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Notes on  Vector  and  Matrix Norms

These notes survey most important properties of norms for vectors and for linear maps from one 
vector space to another,  and of maps norms induce between a vector space and its dual space.

Dual Spaces  and  Transposes  of  Vectors
Along with any space of real vectors  x  comes its dual space of linear functionals  wT .  The 
representation of  x  by a column vector  x ,  determined by a coordinate system or  Basis,  is 

accompanied by a corresponding way to represent functionals  wT  by row vectors  wT  so that 

always wTx = wTx .  A change of coordinate system will change the representations of  x  and  

wT  from  x  and  wT  to  x = C–1x  and  wT = wTC   for some suitable nonsingular matrix  C ,  

keeping  wTx = wTx .  But between vectors  x  and  functionals  wT  no relationship analogous 

to the relationship between a column  x  and the row  xT  that is its transpose necessarily exists.  
Relationships can be invented;  so can any arbitrary maps between one vector space and another.

For example,  given a coordinate system,  we can define a functional  xT  for every vector  x  by 

choosing arbitrarily a nonsingular matrix  T  and letting  xT  be the functional represented by the 

row  (Tx)T  in the given coordinate system.  This defines a linear map  xT = T(x)  from the space 
of vectors  x  to its dual space;  but whatever change of coordinates replaces column vector  x  

by  x = C–1x  must replace  (Tx)T  by  (Tx)T = (Tx)TC = (TCx)TC  to get the same functional  

xT .  The last equations can hold for all  x  only if  T = CTTC .  In other words,  the linear map  

T(x)  defined by the matrix  T  in one coordinate system must be defined by  T = CTTC  in the 
other.  This relationship between  T  and  T  is called  Congruence   ( Sylvester’s  word for it ).

Evidently matrices congruent to the same matrix are congruent to each other;  can all matrices 

congruent to a given matrix  T  be recognized?  Only if  T = TT  is real and symmetric does this 
question have a simple answer;  it is  Sylvester’s Law of Inertia  treated elsewhere in this course.

The usual notation for complex vector spaces differs slightly from the notation for real spaces.  

Linear functionals are written  wH  or  w*  instead of  wT ,  and row vectors are written  wH  or  
w*  to denote the complex conjugate transpose of column  w  instead of merely its transpose  

wT .  ( Matlab  uses  “ w.’ ”  for  wT  and   “ w’ ”  for  w* .)  We’ll use the  w*  notation because 

it is older and more widespread than  wH .  Matrix  T  is congruent to  C*TC  whenever  C  is 
any invertible matrix and  C*  is its complex conjugate transpose.  Most theorems are the same 
for complex as for real spaces;  for instance   Sylvester’s Law of Inertia  holds for congruences 
among complex  Hermitian  matrices  T = T*  as well as real symmetric.  Because many proofs 
are simpler for real spaces we shall stay mostly with them.

Not all maps from a vector space to its dual have been found useful;  some useful maps are not 
linear.  Among the most useful maps,  linear and nonlinear,  are the ones derived from the  
metrics  or  norms  associated with different notions of  length  in vector spaces.  Applications of 
these norms and of their derived maps are the subject matter of the following notes.
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Norms
A  norm  is a scalar function  ||x||  defined for every vector  x  in some vector space,  real or 
complex,  and possessing the following three characteristic properties of  length :

Positivity: 0 <  ||x||  < ∞   except that  ||o|| = 0 .
Homogeneity: ||λx|| =  |λ| ||x||  for every scalar  λ .
Triangle inequality: ||x + y|| ≤  ||x|| + ||y|| .        ( Equality need not imply parallelism!)

Exercise 1:Exercise 1:   Prove  | ||w–x|| – ||y–z|| |  ≤  ||w–y|| + ||x–z||   for any  w,  x,  y,  z  in a normed space.

Three examples of norms defined on the space of column vectors  x  with elements  ξ1, ξ2, ... ξn
are   ||x||p  :=  ( ∑k |ξk|p )1/p   for  p = 1 or 2 ,  and   ||x||∞ := maxk |ξk| .  ( Can you verify that these 
three  ||…||p  are norms?  The triangle inequality is the hard part;  see below.)  In this course we 
shall discuss mostly these three norms,  but there are lots of others.  Every  nonsingular  linear 
operator  L  converts one norm  ||x||  into another norm |x| := ||Lx|| .  ( Why nonsingular?)  Also 
the maximum of two norms is a third  and the sum of two norms is another.  ( Can you see why?)

The  Norm’s  Unit-ball  Ω 
Every norm has its own  Unit-ball  Ω  defined as the set of all vectors  x  with  ||x|| ≤ 1 .  Some 
writers use the words  “Unit-sphere”  to mean what we call its  boundary  ∂Ω ,  consisting of all 
the norm’s  unit vectors  u  with  ||u|| = 1 .  Our unit ball  Ω  turns out to be a bounded closed 
centrally symmetric convex body with an interior:

“Bounded”  means for every  x ≠ o  that  λx  lies outside  Ω  for all  λ > 1/||x|| .
“Closed”  means that  Ω  includes its boundary  ∂Ω .
“Centrally Symmetric”  means that if  x  lies in  Ω  so does  λx  whenever  |λ| = 1 ;

for real vector spaces  λ = ±1 .
“Convex”  means that if  x  and  y  both lie in  Ω  then so must the line segment traced by

λx + (1-λ)y  for  0 ≤ λ ≤ 1 ;  it’s because  ||λx + (1-λ)y|| ≤ λ||x|| + (1-λ)||y|| ≤ 1 .
“Interior”  to  Ω  is where  o  lies;  this means for every  x  and all nonzero  λ  chosen 

with  |λ|  tiny enough  ( smaller than  1/||x|| )  that  λx  lies in  Ω  too.

Conversely,  given a bounded closed centrally symmetric convex body  Ω  with an interior,  a 
norm  ||…||  can be so defined that Ω  is its unit-ball.  In fact,  define  ||o|| := 0  and for nonzero 
vectors  x  define  ||x||  to be that positive value of  ξ  that puts  x/ξ  on the boundary  ∂Ω .  Such 
a  ξ  must exist because x/ξ  lies interior to  Ω  for all  ξ  big enough,  and lies outside  Ω  for all  
ξ  tiny enough.  Central symmetry implies homogeneity of  ||…|| .  Convexity of  Ω  implies the 
triangle inequality thus:  For any nonzero  x  and  y  we know that  x/||x||  and  y/||y||  both lie on  
∂Ω .  Therefore  λx/||x|| + (1-λ)y/||y||  lies in  Ω  whenever  0 < λ < 1 ,  and surely lies there if  
λ = ||x||/(||y||+||x||) ,  whereupon   || λx/||x|| + (1-λ)y/||y|| || ≤ 1   and the rest follows easily.

Unit-balls can be very diverse.  For instance,  the unit-balls  Ωp belonging to the norms  ||…||p  
defined above for  p = 1, 2  and  ∞  have very different shapes when the dimension  n  is large.  

Ω∞ has  2n  facets and  2n  vertices,  whereas  Ω1  has  2n  facets and  2n  vertices,  and  ∂Ω2  is a 
very smooth sphere in between.  To appreciate these shapes draw pictures of  Ωp  for  n = 2  or  
3 ;  then  Ω∞  is a square or cube,  Ω1  is a diamond or octahedron,  and  Ω2  is a circular disk or 
solid sphere respectively.  Shapes like these will predominate in the following notes.
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Continuity  and  Topological Equivalence  of   Norms
Despite the diverse shapes of unit-balls,  all vector norms  ||…||  have many common properties.  
One is  Continuity;  this is proved by substituting  w = y = o  in  Exercise 1  above to deduce 
that  | ||x|| – ||z|| | ≤ ||x–z|| . This shows that  ||x||  can be kept as close to  ||z||  as one likes by 
keeping  ||x–z||  small enough,   by keeping  x  in a sufficiently tiny ball shaped like  Ω  centered 
at  z .  But if  Ω  can be arbitrarily needle-like or arbitrarily flattened,  why can’t  ||x||  change 
arbitrarily violently when  x  changes arbitrarily little measured by some other metric?  That can 
happen in infinite-dimensional spaces but not in a space of finite dimension  n ,  and here is why:

First choose any basis  B = [b1, b2, …, bn]  and then substitute  bj/||bj||  for every  bj  to force 
every  ||bj|| = 1 .  In this basis the components  ξj  of any vector  x = ∑j bjξj = Bx  form a column 

vector  x .  Define   ||x||∞ := ||B–1x||∞ = ||x||∞ = maxj |ξj|   and   ||x||1 := ||B–1x||1 = ||x||1 = ∑j |ξj| ,  
two new norms to compare with   ||x|| = ||∑j bjξj|| ≤ ∑j ||bj|| |ξj| = ∑j |ξj| = ||x||1 ≤ n||x||∞ .  Then  
| ||x|| – ||z|| | ≤ ||x–z|| ≤ ||x–z||1 ≤ n||x–z||∞ ,  which confirms that  ||x||  is a continuous function of 
the components  ξj  of  x  and of  x  in  every  basis.  ( If  n  were infinite,  ||x||  might change 
arbitrarily violently even though every change in every component  ξj  of  x  is arbitrarily tiny.)

