnitude. (Ex. 13)
* [Bllz = max; V(3 [;[?) = the biggest row-length.
When dimensions are big the other four norms [B||,q get little use because they cost much too

much to compute. Do you seewhy ||B||, = V(the biggest eigenvalue of BT-B) ? Itcostsalittle
too much too but has too many uses, both in theory and practice, to be disregarded.
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Maxima of Ratios of Matrix Norms
When dimensions are not too big, and sometimes even if they are, different norms may
approximate each other well enough that only the one easier to compute gets used. Suppose two

norms |||, and |Ix||, are given for the same space of vectors x . Let [y, := MaXyxo [IX]1/ 11Xl -
For |Ix|ly, |X|l, and ||l theseratiosshould already have been tabulated in Ex. 3 inthe
section of these notestitled “Duality or Polarity with respect to the Norm”. And Ex. 4 there
established that max,, 707 |IW' |l IIW ||, = Hpg for dual norms. Of course gy g = 1.

There are analogous maxima for ratios of matrix norms.

Exercise 19: What are al six nontriviad maximafor ratios of matrix norms ||...{|¢, ||...|ly and
[|---llm ? (Yes, thematrices dimensionswill figurein some of those maxima.)

Bounds for ratios of vector norms turn out to provide bounds also for ratios of induced operator
norms. Subscripts clutter the notation unavoidably: Wewrite ||L ||oq := MaXyzo [IL X1/ IXl4

and then Pgoeg := MaX| 20 lIL |lap/IIL lleg - This can be found with the aid of Exs. 4 and 15:

Habed = MaX 20 |IL llao/lIL lled = Hac'Hb -

Proof: Let L # O bealinear operator that maximizes ||L||l;/IL lleg, and then choose wlzo'
and x z o tomaximize w'-L x/(Jw|lz|IX]ly) = lIL|lay & Ex. 15 permits. It also provides
ILllog = MaXyTeoTg 720 Y L 2/ (lly Tlle-lIzlg) = W' -L x/(Iw Tl lIXllg) , which implies that

Mabod = I lla/IIL lloa < (WL /(I Il )/ (w L x/ (I [ l1xlg)

= (W e/ I ) (Il IX1I) < HgHo -
To promote thisinequality Hgpeq < Mac'Hgp  UP tO equality, we construct amaximizing L out

of afunctional y' # o' chosen to maximize |ly"|l/|lyll4 = Hgp (Cf. Ex.4) and avector z# 0
chosen to maximize |[z||/]1zllc = Mac - L€t L := zy" tofind from Ex. 15 again that

Mepcd 2 1L lla/IIL e = (IZllclly "I/ (lzlle-ly " ll) = MecHap - End of proof.

Exercise 20: Usethe six maxima [, tabulated in Ex. 3 totabulateal 72 nontrivial
maxima Hgneq Of ratios of pairs of operator norms obtained when a, b, cand d range over the
set {1, 2, »} . Thistask isfor acomputer program that manipulates symbolslike “vm” .

| sometries

An Isometry Q isalinear map from anormed vector space to itself that preserves the norm;
[|Qx|| = ||| for al vectors x . The space’sisometries form a Multiplicative Group because a
product of isometriesis an isometry. Operator norm ||L|| isunchanged if L ispostmultiplied
by an isometry for the domain of L and/or premultiplied by an isometry for its target-space.
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For ||...]l. @nd [|...]l; thegroupisgenerated by all Permutations and all Sign Changers —

diagonal matrices whose diagonal entries all have magnitude 1 — so the group consists of all
square matrices of the right dimension in whose every row and every column only one element

is nonzero and its magnitudeis 1. These spaces have 2™n! real isometries of dimension n.