Because every  x  satisfies  ||x|| ≤ ||x||1 ≤ n||x||∞  the unit-ball  Ω  of  ||x||  contains the unit-ball  
Ω1 = BΩ1  of  ||x||1 ,  and  Ω1  contains  (1/n)Ω∞ ,  a fractional copy of the unit-ball  Ω∞ = BΩ∞  
of  ||x||∞ .  ( Can you see why?)  This phenomenon is typical;  given any two norms for a finite-
dimensional vector space,  some small positive multiple of either’s unit-ball always fits inside 
the other.  Here is why:

For any two norms  ||…||  and  |…| ,  let’s consider the quotient  ||x||/|x| .  As  x  runs through all 
nonzero vectors this quotient sweeps through a range of positive values which is the same range 
as  ||u||/|u|  sweeps out while  u := x/||x||∞  runs through all unit vectors on  ∂Ω∞ .  Every such  
u = Bu  for a unit column  u  on  ∂Ω∞ ,  and  vice-versa,  so the range in question is swept out by 
the quotient  ||Bu||/|Bu|  while  u  runs over all of  Ω∞ .  Two paragraphs ago we saw why  ||Bu||  
must be a continuous function of  u ,  and the same goes for  |Bu| ;  and since both norms are 
positive their quotient is continuous too.  Boundary  ∂Ω∞  is a closed bounded set in a finite-
dimensional space,  so every continuous function thereon achieves its maximum and minimum 
values somewhere on  ∂Ω∞ ;  in particular the quotient’s maximum  M = ||Bû||/|Bû| > 0  and 
minimum  µ = ||Bü||/|Bü| > 0  are achieved respectively at some unit columns  û  and  ü  ( not 
determined uniquely ).  Therefore  0 < µ ≤ ||x||/|x| ≤ M  for all  x ≠ o ,  and each  “ ≤ ”  sign turns 
into  “ = ”  for some  x .  These inequalities tell us something geometrical about the norms’ unit-
balls,  Ω  for  ||…||  and  Ω  for  |…| ;  you should confirm now that  MΩ  barely contains  Ω  
which barely contains  µΩ .  Here  “barely”  means boundaries touch.

The foregoing paragraph is important for two reasons.  First,  its style of reasoning will recur.  
Second,  it shows that all finite-dimensional vector norms are  Topologically Equivalent :  if an 
infinite sequence of vectors converges when distance from its limit is measured in one norm,  
then convergence occurs no matter what norm is used to measure distance.  Do you see why?

( Different norms defined for an infinite-dimensional vector space do not have to be Topologically Equivalent.)
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Lagrange’s Identities,  and  Cauchy’s  and  Hölder’s  Inequalities
These are stated and proved here for columns  w = {wj}  and  x = {ξj}  of complex numbers of 

which  wj  and  ξj  are their complex conjugates and  wjwj = |wj|
2  and  ξjξj = |ξj|2  their squared 

magnitudes.  First,  a generalization of   ||x||2·||w||2 – |x•w|2 = ||xxw||2  from  Euclidean 3-space  is 
 Lagrange’s Identity:   w*w x*x – |w*x|2  =  ∑j ∑k |wjξk – wkξj|

2/2 .

It is proved by expanding the double-sum’s  |…|2  and collecting terms.  In matrix terms it says   
w*w x*x – |w*x|2 =  Trace((wxT – xwT)*(wxT – xwT))/2 .  Another version,  more natural,   is   
w*w x*x – Re((w*x)2) =  Trace((wx* – xw*)*(wx* – xw*))/2 .  Since  Trace(M*M)  is the sum 
of squared magnitudes of any matrix  M ’s  elements it must be nonnegative,  whence follows 

Cauchy’s Inequality:   |w*x|  ≤  √(w*w x*x)  =  ||w*||2
 ||x||2  . 

This becomes equality only if  w  or  x  is a scalar multiple of the other.  Cauchy’s Inequality  
implies  ( and can be proved equivalent to )  the triangle inequality for  ||x||2 = √(x*x)  because

      (||w||2 + ||x||2)2 – ||w + x||2
2  =  2(||w||2||x||2 – Re(w*x))  ≥  2(||w*||2||x||2 – |w*x|)  ≥ 0 .

Note the implicit definition of  ||w*||2 := ||w||2 = √(w*w)  here.  It is a special case.  We shall see 
that other norms  ||w*||  of rows are not computed from the same formulas  ||w||  as for columns.

Angle   arccos( Re(w*x)/(||w||·||x||) )  between vectors  w  and  x  an a  Euclidean  or  Unitary  space is real because 
of  Cauchy’s Inequality,  which was proved by  H.A. Schwarz  for integrals as well as sums,  and was discovered 
also by   Bunyakovsky;  all three names get attached to it.  Analogous inequalities apply to  ||…||p  for every  p ≥ 1 ;  
its triangle inequality is also called  Minkowski’s Inequality,  and its analog of  Cauchy’s Inequality  is called 

Hölder’s Inequality:  |w*x| ≤ ||w*||p||x||p  :=  ||w||q||x||p  for  q := 1 + 1/(p–1) ≥ 1 .
Note that the formula to compute  ||w*||p  from row  w*  is  not  the same as the formula to compute  ||w||p  from 
column  w  unless  q = p = 2 ;  see below.  Class notes on  Jensen’s Inequality,  or texts about  Normed Spaces,  or  
Functional Analysis,  or  Inequalities,  supply proofs of  Minkowski’s  and  Hölder’s  inequalities,  either of which 
can be deduced from the other.  Neither will figure much in these notes for  p  and  q  different from  1,  2  and  ∞ .

The  Dual Norm
Given a norm  ||x||  for a real space of vectors  x ,  its  Dual Norm  is another norm induced over 

the dual space of linear functionals  wT  thus:

||wT|| :=  max |wTx|  =  max wTx   maximized over all  x  in  Ω .
(For complex spaces  ||w*|| := max |w*x|  =  max Re(w*x)  over all  x  in  Ω .)  Please do verify 
that these definitions have all three of the characteristic properties norms must have,  and that  
max |w*x|  really equals  max Re(w*x) ;  IT’S IMPORTANT!  Provided the vector space has finite 
dimension,  the asserted maxima exist because they are maxima of continuous functions of  x  

over a closed bounded region  Ω ;  but no simple formula for  ||wT||  need exist.  Fortunately,  a 
simple formula does exist for the norms dual to  ||…||p  defined above:

Let row  wT = [w1, w2, …, wn] ;  then  ||wT||p  turns out to be just  ||w||q  with  q := 1 + 1/(p-1)  
for every  p ≥ 1 ,  though we care about only  p = 1,  2  and  ∞ .  In these cases observe that

||wT||p = ( max wTx  over all  x  with  ||x||p ≤ 1 ) = ( max wTu  over all  u  with  ||u||p = 1 )
=  maxk |wk| when  p = 1 , ( You can verify this easily,  so do so.)
=  ∑k |wk| when  p = ∞ , ( You can verify this easily,  so do so.)

=  √( ∑k |wk|2 )  when  p = 2 . ( You can verify this easily,  so do so.)
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The case  p = 2  follows from  Cauchy’s Inequality,  which is the special case for  ||…||2  of what 
is called,  for norms in general, 

Hölder’s Inequality:   wTx  ≤  ||wT|| ||x||   for all  wT  and  x .

This follows immediately from the definition of the dual norm  ||wT|| .  Moreover we may verify 
easily  ( and you should do so )  for all three norms  ||…||p  that

||x||p = max wTx  over all  wT  with  ||wT||p ≤ 1 ,

which suggests that the relationship between dual norms  ||…||  and  ||…T||  may be symmetrical.

The last relation is true not just for  ||…||p  and  ||…T||p  but for all pairs of dual norms,  though the general proof 
must be postponed until the  Hahn-Banach  theorem has been presented.

Support-Planes
Now some geometrical properties of dual norms can be described. They will be described for 
real  2-  and  3-dimensional spaces though analogous descriptions apply to all finite dimensions.  

Let  uT  be an arbitrarily chosen unit-functional  ( ||uT|| = 1 ).  Let  v  be a unit-vector  ( ||v|| = 1 )  
on the boundary  ∂Ω  that maximizes

uTv = ||uT|| ||v|| = 1 =  max uTx  over all  x  with  ||x|| = 1 .

For each constant  λ  the equation  uTx = λ  describes a line or plane in the space of vectors  x .  
Corresponding to different values  λ  are different members of a family of parallel lines or 
planes.  Two of those lines or planes touch the unit-ball  Ω  and sandwich it between them;  their 

equations are   uTx = ±1 .  To confirm that  Ω  lies between them,  observe for every  ±x  in  Ω 

that   uT(±x) ≤ ||uT|| ||±x|| ≤ 1 ,  so  -1 ≤ uTx ≤ 1 .  And to verify that those two lines or planes 

touch  ∂Ω  note that  uT(±v) = ±1 ;  each of them touches  ∂Ω  but not the interior of  Ω .

The line or plane whose equation is  uTx = ±1  is said to  support  Ω  at  ±v  respectively;  it is  
tangent  to  ∂Ω  there only if  v is not a vertex  (corner)  of  Ω .  Thus the association of  Ω ’s  
support-lines or support-planes with their points of contact can be viewed as an association of 

unit-functionals  uT  with unit-vectors  v  on  ∂Ω .  This association is  one-to-one  only if  Ω  is  
rotund,  which means  smooth  (no vertices nor edges)  and  strictly convex  (no facets nor 

edges) ;  otherwise  v  cannot determine  uT  uniquely at edges or vertices,  and  uT  cannot 
determine  v  uniquely at edges or facets of  ∂Ω ,  as these diagrams show.