Those and infinitely many more belong to the group of isometries Q for ||...||,; thesearethe

Orthogonal matrices Q' = Q71 for real spaces, Unitary matrices Q* = QL for complex
spaces. Orthogonal matrices represent linear operators that rotate and/or reflect real Euclidean
space. Proper Rotations are generated by either Q=exp(S) or Q= (1+S)1(I-S) as S=-S'
runsthrough all real Skew-Symmetric matrices. Neither of these formulas for proper rotations
Q, each of which must have det(Q) =+1, isfully satisfactory. The formula Q = exp(S) is

many-to-one; log(exp(S)) # S if |||, > . The Cayley Transformformula Q = (1+971(1-9)

is one-to-one because S = (1+Q)™-(1—Q) , but cannot generate any proper rotation Q that has
-1 asaneigenvalue (necessarily of even multiplicity) except by taking alimiting value as the
elementsof S approach infinitiesin suitably correlated ways.

A simple orthogonal reflection W=WT=W==|—-w-w'" isdetermined by its mirror-plane
whose equation is w'x =0 and whose normal w has been scaled to have length |w|, =v2.

Y ou should confirm easily that W-w =-w but W-x=x if w'x=0. Numerical analysts call
them “Householder Reflections’ because Alston S. Householder demonstrated their virtues
for solving Least-Squares problems on computersin the mid 1950s, and then they became
staples for eigenvalue and singular value computationstoo. Every n-by-n orthogona matrix

Q can be expressed as aproduct of at most n such reflections, and an even number of them if
Q isaproper rotation, but the reflections in the product need not be determined uniquely by Q .

Any linear map L from one Euclidean space to another can be reduced to its unique canonical
form by isometriesin its domain and target spaces. This canonical form of the matrix L isa
similarly dimensioned (perhaps not square) diagonal matrix V of sorted nonnegative Sngular
Values satisfying L = Q-V-PT (the Sngular-Value Decomposition) inwhich Q and P are
(square) orthogonal matrices not necessarily determined uniquely by L though its singular
values on the diagonal of V are determined uniquely if sorted in descending order. In amore
compact SVD, diagonal V issguare of dimension r:=rank(L), so only the nonzero singular
valuesof L =Q\V-P" appear, and Q"-Q=P"-P=1 (r-by-r). Thiscompact SVD asserts
algebraically a geometrical relationship called “Autonne’s Theorem”:

Every linear map L of rank r from one Euclidean spaceto another isa Dilatation described
asfollows: L selects r vectors (columnsof P) from an orthonormal basisfor Domain(L)
and associates them one-to-one with r vectors (columnsof Q) constituting an orthonormal
basisfor Range(L); then L projectsits domain orthogonally onto its r-dimensional subspace
spanned by the selected r vectors, stretches or squashes each of these coordinate directions by
its corresponding singular valuein V , and copiestheresult onto Range(L) after aligning the
result’ s stretched-or-squashed coordinate directions aong their associated coordinate directions
in Range(L). If L mapsa Euclidean spaceto itself the last realignment amounts to a rotation.
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Fritz John’s Ellipsoid Theorem
His contribution to the 1948 Courant Anniversary Volume (InterScience/Wiley, New Y ork)
was a proof of aslightly more general statement than the following ...

Theorem: Any given centrally symmetric convex body B in n-space can be
circumscribed by an ellipsoid E closely enough that vni8 OE OB .

The constant vVn cannot be reduced without falsifying the theorem when B isahypercube or

more general parallelepiped. Compare this constant with the bigger constant n in Auerbach’s
theorem where [E isdrawn from parallelepipedsand B can bethe hyperoctahedron whichis
the unit ball for the norm ||...||; that figuresin our Ex. 9. Fritz John's theorem can be restated

in norm terms by interpreting B asthe unit ball of agivennorm ||...||. Therestatementis...
Any norm ||...|| in n-space can be approximated by ||Ex||, := V((Ex)T(Ex))
closely enough, if matrix E ischosen appropriately, that 1/vn < ||EX||./|IX|| < 1
for every vector X 0.

Fritz John's dlipsoid E={ x: (EX)"(Ex)<1} =E*{y: y'y<1} =E1.Q, istheunit ball

for the vector norm |[Ex||, justas B ={ x: |x||<1} istheunit ball for the given norm |x|| .

His more general statement covered arbitrary convex bodies B for which vn wasincreased to
n. Restricting histheorem to centrally symmetric bodies simplifiesits proof to fit with what has
already been presented in class. Ashedid, we shall characterize E asthe ellipsoid of least
Content (area, volume, ...) circumscribing B . Because Content(E) = Content(Qy,)/|det(E)|

we seek, ashedid, amatrix E that maximizes det(E) subject to the constraint |[Ex||/||x|| < 1

foral x# 0. Butour argument, first presented in lecture notesfor Math. 273 in 1974, will
go more directly than his did.

First observe that two matrix norms  ||Z|lo. := MaXyz, [IZX[l/|IX]| and  [1Z]l.o := maXyzo IZXIV1IX]I

are induced by the two vector normsin question. Now we seek a characterization of those
matrices E that maximize det(E) over theball ||[E[l,. <1 in n-by-n matrix space, and hope

to infer from that characterization that |[E™Y|.,<vn, whichwill imply vn-B OEOB.

At least one maximizing E must exist because det(E) isa continuous function on a compact
set, theunit ball ||E|l,. <1 in n-by-n matrix space. For such amaximizing E we find that

IE = max [IEv| = max wTE v over wTl|=[v]l;=1,
and this maximum is achieved at some w' and v determined here asin Ex. 15 to satisfy
Iwil=IVlL=1 and [EY,=w'Ev. and wTEL=|EDv".
The last equation is satisfied because, in order to achieve thismaximum, w'E™ and v must
be dual to each other with respect to the norm |...||, . Meanwhile, because ||WT||: 1, every
vector y has |lyll2w'y = w'EEy = |[EY|.ov Ey . Thiswill be used twicein (1) below.
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Now let Z := vw'/||E Y., —E/(n+R) for any tiny R>0, andlet f(u) := log(det(E + pz)) be
examined at tiny values > 0. Jacobi’s formulafor the derivative of a determinant says that
f' (W) = df (w)/du = Trace((E + uZ)‘lz) provided p istiny enough that (E + uZ)‘1 still
exists. Therefore f'(0) = Trace(E™1Z) = w'EV/|[E7Yl., - n/(n+R) = R/(n+R) > 0. Since E
maximizes f(0) = log(det(E)) subject to the constraint ||E|,. <1, itisviolatedby E + pZ for
every sufficiently tiny p>0; inother words, ||E + pZ|l,. > 1 for every sufficiently tiny p>0.
For every such 1 some maximizing vector y =y(u) existswith |ly||=1 and
IE + u2)ylla” = [IE + pZI>yIP > Iyl = 12 [[Ell.* 2 [Eyll,”

Rearranging this algebraically produces a strict inequality

0 < (IIE + H2)yllp? ~ IEYII* ) = 2(Ey)'Zy + ulizyll,?
2vTEy wIY/IE ™, - 2Byl (n+R) + WiZyl? (1)
2wTYNE ™ o)® ~ 2Byl (n+6) + mlizyll,? (1)
21|Ehg? — 2/IEYII () + pIZlp.?

IN

Combine this with another inequality

IEYIl> = I(E + n2)yll; — 1liZyllz > NIyl — kliZllp. = 1 = pliZ]lo.
to infer that

0< 2/|EHlo® ~ 201~ MIZII2) (n+R) + WiZllp? — 2/E o ~2/(n+) a5 - O+
Consequently [[E7Y.,% < n+R for every R8>0, which proves |E ™., <Vn aswe had hoped.