     First choose  uT ;  then find  v .                                     First choose  v ;  then find  uT .

uTx = 1

uTx = -1

••
v1 v2

||uT|| = 1

||v1|| = ||v2|| = 1

Ω

v

-v

úTx = 1

úTx = -1

ùTx = 1

ùTx = -1

||v|| = 1

||úT|| = ||ùT|| = 1

Ω
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One of these diagrams takes for granted something unobvious that requires proof.  In the first 

diagram,  an arbitrary unit-functional  uT  is chosen first,  so  ||uT|| = 1 ,  and then at least one 

unit-vector  v  on  ∂Ω  is found to maximize  uTv = ||v|| = 1 .  All other vectors  x  must satisfy  

uTx ≤ ||x|| ;  in other words,  the interior of  Ω  lies entirely on one side of the support-line or 

support-plane whose equation is    uTx = 1  and which touches  ∂Ω  at the point(s)  v  thus found.

For the second diagram an arbitrary unit-vector  v  with  ||v|| = 1  is chosen first on  ∂Ω ,  and 

then at least one unit-functional  uT  ( so  ||uT|| = 1 )  is found to maximize

uTv = max wTv  over all  wT  with  ||wT|| = 1 ;

this maximum  uTv ≤ ||uT||·||v|| = 1 .  But the diagram assumes  uTv = 1 .  Why isn’t  uTv < 1 ?

The dotted line shows what would happen were the maximized  uTv < 1 :  The support-line or support-plane whose 

equation is  uTx = 1  would touch  ∂Ω  elsewhere than at  v .  What seems so obvious in the diagram,  namely that 
every  v  on the boundary  ∂Ω  is a point of contact with at least one of  Ω ’s  support planes,  needs a proof,  and it 
is difficult enough to deserve being named after the people who first got it right in the late  1920s.

The  Hahn-Banach  Theorem:        ||v|| = max wTv  over all  wT  with  ||wT|| = 1 ;   in other words,
every point on  ∂Ω  is touched by at least one support-line or support-plane of  Ω .

Proof:  Since this  max wTv ≤ max ||wT||·||v|| = ||v|| ,  the proof merely requires the construction 

of a maximizing unit-functional  uT  with  ||uT|| = 1  and  uTv = ||v|| .  No generality is lost by 
assuming  ||v|| = 1 .  The construction proceeds through a sequence of subspaces of ever greater 
dimensions.  The first subspace is  1-dimensional consisting of scalar multiples  µv  of  v .  On 

this subspace  uT(µv) = µ  follows from an initial assignment  uTv := ||v|| = 1  consistent with the 

requirement that  ||uT|| = 1 .  Subsequent subspaces will be spanned by more leading elements of 

an arbitrary basis  [v, b2, b3, …]  while the components  uTv = 1 ,  uTb2 ,  uTb3 ,  …  of  uT  for 

that basis are determined in turn until the definition of  uT  extends over the whole space.

Suppose  uT  has been defined upon a subspace  S  that includes  v ,  and  |uTx| ≤ ||x||  for every  

x  in  S  as well as  uTv = ||v|| = 1 .  If  S  is not yet the whole vector space there must be some 

nonzero vector  b  not in  S .  Our first task is to choose  uTb := ß ,  without changing  uTS  ,  in 

such a way that  |uT(s+b)| ≤ ||s+b||  for every  s  in  S .  We already know  uT(s–t) ≤ ||s–t||  for all  

s  and  t  in  S ,  and this implies  uT(s–t) ≤ ||(s+b)–(t+b)|| ≤ ||s+b|| + ||t+b|| ,  which implies in 

turn that  –||t+b|| – uTt ≤ ||s+b|| – uTs .  Therefore the least upper bound of the last inequality’s 
left-hand side cannot exceed the greatest lower bound of its right-hand side as  s  and  t  run 
independently through  S .  Any number  ß  between those bounds must satisfy

–||t+b|| – uTt  ≤ ß ≤  ||s+b|| – uTs   for every  s  and  t  in  S .

This choice for  uTb := ß  ensures that

–||t+b|| ≤  uTt + ß = uT(t+b)   and   uT(s+b) = uTs + ß  ≤ ||s+b||   for every  s  and  t  in  S ,

which boils down to   |uT(s+b)| ≤ ||s+b||  for every  s  in  S ,  as desired.  For every  x = s + µb  in 

the bigger subspace  S + {µb}  we find  |uTx| = |µ|·|uT(s/µ + b)| ≤ |µ|·||s/µ + b|| = ||x||  again.
Prof. W. Kahan                                                                                                                                                     Page 6/21



Math. H110                                                                  NORMlite                                                         November 14, 1999 5:50 pm
Thus can the components  uTv ,  uTb2 ,  uTb3 ,  …  of  uT  be chosen successively until all of 

them have been so defined that  |uTx| ≤ ||x||  for every  x  in the whole vector space and  

uTv = ||v|| ,  which is what the theorem asserts.  End of proof.

The assertion just proved is a special case,  attributed to  Minkowski,  that conveys the essence of the  Hahn-
Banach  theorem,  which is usually stated in a more general way valid for infinite-dimensional spaces and for other 
convex bodies besides unit-balls of norms.  The theorem was first proved only for real vector spaces;  Bohnenblust  
and  Sobczyk  proved its validity for complex spaces too in  1938.  The following simplification of their approach 
began to appear in texts like  W. Rudin’s Real and Complex Analysis 2d. ed. (1974,  McGraw-Hill)  in the  1970s.

The norm on the dual  Z*  of a complex normed vector space  Z  was defined above to be
||w*|| :=  max |w*z|  =  max Re(w*z)  over all  z  in  Z  with  ||z|| = 1 .

( Did you verify this?)  Now,  given any nonzero complex vector  t  in  Z ,  we shall prove that
||t|| =  max |w*t|  =  max Re(w*t)  over all  w*  in  Z*  with  ||w*|| = 1 .

Proof:  The complex version shall be deduced from the real by associating the complex spaces  Z  and  Z*  with real 

counterparts  Z  and  ZT  that have respectively the same vectors and functionals with the same norms.  Begin by 
choosing any basis for  Z  that has  t  among the basis vectors.  The set of all real linear combinations of these basis 
vectors  ( multiplying them by only real scalar coefficients )  constitutes a real vector space  X  with  t  among its 
vectors.  Each  z  in  Z  is a linear combination of basis vectors with complex coefficients whose real and imaginary 
parts,  taken separately,  decompose  z  into  z = x + ıy  where  ı = √(–1)  and  x  and  y  come from  X  and are 
determined uniquely by  z .  This decomposition associates each  z  in  Z  with  z := [x; y]  in a real space  Z  of 
pairs of vectors from  X ;  real  Z  has twice the dimension of complex  Z  and inherits its norm thus:  ||z || := ||z|| .  
And  Z  inherits  t := [t; o] .  ( Although  Z  and  Z  seem to have the same vectors under different names,  the 
spaces are different because multiplying a vector in  Z  by a complex scalar multiplies the vector’s associate in  Z  
by a linear operator not a real scalar:  (ß + ıµ)(x + ıy)  in  Z  associates with  [ßx–µy; µx+ßy]  in  Z .)

What about dual spaces?  Space  XT  dual to  X  consists of real-valued linear functionals obtained by decomposing 

complex linear functionals from  Z*  thus:  Applying each  c*  in  Z*  to any  x  in  X  defines  aTx := Re(c*x)  and  

bTx := –Im(c*x) ;  that  aT  and  bT  really are linear functionals in  XT  is easy to verify.  Conversely every two  

members  aT  and  bT  of  XT  determine a linear functional  c* := aT – ıbT  in  Z*  whose value at any  z = x + ıy  

in  Z  is  c*z = aTx+bTy + ı(aTy–bTx) .  These formulas also associate  cT := [aT, bT]  in  ZT  with each  c*  in  Z*  

thus:  cTz := Re(c*z) =  aTx+bTy .  Note that  Im(c*z) = –Re(ıc*z) = –Re(c*(ız)) = –cTs  where  s  in  Z  is the 

associate of  ız  in  Z .  Conversely each  cT = [aT, bT]  in  ZT  determines  c*  in  Z  from the preceding formula for  

c*z .  The same result can be obtained without decomposing  cT  from a definition  Re(c*z) := cTz  and an identity  

c*z = Re(c*z) – ıRe(c*(ız)) ;  this identity requires  cT  to be applied twice,  first to the real associate  z  of  z ,  and 

second to the real associate of  ız .  Finally  ||cT|| = max||z ||=1 c
Tz = max||z||=1 Re(c*z) = ||c*|| .

Strictly speaking,  spaces  X  and  XT  are extraneous,  introduced here only in the hope that they help make the 
relationship between  Z  and  Z  easier to understand by making it more concrete.  This relationship amounts to two  
one-to-one,  invertible and norm-preserving maps,  one map between all of complex space  Z  and all of real space  

Z ,  the other map between their dual spaces,  such that  cTz = Re(c*z) .