Fritz John's Ellipsoid Theorem has far-reaching implications; here briefly are three of them:

* Ellipsoidal Boundsfor Errorsin Computed Approximations

A norm chosen to gauge computational errors should ideally have this property: All errors of
about the same norm are about equally (in)consequential. Such a norm may be difficult if not
impossibleto find, and may be found only after at least one attempt at the computation has been
tried. But the normsimplicit in many approximate computational algorithmstypically resemble
the vector norms ||...[|, discussed extensively in these notes; their common characteristic is

that the norm of perturbations of a vector are little changed by permutations, which means that
errors in one component of avector will be deemed roughly as (in)consequential as errors of
the same size in any other component. This can be a serious mistake.

For instance, a mathematical model of the processes that control the growth of an elephant from
afertilized ovum will involve amounts of materials ranging from micrograms of hormones to
tons of flesh. Were all these amounts reckoned in grams and then arranged in a column vector
representing the state of the organism’s development, the vector’s elements could range from
0.0000001 to 10000000.0. An error of the order of 1.0 committed during an equation-solving
process could alter some elements imperceptibly and alter others overwhelmingly. To govern
numerical errors better, and to bring variables closer to values humans can assess easily, we
choose different units— micrograms, milligrams, grams, kilograms, tonnes— for different
variables. And we may change units as the growth process passes through different phases like
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implantation in the endometrium, birth, and maturation. The choice of unitsis tantamount to
premultiplying the state-vector by a diagonal matrix of scale factors before applying a familiar
[|-..ll,-norm to its perturbations. Sometimes diagonal premultiplication is not general enough.

Sometimes later states of an evolving process respond to early perturbations far more severely in
some directions than others, and those directions need not be parallel to coordinate axes. In
such cases the severity of an early error x should be gauged by anorm [|x|| whose unit ball is
sguashed in some of those directions, elongated in others. Accordingto Fritz John's theorem,
apremultiplying matrix E can be so chosen that |[x|| isapproximated by ||E-x|, to withina

factor no worse than (Dimensi on)ﬂj4 . Thismuch uncertainty about an error estimate is often
tolerable provided the dimension of x isnot too big. The hard part isfinding a satisfactory E .

Over the severa decades since Fritz John's Theorem was published, ellipsoidal error-bounds
like ||Ex||, have come to be appreciated for qualities not apparent from histheorem. See...

* <http://www.cs.berkel ey.edu/~wkahan/Math128/Ellipsoi.pdf> and .../ODEintvl.pdf>.

» Uncertain Dynamic Systems by Fred. C. Schweppe (1973, Prentice-Hall, NJ).

* “The wrapping effect, ellipsoid arithmetic, stability and confidence regions’ by
Arnold Neumaier, pp. 175-190 in Computing Supplementum 9 (1993).

» The Banach Space Proj ections Constant

A Projection isalinear map P of avector space into itself satisfying P2=P. Toavoid
trivialitieswe assumealsothat | ZP #O. Then P cannot have an inverse (otherwiseit would

imply | =P Lp=pP1pP2=|.P=P), sotherangeof P isthe proper subspace onto which P
projects the whole space. 1P isaprojection onto a complementary subspace. An exampleis

P= Ll)j . Notethat P need not be an Orthogonal Projection.

Orthogonal projections are peculiar to Euclidean spaces and are special there too. Projection
P isorthogonal just when P>=P=P'; and then [P, =1. Thisfollows from observing that

every eigenvalue of PT.P=P2=P iseither 0 or 1. Any other projection Q onto the same
subspace as Range(P) must have ||Q|l, > 1. Thisfollowsfrom equations Q-P=P= P’ and
P-Q=Q thatsay P and Q are projections each onto the other’ srange, and from a change to

j but Q into{ j with Rz 0.

new orthonormal coordinates that transform P into { (')O

|
0]
A non-Euclidean normed space is called a Banach space after Stefan Banach, who studied
them intensively in the 1920s and 1930s until the Nazis overran Poland and killed as many
of itsintellectuals as they could before 1945; he outlasted the Nazis only to die later that year
from lung cancer. He had grestly advanced the study of infinite-dimensional spaces. In these
notes all spaces’ dimensions are finite.

A Banach space’ snorm violatesthe ...