Back to the proof of the complex  Hahn-Banach  theorem.  Its real version provides at least one real  cT  in  ZT  to 

satisfy  cTt = ||t ||  and  |cTz | ≤ ||z ||  for every  z  in  Z ,  so  ||cT|| = 1 .  The associated  c*  in  Z*  has  

||c*|| = ||cT|| = 1  and  Re(c*t) = cTt = ||t || = ||t|| ;  moreover  Im(c*t) = 0  because otherwise  |c*t| = | ||t|| + Im(c*t)ı |  
would exceed  ||t||  contradicting  ||c*|| = 1 .  Therefore  c*t = ||t|| = max||w*||=1 Re(w*t)  as claimed.  End of proof.
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Duality  or  Polarity  with respect to the  Norm
Analogous to the involutory  ( self-inverting )  map between columns and rows effected by 
complex conjugate transposition is a map between any normed space  Z  of vectors  z  and its 
dual space  Z*  of functionals  w*  inspired by the symmetry we have just established in the 
formulas   ||w*|| = max||z||=1 Re(w*z)   and   ||z|| = max||w*||=1 Re(w*z) .  The constraints  
||…|| = 1  are inessential in these formulas,  which can be rewritten in the equivalent forms

||w*|| = maxz≠o Re(w*z)/||z||   and    ||z|| = maxw*≠o* Re(w*z)/||w*||
to show how each nonzero  w*  determines at least one maximizing direction  z ,  and each 
nonzero  z  determines at least one maximizing direction  w* .  When this maximization occurs,  
nonzero lengths can be assigned to satisfy the

Duality Equations :        w*z = ||w*||·||z||    and     ||w*|| = ||z|| ≠ 0 ,
and then  w*  and  z  are said to be  Dual with respect to the norm.  This kind of duality is also 
called  Polarity  sometimes.  These duality equations determine either  w*  or  z  as a generally 
nonlinear function of the other,  and not always uniquely;  for instance,  given a nonzero  w* ,  
choose any unit-vector  u  that maximizes  Re(w*u)  to determine  z := ||w*||u .

Examples:  First for  p = 2 ,  then for  p = 1 ,  and then for  p = ∞ ,  we shall see how,  given 
either of  w*  and  z ,  to determine the other so that they will be dual with respect to the norm  
||…||p .  In all cases the column vector  z  has components  ζ1, ζ2, ζ3, …,  and the row  w*  has 
components  ω1, ω2, ω3, …  where  ωj  is the complex conjugate of  ωj .

For  p = 2 ,   ||w*||2 = √∑j |ωj|2  and  ||z||2 = √∑j |ζj|2 ;  duals have  ωj = ζj .

For  p = 1 ,    ||w*||1 = maxj |ωj|  and  ||z||1 = ∑j |ζj| ;  duals have either

ωj = ||z||1·ζj /|ζj|  whenever  ζj ≠ 0 ,  and otherwise any   |ωj| ≤ ||z||1  will do,     or

ζj = 0  unless  |ωj| = ||w*||1 ,  and then any  ζj/ωj ≥ 0  with  ∑j ζj/ωj = 1  will do.

For  p = ∞  swap  w  and  z  in the case  p = 1 .

The cases  p = 1  and  p = ∞ ,  like the two diagrams earlier,  illustrate how neither  z  nor  w*  
need determine its dual uniquely if the unit-ball has vertices or edges or flat facets.

Exercise 2:                    Verify that the  Duality Equations  are satisfied by the alleged dual pairs  w*  and  z  defined above.

Exercise 3:                       Tabulate,  for  p  and  q  taking values  1, 2  and  ∞  independently,  µpq := max ||z||p/||z||q  as  z  runs 
over all nonzero complex  n-dimensional column vectors.

Exercize 4:                     Two given norms  ||…||  and  |…|  on a finite-dimensional vector space induce norms  ||…*||  and  
|…*|  respectively on the dual space;  explain why   maxz≠o ||z||/|z|  =  maxw*≠o* |w*|/||w*|| .

Exercise 5:                      Given one norm  ||…||  and an invertible linear operator  R ,  define a new norm  |z| := ||Rz||  for all 
vectors  z  in some space.  How is  |…*|  related to  ||…*||  on the dual space?  Given also nonzero  z  and  w*  dual 
with respect to  ||…|| ,  find a nonzero pair dual with respect to  |…| .

Exercise 6:                       Explain why the set of vectors  z  dual to a given nonzero functional  w*  must constitute a convex set.

Exercise 7:                       Show that  ||z + µv|| ≥ ||z||  for  all  scalars  µ  if and only if  w*v = 0  for a  w*  dual to  z .  Then  v  is 
called  orthogonal  to  z .  In that case,  must  z  be orthogonal to  v  ?  Justify your answer.  This exercise is hard!
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Duality or Polarity,  and the  Derivative  of a  Norm
The non-uniqueness in the determination of either of a pair of dual vectors by the other,  and of 
either of a support line/plane and its point of contact by the other,  is a complication that afflicts 
notation,  terminology and proofs to the detriment of pedagogy.  Let’s leave these complications 
to courses more advanced than this one;  see texts about convexity and convex bodies.

For the sake of simplicity in our discussion of differentiability,  we shall assume a real vector 
space of finite dimension with a rotund unit-ball  Ω .  If it is not rotund,  Ω  can be made that 
way by slightly rounding its vertices and edges and slightly puffing out its facets,  just as perfect 
cubes must be rounded off a little to make a usable pair of dice.  Then the lines/planes that 
support  Ω  can be regarded all as tangents,  each one touching  ∂Ω  at just one point.  A 
tangent’s orientation and its point of contact determine each other uniquely and continuously 
each as a function of the other;  since an analytical proof of this claim is too tedious an argument 
about compact sets to reproduce here its confirmation is left to courses and texts about real 
analysis and convex bodies,  or to the reader’s geometrical intuition about smooth rotund bodies.

The continuous one-to-one association between tangents to rotund  ∂Ω  and their points of 

tangency,  between dual pairs of unit-functionals  uT  and unit-vectors  v ,  extends to all pairs of 

dual functionals  wT  and vectors  x  satisfying the

Duality Equations   wTx =  ||wT||·||x||   and    ||wT|| = ||x||

because these now determine either  wT  or  x  uniquely from the other.  Can you see how?  The 
importance of this duality to applications of norms can be gauged from the fact that  ||x||  is now 

differentiable if nonzero,  and its derivative involves  the functional  wT  dual to  x  thus:

d||x|| = wTdx/||x|| .

To see why this formula is valid,  fix nonzero vectors  x  and  h  arbitrarily and,  for any real 
scalar  λ ,  let  wT

λ  be dual to  x+λh  so  wT
λ (x+λh) = ||wT

λ||·||x+λh||  and  ||wT
λ|| = ||x+λh|| .  

The rotundity of  Ω  implies  wT
λ —› wT  as  λ —› 0 .  For all  λ ≠ 0 ,  Hölder’s  inequality says

||x+λh|| – ||x-λh|| ≤  wT
λ (x+λh)/||wT

λ|| – wT
λ (x-λh)/||wT

λ||  =  2λwT
λ h/||wT

λ|| 
and similarly with  –λ  in place of  λ .  Hence if  λ > 0 

wT
–λ h/||wT

–λ|| ≤  ( ||x+λh|| – ||x-λh|| )/(2λ)  ≤ wT
λ h/||wT

λ|| .

Letting  λ —› 0+  implies  wTh/||x|| = wTh/||wT|| = d||x+λh||/dλ  at  λ = 0 .  Since  h  is arbitrary,  
this confirms that   d||x|| = wTdx/||x|| .

Derivatives and  Gradients  are often mixed up.  Let  ƒ(x)  be any differentiable real scalar 
function defined over a space of real vectors  x .  The derivative  ƒ'(x)  belongs to the dual space 
because scalar  dƒ(x) = ƒ'(x)dx .  The gradient  Grad ƒ(x)  is a vector in the same space as  x ,  
not  in its dual space,  defined to have the direction in which  ƒ(x)  increases most rapidly,  and a 
norm equal to that rate of change.  More precisely,  Grad ƒ(x)  is parallel to the unit-vector  u  
that maximizes  dƒ(x+λu)/dλ  at  λ = 0 ,  and this maximum equals  ||Grad ƒ(x)|| .

Exercise 8:                        Show why  Grad f(x)  is the vector dual to  ƒ'(x)  with respect to the norm.

Therefore  Grad ||x|| = x/||x|| .   And when  x  runs over a  Euclidean  space,  Grad ƒ(x) = ƒ'(x)T .
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Auerbach’s Theorem  for a  Real Rotund Unit-ball  Ω :                                                                                                    It can be circumscribed by at least 
 one parallelepiped whose faces support  Ω  at their midpoints.

Proof:  Of all the parallelepipeds circumscribing  ( barely containing )  Ω ,  the one(s) with 
minimum content  ( area or volume )  has/have the desired supporting properties,  as we shall 
see after finding one.  ( Others have the desired properties too but one is all we need.)

Choose an arbitrary basis in which vectors  c  can be represented by column vectors  c  and  

functionals  rT  by row vectors  rT ;  of course  ||c|| = ||c||  and  ||rT|| = ||rT|| .  For any square 
matrix  C := [c1, c2, …, cn]  whose columns all have length  ||cj|| = 1  there is a square matrix  R  

whose rows  rT
j  are dual to the corresponding columns  cj  of  C ;  this means every  rT

j cj = 1  

and  ||rT
j|| = ||cj|| = 1 .  Also,  unless  det(C) = 0 ,  there is an inverse matrix  Q = C–1  whose 

rows  qT
i  satisfy   qT

i cj = ( 1  if  i = j ,  else  0 ) .  Now choose  C  to maximize  det(C) .  The  
maximum is achieved because it is the maximum of a continuous function  det(…)  over a  
closed bounded set of columns all of length  1 .  Varying columns  cj  infinitesimally by  dcj  
causes  log det(C)  to vary,  according to  Jacobi’s  formula for a determinant’s derivative,  by  

d log det(C) = Trace(C–1 dC) = ∑j q
T

j dcj .  Keeping  ||cj+dcj|| = 1  constrains  dcj  to satisfy  

d||cj|| = rT
j dcj /||cj|| = 0 .  Whenever every  dcj  satisfies this constraint,  ∑j q

T
j dcj = 0  because of 

the maximality of  log det(C) .  Therefore every pair  {rT
j, q

T
j}  must be a pair of parallel rows;  

and since  rT
j cj = qT

j cj = 1  we conclude that  R = Q = C–1  row by row.

Now we revert from rows and columns to functionals and vectors,  and interpret geometrically
the configuration that has been found.  A basis  C = [c1, c2, …, cn]  of unit vectors  cj  and a dual 

basis  R  of unit functionals  rT
i  have been found to satisfy  rT

i cj = ( 1  if  i = j ,  else  0 )  and  

||rT
j|| = ||cj|| = 1 .  The  2n  equations  rT

i x = ±1  are the equations of  2n  (hyper)planes that 
support  Ω ,  touching its boundary  ∂Ω  at  2n  points  ±ci  respectively,  each exactly midway 

between all the other planes because  rT
j ci = 0  for all  j ≠ i .  Thus,  each contact point  ±ci  is 

the midpoint of a face of a parallelepiped  ∂Ω∞  that circumscribes  Ω ;  that face lies in the 

plane  rT
i x = ±1  between  n–1  pairs of planes   rT

j x = ±1  for  j ≠ i .  End of proof.

Incidentally,  the content  (volume)  inside the circumscribing parallelepiped  ∂Ω∞  can be shown to be  2n/det(R) ,  
which is minimized when  det(R)  is maximized.  An argument very similar to the foregoing leads to the same 

conclusion  R = C–1  where  C  is the matrix whose columns are dual to the rows of  R  with respect to the norm.

An  Auerbach Basis  is a basis like  C = [c1, c2, …, cn]  above of unit vectors each  orthogonal  
( in the sense of  Exercise 7 )  to all the others.  Auerbach’s  theorem,  which has been proved 
also for non-rotund unit-balls,  complex spaces,  and infinite dimensions,  ensures that at least 
one such  C  exists.  It associates every column  n-vector  x  with a vector  x = Cx  for which  
||x||∞ := ||x||∞  is a new norm whose unit-ball’s boundary  ∂Ω∞  is the theorem’s circumscribing 
parallelepiped.  A third norm is  ||x||1 := ||x||1 ;  its unit-ball is the convex hull of all vectors  ±cj .

Exercise 9:                       Show that   ||x||1/n  ≤  ||x||∞  ≤  ||x||  ≤  ||x||1  ≤  n||x||∞  for every  x .  ( See p. 3.)
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Matrix  Norms
The trouble with matrix norms is their abundance.  They are so numerous that they overwhelm 
typography’s capacity to differentiate among them without a plethora of subscripts and/or nonce-
symbols.  However,  for two reasons,  only a few of those many matrix norms get much use:

•  Only a few matrix norms are easy to compute,  and another is not difficult;  and …
•  These can approximate the rest well enough for most practical purposes.

Justification for the last reason explains why a substantial fraction of the theory of matrix norms 
concerns the closeness with which one can approximate another.  It’s a vast theory overflowing 
with terms and concepts.  Only a few pages’ worth can be touched in these notes.

Auerbach’s Theorem  and  Ex. 9  have shown why,  with the choice of an apt  Auerbach Basis,  
any vector norm  ||x||  for abstract  n-dimensional  vectors  x  can be approximated within a 

factor  n±1/2  by  ||x||∞  or  ||x||1  applied to the column  x  that represents  x  in the apt coordinate 
system.  Finding an apt basis is the costly part of this approximation.  Fortunately,  simply 
rescaling whatever basis is already in use  (this is tantamount to a change to more convenient 
units for variables)  often gets adequate approximations from simple norms like  ||x||∞  and  ||x||1 .

Since  m-by-n  matrices  L ,  representing linear operators  L  in chosen bases for their domain 
and target-space,  also constitute a vector space of dimension  m·n ,  either the largest magnitude 
or the sum of magnitudes of  m·n  linear combinations of the elements of  L  can approximate 

any norm  ||L||  within a factor  (m·n)±1/2
 ,  according to  Auerbach’s Theorem.  Actually,  far 

less work suffices to approximate any  ||L||  far better,  the more so as dimensions  m  and  n  get 
bigger.  This will be just one payoff from a relatively brief foray into the theory of matrix norms.

In this theory the norm function  ||…||  is heavily  Overloaded;  this means that the function’s 
definition and computation depend upon the  Linguistic Type  of its argument.  We have seen 

this already;  ||rT||  may be computed from the elements of the row  rT  representing functional  

rT  very differently than  ||x||  is computed from the elements of the column  x  representing 
vector  x .  Now another  ||L||  will be computed from the matrix  L  representing linear operator  
L .  And if vector  y = L·x  in the range of  L  is represented by a column  y  its elements may 
figure in the computation of  ||y||  differently than column  x  figures in the computation of  ||x||  
for  x  in the domain of  L ;  even if its range and domain have the same dimension the two 
spaces can have different norms.  An assertion so simple as  “ ||L·x|| ≤ ||L||·||x|| ”  is likely to 
involve three different norms,  and their computation from representing arrays  L·x ,  L  and  x  
will generally change when bases for the domain and target space of  L  change.  What a mess!

READERS BEWARE!  Always keep the context of  ||…||’s  argument in mind to
  identify its linguistic type and hence determine which norm is at issue.

The mental burden imposed because the meaning of  “ ||…|| ”  depends upon the linguistic type 
of its argument has turned out to be less annoying than the notational clutter that used to be 
created when each linear space’s norm had to have its own distinctive name.  Some unavoidable 
clutter will afflict these notes whenever different norms for the same linear space are compared.

The oldest matrix norm is the  Frobenius Norm  ||B||F := √( trace(BT·B) ) = √( ∑i ∑j bij
2 ) .  (For 

complex matrices  B  replace  bij
2  by  |bij|2 .)  Since  ||B||F  is the  Euclidean  norm applied to a
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column containing all the elements of  B ,  it satisfies the three laws that every norm must satisfy:

Positivity: ∞ > ||B|| > 0  except  ||O|| = 0 .
Homogeneity: ||µ·B|| = |µ|·||B||  for every scalar  µ .
Triangle Inequality: ||B+C|| ≤ ||B|| + ||C|| .

Another property,  desirable for every matrix norm,  is possessed by the  Frobenius  norm:

Multiplicative Dominance: ||B·C||F ≤ ||B||F·||C||F   for all multipliable  B and C .

Proof:  Let  bi
T  denote row  #i  of  B ,  and let  cj  denote column  #j  of  C .  Then

  ||B·C||F
2 = ∑i ∑j (bi

T·cj)
2 ≤ ∑i ∑j (bi

T·bi)·(cj
T·cj)   by  Cauchy’s  inequality

       = (∑i bi
T·bi)·(∑j cj

T·cj) = ||B||F
2·||C||F

2
 ,   as claimed.

Exercise 10:                          For a rank  1  matrix  b·cT  show that  ||b·cT||F = ||b||2·||cT||2 = ||b||F·||cT||F .

By analogy with the  Frobenius  norm’s descent from the  Euclidean  vector norm,  two other 
matrix norms are the biggest-magnitude norm  ||B||M := maxi maxj |bij|  and the total-magnitudes 

norm  ||B||∑ := ∑i ∑j |bij| .  However,  for dimensions  2  or greater,  …

Exercise 11:                        Show that  ||…||∑  possesses  Multiplicative Dominance  but  ||…||M  does not.  
Evaluate   maxB·C≠O ||B·C||∑/(||B||∑·||C||∑)   and   maxB·C≠O ||B·C||Μ/(||B||Μ·||C||Μ) ,  and describe 
the maximizing matrices  B  and  C .  Then show that  ||B||µ := ||B||M·(number of  B ’s  columns)  
is a matrix norm that does possess  Multiplicative Dominance.  The number of rows works too.

The four norms    ||…||F ,  ||…||∑ ,  ||…||Μ  and  ||…||µ  act upon matrices of arbitrary dimensions  
(finite in the case of  ||…||µ ).  This will be true of practically all the matrix norms discussed in 
these notes,  though a matrix norm can be defined more narrowly to act only upon matrices of a 
specified shape and/or dimensions.  In particular,  a norm  ||…||  that acts only upon square 
matrices of a specific dimension can always be scaled,  as was done in  Ex. 11,  to possess  
Multiplicative Dominance  thusly:   Find  µ := maxB·C≠O ||B·C||/(||B||·||C||)   for square matrices  
B  and  C  of that specific dimension,  and then replace  ||…||  by  ||…||µ := ||…||·µ .

Consequently there is little incentive to study matrix norms lacking multiplicative dominance,  
and we shall avoid most of them.

A property resembling multiplicative dominance is possessed by any matrix norm  ||…||  that is  
Subordinate  to two vector norms in the sense that   ||L·x|| ≤ ||L||·||x||   for all matrices  L  and 
column vectors  x  of dimensions acceptable to their respective norms.  ||…||F  is subordinate to  
||…||2 .  Many writers prefer the phrase  “Compatible with”  instead of  “Subordinate to”.  What 
happens next depends upon which came first,  the vector norms or the matrix norm.
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Operator Norms
Given two normed vector spaces with one norm  ||x||  for vectors  x  in one space and another 
possibly different norm  ||y||  for vectors  y  in the other space,  a norm  ||L|| := maxx≠o ||L·x||/||x||  
is induced upon linear maps  L  from the first space to the second,  and another perhaps fourth 
norm  ||K|| := maxy≠o ||K·y||/||y||  is induced upon linear maps  K  from the second to the first.  
These induced norms are called  “Operator Norms”  and  “Lub Norms”  (after  “Least Upper 
Bound”,  which replaces  “max”  when dimensions are infinite)  and  “Sup Norms”   (likewise).