ParallelogramLaw:  [[x+y|° + [IX=y|]® = 2|IX|I° + 2|ly|[? for al x and y
satisfied by Euclidean norms even if the coordinate system is not orthonormal. Consequently
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orthogonality is almost entirely absent from Banach spaces. See Ex. 7 for afeeble exception.
See the class notes on “How to Recognize a Quadratic Form”, <.../MathH110/QF.pdf>, for a
proof that explains why only Euclidean norms honor the Parallelogram Law.

Each Banach space has a multiplicative operator norm induced by the vector norm, and when

computed for aprojection P =P? the norm must satisfy ||P|| = |[P?| < |IPI?, so |IP]|=1. How
much bigger than 1 must ||P|| be? Thisquestion, posed by Banach, wasfirst answered in
1972 by Yehoram Gordon who established, withtheaid of Fritz John’'s Ellipsoid Theorem,
that any r-dimensional subspacein any Banach spaceistherange of at least one projection P
of rank r and norm ||P|| < Vr; and no constant smaller than Vr can bevalid for every r-
dimensional subspace of every Banach space. Gordon’s proof istoo long to reproduce here.

* The Smallest Generalized I nverse
Every (possibly rectangular) matrix F hasat least one Generalized Inverse G satisfying the
one equation F-G-F=F that every generalized inverse must satisfy. x = Gy isasolution of
the possibly over- or under-determined linear equation Fx =y if asolution x exists; and if
not, G-y isan approximate solution in some sense. If F isrectangular or rank deficient it has
infinitely many generalized inverses G almost all of which have enormous magnitudes ||G|
gauged by any norm. Thisfollows from the observation that G+Z is another generalized
inverse whenever Z satisfieseither F-Z=0 or Z.F=0. Anoversized ||G|| induces severe
numerical misbehavior because it amplifies small errorsin y when G-y iscomputed; none of
its computed digits will contain useful information if ||G|| istoo big. There are extreme cases
when every ||G|| istoo big. Every generalized inverse G of F must satisfy

IG|| = 2/( minimum ||AF]| for which rank(F-AF) < rank(F) )
in which the two matrix norms need only be compatible with the vector normsin the domain
and target spaces of F. Theforegoing assertionsare Lemmal and Theorem 5 in the class
notes on “Huge Generalized Inverses of Rank-Deficient Matrices’, <.../MathH110/Gllite.pdf>.
Theorem 8 stated but not proved in those notes asserts, for the operator normsinduced by the
vector norms, that at least one generalized inverse G also satisfies

IG|| < Vrank(F) /( minimum |JAF|| for which rank(F-AF) < rank(F) ) .
My proof uses Fritz John’s Ellipsoid Theorem but is still too long to reproduce here.

The foregoing two bounds upon ||G|| have valuable practical implications when the datain F
are uncertain enough that some nearby F-AF of lower rank differsfrom F by lessthan its
uncertainty. Changing the data F to anearly indistinguishable matrix F-AF of lowest rank
may reduce the norm of its nearly minimal generalized inverse enough to forestall numerical
obscurity. If this can be accomplished, we can accomplish it by means of a Singular Value
Decomposition after applying whatever coordinate changes in the domain and target spaces of
F are necessary to make the spaces norms approximately Euclidean. Provided dimensions are
not too big, Fritz John’'s Ellipsoid Theorem says that these necessary coordinate changes exist
without saying how to find them. Let’s hope they amount only to diagonal scaling.
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More applications of Fritz John's Ellipsoid Theorem and another longer proof for its centrally
symmetric case can befound in Keith Ball’s lecture notes “An Elementary Introduction to
Modern Convex Geometry”, pp. 1-58 of Flavors of Geometry, MSRI Publications - Volume
31, Edited by Silvio Levy for Cambridge University Press, Cambridge, 1997. Ball’s notes are
also posted at <http://www.msri.org/publications/books/Book3L/files/ball.pdf>. Don't read too
much into the title’sword “Elementary”.
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