Exercise 12:                       Confirm that each operator norm obeys all norms’ three laws,  namely  Positivity,  
Homogeneity  and the  Triangle Inequality.  Confirm that,  as a linear map from a space to 
itself,  the identity  I  has operator norm  ||I|| = 1 ,  and that therefore  ||…||F ,  ||…||∑  and  ||…||µ  
from  Ex. 11  cannot be operator norms for dimensions  2-by-2  or greater.

What about  Multiplicative Dominance?  Operator norms have a similar but subtly different 
multiplicative property whose description requires a third space of vectors  z  and its norm  ||z|| .  
Three operator norms are induced for maps from the first to the second,  from the second to the 
third,  and from the first to the third;  and three more are induced in the opposite directions.  All 
six are given the same heavily overloaded name  ||…|| .  If  z = B·y  and  y = C·x  then we find

    Operator Norms  are  Multiplicative:   ||B·C|| ≤ ||B||·||C|| .

Proof:  If  B·C ≠ O  then
  ||B·C|| = maxx≠o ||B·C·x||/||x|| = maxx≠o&y=C·x (||B·y||/||y||)·||C·x||/||x|| 

 ≤ maxx≠o&y≠o (||B·y||/||y||)·||C·x||/||x|| = ||B||·||C||  as claimed.

Note that this proof involves five generally different norm functions,  namely  ||B·C||,  ||x||,  
||B·y|| = ||z||,  ||C·x|| = ||y||,  ||B||  and  ||C|| .  Somehow the grammer of abstract linear algebra has 
ensured that the right ones were invoked.  Still,  when you use the inequality  ||B·C|| ≤ ||B||·||C||  
you should check that the norm applied to the target space of  C  is the same as is applied to the 
domain of  B  just as you would check that their spaces’ dimensions match before multiplying.

Exercise 13:                        Show that  ||B||M := maxi maxj |bij|  is the operator norm for matrices  B  construed 
as linear maps  y = B·x  from a space of columns  x  normed by  ||x||1  to a space of columns  y  
normed by  ||y||∞ ,  so this operator norm is as multiplicative as are all operator norms,  though it 
lacks multiplicative dominance if the matched dimension is  2  or bigger.

Exercise 14:                        Explain why,  if a linear operator  B  maps a normed space to itself and has a 
compatible  ||B|| < 1 ,  then  I–B  is invertible.  However,  if a square matrix  B  maps one 
normed space to another with a different norm,  then  I–B  can be non-invertible despite that,  
for a compatible matrix norm,  ||B|| < 1 = ||I|| ;  give an example.  Hint:  2-by-2,  and  Ex. 13.

Exercise 15:                        Confirm these equivalent expressions for an operator norm:

    ||B|| = maxx≠o ||B·x||/||x|| = max||x||=1 ||B·x|| = max||x||=||wT||=1 w
T·B·x = maxwT≠oT ||w

T·B||/||wT|| .
Five different norms appear here;  identify each one’s domain.  Confirm also that every operator 

norm satisfies  ||x·wT|| = ||x||·||wT||  and identify the three norms’ domains.
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When a Matrix Norm is Given First
Operator norms are induced by vector norms in the operators’ domain and target spaces.  This 
process is partly reversible.  Suppose  [[B]]  is a given matrix norm specified for square matrices  
B  and possessing multiplicative dominance:   [[B·C]] ≤ [[B]]·[[C]]  for all square matrices  B and C  

of the same dimension.  Choose a nonzero row  rT  of the same dimension and let   ||x|| := [[x·rT]]   
for column vectors  x  of the same dimension.  This vector norm induces a new operator norm:

  ||B|| := maxx≠o ||B·x||/||x|| = maxx≠o [[B·x·rT]]/[[x·rT]] ≤ [[B]] .
Thus does a given multiplicatively dominant matrix norm  [[…]]  induce a vector norm  ||…||  that 
induces an operator norm  ||…||  no greater than the given matrix norm  [[…]]  no matter which 

arbitrarily fixed row  rT  was chosen.  Consequently there is a sense in which operator norms are 
minimal among matrix norms possessing multiplicative dominance.

Exercise 16:                      Confirm that if  [[…]]  above is already an operator norm then its induced operator 
norm  ||…|| = [[…]] .  Why is this equation violated when the given operator norm  [[…]] = ||…||M ?

Exercise 17:                         Describe the operator norm  ||…||  induced by  [[…]] = ||…||∑ .  Then describe the 
operator norm  ||…||  induced by  [[…]] = ||…||F .  In each case the induced  ||…||  costs a lot more 
than its given  [[…]]  to compute when the dimension is big.

Formulas for Familiar Operator Norms
Each subscript  p  and  q  below will be chosen from the set  {1, 2, ∞}  to specify familiar vector 

norms like  ||x||p  and  ||wT||q  defined in these notes’ early sections titled  “Norms”  and  “The 

Dual Norm”.  These norms’ induced operator norms  ||B||pq := maxx≠o ||B·x||p/||x||q  will be 
identified by pairs of subscripts except when the two subscripts are equal,  in which case we 
may sometimes abbreviate  “ ||B||pp”  to  “ ||B||p”  at the risk of conflicts with a few other writers 
who sometimes write  “ ||B||1”  for our  “ ||B||∑” ,   “ ||B||∞”  for our  “ ||B||M” ,  and more often  
“ ||B||2”  for our  “ ||B||F”  introduced two pages ago.

Exercise 18:                         Confirm the following five formulas in which matrix  B  has elements  bij :

•  ||B||∞ = maxi ∑j |bij| = ||BT||1 ,   the biggest row-sum of magnitudes.

•  ||B||1 = maxj ∑i |bij| = ||BT||∞ ,  the biggest column-sum of magnitudes.

•  ||B||2 = (the biggest singular value of  B ) = ||BT||2 ,  the biggest eigenvalue of   .

•  ||B||∞1 = maxi maxj |bij| = the biggest magnitude.  (Ex. 13.)

•  ||B||∞2 = maxi √(∑j |bij|2) = the biggest row-length.

When dimensions are big the other four norms  ||B||pq  get little use because they cost much too 

much to compute.  Do you see why   ||B||2 = √(the biggest eigenvalue of  BT·B ) ?  It costs a little 
too much too but has too many uses,  both in theory and practice,  to be disregarded.

O B
T

B O
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Maxima of Ratios of Matrix Norms
When dimensions are not too big,  and sometimes even if they are,  different norms may 
approximate each other well enough that only the one easier to compute gets used.  Suppose two 
norms  ||x||a  and  ||x||b  are given for the same space of vectors  x .  Let  µab := maxx≠o ||x||a/||x||b . 
For  ||x||1 ,  ||x||2  and  ||x||∞  these ratios should already have been tabulated in  Ex. 3  in the 
section of these notes titled  “Duality or Polarity with respect to the Norm”.  And  Ex. 4  there 

established that  maxwT≠oT ||wT||a/||wT||b = µba  for dual norms.  Of course  µab·µba ≥ 1 .

There are analogous maxima for ratios of matrix norms.

Exercise 19:                        What are all six nontrivial maxima for ratios of matrix norms  ||…||F ,  ||…||∑  and  
||…||M ?  (Yes,  the matrices’ dimensions will figure in some of those maxima.)

Bounds for ratios of vector norms turn out to provide bounds also for ratios of induced operator 
norms.  Subscripts clutter the notation unavoidably:  We write   ||L||cd := maxx≠o ||L·x||c/||x||d   

and then   µabcd := maxL≠O ||L||ab/||L||cd .  This can be found with the aid of  Exs. 4 and 15:

  µabcd := maxL≠O ||L||ab/||L||cd = µac·µdb .

Proof:  Let  L ≠ O  be a linear operator that maximizes  ||L||ab/||L||cd ,  and then choose  wT ≠ oT  

and  x ≠ o  to maximize  wT·L·x/(||wT||a·||x||b) = ||L||ab  as  Ex. 15  permits.  It also provides  

||L||cd = maxyT≠oT&z≠o y
T·L·z/(||yT||c·||z||d) ≥ wT·L·x/(||wT||c·||x||d) ,  which implies that  

 µabcd = ||L||ab/||L||cd ≤ (wT·L·x/(||wT||a·||x||b))/(wT·L·x/(||wT||c·||x||d)) 

         = (||wT||c/||wT||a)·(||x||d/||x||b) ≤ µac·µdb .
To promote this inequality   µabcd ≤ µac·µdb   up to equality,  we construct a maximizing  L  out 

of a functional  yT ≠ oT  chosen to maximize  ||yT||b/||yT||d = µdb  (cf. Ex. 4)  and a vector  z ≠ o  

chosen to maximize  ||z||a/||z||c = µac .  Let  L := z·yT  to find from  Ex. 15  again that

 µabcd ≥ ||L||ab/||L||cd = (||z||a·||y
T||b)/(||z||c·||y

T||d) = µac·µdb .     End of proof.

Exercise 20:                        Use the six maxima  µpq  tabulated in  Ex. 3  to tabulate all  72  nontrivial 
maxima  µabcd  of ratios of pairs of operator norms obtained when  a, b, c and d  range over the 
set  {1, 2, ∞} .  This task is for a computer program that manipulates symbols like  “ √m ” .

Isometries
An  Isometry  Q  is a linear map from a normed vector space to itself that preserves the norm;  
||Q·x|| = ||x||  for all vectors  x .  The space’s isometries form a  Multiplicative Group  because a 
product of isometries is an isometry.  Operator norm  ||L||  is unchanged if  L  is postmultiplied 
by an isometry for the domain of  L  and/or premultiplied by an isometry for its target-space.
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For  ||…||∞  and  ||…||1  the group is generated by all  Permutations  and all  Sign Changers  — 
diagonal matrices whose diagonal entries all have magnitude  1 —  so the group consists of all 
square matrices of the right dimension in whose every row and every column only one element 

is nonzero and its magnitude is  1 .  These spaces have  2n·n!  real isometries of dimension  n .

Those and infinitely many more belong to the group of isometries  Q  for  ||…||2 ;  these are the  

Orthogonal  matrices  QT = Q–1  for real spaces,  Unitary  matrices  Q* = Q–1  for complex 
spaces.  Orthogonal matrices represent linear operators that rotate and/or reflect real  Euclidean  

space.  Proper Rotations  are generated by either  Q = exp(S)  or  Q = (I+S)–1·(I–S)  as  S = –ST  
runs through all real  Skew-Symmetric  matrices.  Neither of these formulas for proper rotations  
Q ,  each of which must have  det(Q) = +1 ,  is fully satisfactory.  The formula  Q = exp(S)  is 

many-to-one;  log(exp(S)) ≠ S  if  ||S||2 > π .  The  Cayley Transform formula  Q = (I+S)–1·(I–S)  

is one-to-one because  S = (I+Q)–1·(I–Q) ,  but cannot generate any proper rotation  Q  that has  
–1  as an eigenvalue  (necessarily of even multiplicity)  except by taking a limiting value as the 
elements of  S  approach infinities in suitably correlated ways.

A simple orthogonal reflection   W = WT = W–1 = I – w·wT   is determined by its mirror-plane 

whose equation is  wT·x = 0  and whose normal  w  has been scaled to have length  ||w||2 = √2 .  

You should confirm easily that  W·w = –w  but  W·x = x  if  wT·x = 0 .  Numerical analysts call 
them  “Householder Reflections”  because  Alston S. Householder  demonstrated their virtues 
for solving  Least-Squares  problems on computers in the mid  1950s,  and then they became 
staples for eigenvalue and singular value computations too.  Every  n-by-n  orthogonal matrix  
Q  can be expressed as a product of at most  n  such reflections,  and an even number of them if  
Q  is a proper rotation,  but the reflections in the product need not be determined uniquely by  Q .

Any linear map  L  from one  Euclidean  space to another can be reduced to its unique canonical 
form by isometries in its domain and target spaces.  This canonical form of the matrix  L  is a 
similarly dimensioned  (perhaps not square)  diagonal matrix  V  of sorted nonnegative  Singular 

Values  satisfying  L = Q·V·PT  (the  Singular-Value Decomposition)  in which  Q  and  P  are  
(square)  orthogonal matrices not necessarily determined uniquely by  L  though its singular 
values on the diagonal of  V  are determined uniquely if sorted in descending order.  In a more 
compact  SVD,  diagonal  V  is square of dimension  r := rank(L) ,  so only the nonzero singular 

values of  L = Q·V·PT  appear,  and  QT·Q = PT·P = I (r-by-r).  This compact  SVD  asserts 
algebraically a geometrical relationship called  “Autonne’s Theorem”:

Every linear map  L  of rank  r  from one  Euclidean  space to another is a  Dilatation  described 
as follows:  L  selects  r  vectors  (columns of  P )  from an orthonormal basis for  Domain(L)  
and associates them  one-to-one  with  r  vectors  (columns of  Q )  constituting an orthonormal 
basis for  Range(L) ;  then  L  projects its domain orthogonally onto its  r-dimensional  subspace 
spanned by the selected  r  vectors,  stretches or squashes each of these coordinate directions by 
its corresponding singular value in  V ,  and copies the result onto  Range(L)  after aligning the 
result’s stretched-or-squashed coordinate directions along their associated coordinate directions 
in  Range(L) .  If  L  maps a  Euclidean  space to itself the last realignment amounts to a rotation.
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Fritz John’s  Ellipsoid Theorem
His contribution to the  1948 Courant Anniversary Volume  (InterScience/Wiley,  New York)  
was a proof of a slightly more general statement than the following  …

Theorem:  Any given centrally symmetric convex body  BB  in  n-space  can be  
circumscribed by an ellipsoid  EE  closely enough that  √n·BB ⊇  EE ⊇  BB .

The constant  √n  cannot be reduced without falsifying the theorem when  BB  is a hypercube or 
more general parallelepiped.  Compare this constant with the bigger constant  n  in  Auerbach’s  
theorem where  EE  is drawn from parallelepipeds and  BB  can be the  hyperoctahedron  which is 
the unit ball for the norm  ||…||1  that figures in our  Ex. 9.  Fritz John’s  theorem can be restated 
in norm terms by interpreting  BB  as the unit ball of a given norm  ||…|| .  The restatement is …

Any norm  ||…||  in  n-space can be approximated by  ||Ex||2 := √((Ex)T(Ex)) 

closely enough,  if matrix  E  is chosen appropriately,  that  1/√n ≤ ||Ex||2/||x|| ≤ 1 
for every vector  x ≠ o .

Fritz John’s  ellipsoid  EE = { x:  (Ex)T(Ex) ≤ 1 } = E–1·{ y:  yTy ≤ 1 } = E–1·Ω2  is the unit ball 
for the vector norm  ||Ex||2  just as  BB = { x:  ||x|| ≤ 1 }  is the unit ball for the given norm  ||x|| .

His more general statement covered arbitrary convex bodies  BB  for which  √n  was increased to  
n .  Restricting his theorem to centrally symmetric bodies simplifies its proof to fit with what has 
already been presented in class.  As he did,  we shall characterize  EE  as the ellipsoid of least  
Content  (area,  volume, …)  circumscribing  BB .   Because   Content(EE) = Content(Ω2)/|det(E)|   

we seek,  as he did,  a matrix  E  that maximizes  det(E)  subject to the constraint   ||Ex||2/||x|| ≤ 1  
for all  x ≠ o .  But our argument,  first presented in lecture notes for  Math. 273  in  1974,  will 
go more directly than his did.

First observe that two matrix norms   ||Z||2• := maxx≠o ||Zx||2/||x||  and   ||Z||•2 := maxx≠o ||Zx||/||x||2
are induced by the two vector norms in question.  Now we seek a characterization of those 
matrices  E  that maximize  det(E)  over the ball  ||E||2• ≤ 1  in  n-by-n  matrix space,  and hope 

to infer from that characterization that   ||E–1||•2 ≤ √n ,   which will imply  √n·BB ⊇  EE ⊇  BB .

At least one maximizing  E  must exist because  det(E)  is a continuous function on a compact 
set,  the unit ball  ||E||2• ≤ 1  in  n-by-n  matrix space.  For such a maximizing  E  we find that

 ||E–1||•2 = max ||E–1v|| = max wTE–1v  over  ||wT|| = ||v||2 = 1 ,

and this maximum is achieved at some  wT  and  v  determined here as in  Ex. 15  to satisfy

 ||wT|| = ||v||2 = 1   and   ||E–1||•2 =wTE–1v .   and   wTE–1 = ||E–1||•2vT .

The last equation is satisfied because,  in order to achieve this maximum,   wTE–1  and  v  must 

be dual to each other with respect to the norm  ||…||2 .  Meanwhile,  because  ||wT|| = 1 ,  every 

vector  y  has  ||y|| ≥ wTy = wTE–1Ey = ||E–1||•2vTEy .  This will be used twice in  (†)  below.
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Now let  Z := vwT/||E–1||•2 – E/(n+ß)  for any tiny  ß > 0 ,  and let   ƒ(µ) := log(det(E + µZ))  be 
examined at tiny values  µ > 0 .  Jacobi’s  formula for the derivative of a determinant says that   

ƒ'(µ) := dƒ(µ)/dµ = Trace((E + µZ)–1Z)  provided  µ  is tiny enough that  (E + µZ)–1  still 

exists.  Therefore  ƒ'(0) = Trace(E–1Z) = wTE–1v/||E–1||•2 – n/(n+ß) = ß/(n+ß) > 0 .  Since  E  
maximizes  ƒ(0) = log(det(E))  subject to the constraint  ||E||2• ≤ 1 ,  it is violated by  E + µZ  for 
every sufficiently tiny  µ > 0 ;  in other words,  ||E + µZ||2• > 1  for every sufficiently tiny  µ > 0 .
For every such  µ  some maximizing vector  y = y(µ)  exists with  ||y|| = 1  and

  ||(E + µZ)y||2
2 = ||E + µZ||2•

2·||y||2  >  ||y||2 = 1 ≥ ||E||2•
2 ≥ ||Ey||2

2
 .  

Rearranging this algebraically produces a strict inequality

  0 < ( ||(E + µZ)y||2
2 – ||Ey||2

2
 )/µ =  2(Ey)TZy + µ||Zy||2

2 

       =  2vTEy·wTy/||E–1||•2 – 2||Ey||2
2/(n+ß) + µ||Zy||2

2    (†)

       =  2(wTy/||E–1||•2)2 – 2||Ey||2
2/(n+ß) + µ||Zy||2

2         (†)

       ≤  2/||E–1||•2
2 – 2||Ey||2

2/(n+ß) + µ||Z||2•
2 .   

Combine this with another inequality
  ||Ey||2 ≥ ||(E + µZ)y||2 – µ||Zy||2 > ||y|| – µ||Z||2• = 1 – µ||Z||2• 

to infer that

 0 <  2/||E–1||•2
2 – 2(1 – µ||Z||2•)

2/(n+ß) + µ||Z||2•
2  →  2/||E–1||•2

2 – 2/(n+ß)    as   µ → 0+ .

Consequently   ||E–1||•2
2 ≤ n+ß  for every  ß > 0 ,  which proves   ||E–1||•2 ≤ √n   as we had hoped.

•  •  •  •

Fritz John’s Ellipsoid Theorem  has far-reaching implications;  here briefly are three of them:

•  Ellipsoidal Bounds for Errors in Computed Approximations
A norm chosen to gauge computational errors should ideally have this property:  All errors of 
about the same norm are about equally  (in)consequential.  Such a norm may be difficult if not 
impossible to find,  and may be found only after at least one attempt at the computation has been 
tried.  But the norms implicit in many approximate computational algorithms typically resemble 
the vector norms  ||…||p  discussed extensively in these notes;  their common characteristic is 
that the norm of perturbations of a vector are little changed by permutations,  which means that 
errors in one component of a vector will be deemed roughly as  (in)consequential  as errors of 
the same size in any other component.  This can be a serious mistake.

For instance,  a mathematical model of the processes that control the growth of an elephant from 
a fertilized ovum will involve amounts of materials ranging from micrograms of hormones to 
tons of flesh.  Were all these amounts reckoned in grams and then arranged in a column vector 
representing the state of the organism’s development,  the vector’s elements could range from  
0.0000001  to  10000000.0 .  An error of the order of  1.0  committed during an equation-solving 
process could alter some elements imperceptibly and alter others overwhelmingly.  To govern 
numerical errors better,  and to bring variables closer to values humans can assess easily,  we 
choose different units — micrograms,  milligrams,  grams,  kilograms,  tonnes —  for different 
variables.  And we may change units as the growth process passes through different phases like 
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implantation in the endometrium,  birth,  and maturation.  The choice of units is tantamount to 
premultiplying the state-vector by a diagonal matrix of scale factors before applying a familiar  
||…||p-norm  to its perturbations.  Sometimes diagonal premultiplication is not general enough.

Sometimes later states of an evolving process respond to early perturbations far more severely in 
some directions than others,  and those directions need not be parallel to coordinate axes.  In 
such cases the severity of an early error  x  should be gauged by a norm  ||x||  whose unit ball is 
squashed in some of those directions,  elongated in others.  According to  Fritz John’s  theorem,  
a premultiplying matrix  E  can be so chosen that  ||x||  is approximated by  ||E·x||2  to within a 

factor no worse than  (Dimension)±1/4 .  This much uncertainty about an error estimate is often 
tolerable provided the dimension of  x  is not too big.  The hard part is finding a satisfactory  E .

Over the several decades since  Fritz John’s Theorem  was published,  ellipsoidal error-bounds 
like  ||E·x||2  have come to be appreciated for qualities not apparent from his theorem.  See …

• <http://www.cs.berkeley.edu/~wkahan/Math128/Ellipsoi.pdf>  and  …/ODEintvl.pdf>.
• Uncertain Dynamic Systems  by  Fred. C. Schweppe  (1973,  Prentice-Hall, NJ).
 • “The wrapping effect, ellipsoid arithmetic, stability and confidence regions”  by

Arnold Neumaier,  pp. 175-190  in  Computing Supplementum 9 (1993).

•  The Banach Space Projections Constant
A  Projection  is a linear map  P  of a vector space into itself satisfying  P2 = P .  To avoid 
trivialities we assume also that  I ≠ P ≠ O .  Then  P  cannot have an inverse  (otherwise it would 

imply  I = P–1·P = P–1·P2 = I·P = P ),  so the range of  P  is the proper subspace onto which  P  
projects the whole space.  I–P  is a projection onto a complementary subspace.  An example is  

P =  .  Note that  P  need not be an  Orthogonal Projection.

Orthogonal projections are peculiar to  Euclidean  spaces and are special there too.  Projection  

P  is orthogonal just when  P2 = P = PT
 ;  and then  ||P||2 = 1 .  This follows from observing that 

every eigenvalue of  PT·P = P2 = P  is either  0  or  1 .  Any other projection  Q  onto the same 

subspace as  Range(P)  must have  ||Q||2 > 1 .  This follows from equations  Q·P = P = PT  and  
P·Q = Q  that say  P  and  Q  are projections each onto the other’s range,  and from a change to 

new orthonormal coordinates that transform  P  into  but  Q  into  with  R ≠ O .

A  non-Euclidean  normed space is called a  Banach  space after  Stefan Banach,  who studied 
them intensively in the  1920s and 1930s  until the  Nazis  overran  Poland  and killed as many 
of its intellectuals as they could before  1945;  he outlasted the  Nazis  only to die later that year 
from lung cancer.  He had greatly advanced the study of infinite-dimensional spaces.  In these 
notes all spaces’ dimensions are finite.

A  Banach  space’s norm violates the …

 Parallelogram Law:     ||x+y||2 + ||x–y||2 = 2||x||2 + 2||y||2   for all  x  and  y 
satisfied by  Euclidean  norms even if the coordinate system is not orthonormal.  Consequently

1 2

0 0

I O

O O

I R

O O
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orthogonality is almost entirely absent from  Banach  spaces.  See  Ex. 7  for a feeble exception.  
See the class notes on  “How to Recognize a Quadratic Form”,  <…/MathH110/QF.pdf>,  for a 
proof that explains why only  Euclidean  norms honor the  Parallelogram Law.

Each  Banach  space has a multiplicative operator norm induced by the vector norm,  and when 

computed for a projection  P = P2  the norm must satisfy  ||P|| = ||P2|| ≤ ||P||2 ,  so  ||P|| ≥ 1 .  How 
much bigger than  1  must  ||P||  be?  This question,  posed by  Banach,  was first answered in  
1972  by  Yehoram Gordon  who established,  with the aid of  Fritz John’s Ellipsoid Theorem,  
that any  r-dimensional  subspace in any  Banach  space is the range of at least one projection  P  
of rank  r  and norm  ||P|| ≤ √r ;  and no constant smaller than  √r  can be valid for every  r-
dimensional subspace of every  Banach  space.  Gordon’s  proof is too long to reproduce here.

•  The Smallest Generalized Inverse
Every  (possibly rectangular)  matrix  F  has at least one  Generalized Inverse  G  satisfying the 
one equation   F·G·F = F   that every generalized inverse must satisfy.  x = G·y  is a solution of 
the possibly over- or under-determined linear equation   F·x = y   if a solution  x  exists;  and if 
not,  G·y  is an approximate solution in some sense.  If  F  is rectangular or rank deficient it has 
infinitely many generalized inverses  G  almost all of which have enormous magnitudes  ||G||  
gauged by any norm.  This follows from the observation that  G+Z  is another generalized 
inverse whenever  Z  satisfies either  F·Z = O  or  Z·F = O .  An oversized  ||G||  induces severe 
numerical misbehavior because it amplifies small errors in  y  when  G·y  is computed;  none of 
its computed digits will contain useful information if  ||G||  is too big.  There are extreme cases 
when every  ||G||  is too big.  Every generalized inverse  G  of  F  must satisfy

  ||G|| ≥ 1/( minimum  ||∆F||  for which  rank(F–∆F) < rank(F) ) 
in which the two matrix norms need only be compatible with the vector norms in the domain 
and target spaces of  F .  The foregoing assertions are  Lemma 1  and  Theorem 5  in the class 
notes on  “Huge Generalized Inverses of Rank-Deficient Matrices”,  <…/MathH110/GIlite.pdf>.
Theorem 8  stated but not proved in those notes asserts,  for the operator norms induced by the 
vector norms,  that at least one generalized inverse  G  also satisfies

  ||G|| ≤ √rank(F) /( minimum  ||∆F||  for which  rank(F–∆F) < rank(F) ) .
My proof uses  Fritz John’s Ellipsoid Theorem  but is still too long to reproduce here.

The foregoing two bounds upon  ||G||  have valuable practical implications when the data in  F  
are uncertain enough that some nearby  F–∆F  of lower rank differs from  F  by less than its 
uncertainty.  Changing the data  F  to a nearly indistinguishable matrix  F–∆F  of lowest rank 
may reduce the norm of its nearly minimal generalized inverse enough to forestall numerical 
obscurity.  If this can be accomplished,  we can accomplish it by means of a  Singular Value 
Decomposition  after applying whatever coordinate changes in the domain and target spaces of  
F  are necessary to make the spaces’ norms approximately  Euclidean.  Provided dimensions are 
not too big,  Fritz John’s Ellipsoid Theorem  says that these necessary coordinate changes exist 
without saying how to find them.  Let’s hope they amount only to diagonal scaling.

  …   …   …
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More applications of  Fritz John’s  Ellipsoid Theorem  and another longer proof for its centrally 
symmetric case can be found in  Keith Ball’s  lecture notes  “An Elementary Introduction to 
Modern Convex Geometry”,  pp. 1-58 of  Flavors of Geometry,  MSRI Publications - Volume 
31,  Edited by Silvio Levy  for  Cambridge University Press, Cambridge, 1997.  Ball’s  notes are 
also posted at  <http://www.msri.org/publications/books/Book31/files/ball.pdf>.  Don’t read too 
much into the title’s word  “Elementary”.
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