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A  Convex Region

 

  in a vector space is a region which,  together with any two points in that region,  
includes all of the straight line segment joining them.  For example,  interiors of elipses and 
triangles and parallelograms are convex regions in the plane,  but a star or annulus is not.

 

The  Convex Hull

 

  of a set { z
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, ... } of given points or vectors is the smallest convex region 
that contains all of them.  The convex hull can be shown to be the set of all …

 

Positively Weighted Averages   

 

of finite subsets,  here  { z
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 } ,  of those points with positive  

 

Weights
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 > 0 , ..., w
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 > 0 .  In fact,  Caratheodory’s  theorem says that the convex hull is the 
union of all  simplices  whose vertices are chosen from the given point set,  and every such  simplex  
can easily be shown to consist of the set of positively weighted averages of its vertices.  In the plane 
simplices are triangles;  in  3-space  simplices  are  tetrahedra;  in  N-space  a simplex is the convex 
hull of  N+1  points not lying in a  (hyper)plane  of dimension less than  N .  Usually  n > N .

Another interpretation of the foregoing positively weighted average is as the  

 

Center of Mass

 

  or  

 

Center of Gravity

 

  of a collection of positive masses  w

 

1

 

, w

 

2

 

, w

 

3
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  positioned respectively 
at the points  z
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, ..., z
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 .  Note that  the center of mass of positive masses lies strictly inside 
their convex hull when  n > 2 ,  and strictly between them when  n = 2 .

All the foregoing assertions above about convex regions seem too obvious for plane regions to 
need explicit proofs here,  but proofs for convex regions in spaces of arbitrarily high dimensions 
may be unobvious.  

 

(See texts by  R.V. Benson,  H.G. Egglestone,  S.R. Lay,  F.A. Valentine,  … .)

 

A real function  U(x)  of the vector argument  x  is called a  

 

Convex Function

 

  when its graph is 
the lower boundary of a convex region.  Consequently every  

 

Secant

 

  ( a straight line that crosses 
a graph at least twice )  lies above the graph of  U(x)  between every two crossings,  so there can 
be only two crossings.  Moreover the graph of  U(x)  lies above its every  

 

Support-Line

 

,  which is 
a straight line,  like a tangent,  that touches the graph somewhere without crossing it nor running 
above it.  The letters  

 

U

 

  and  

 

V

 

  without serifs are examples of graphs of convex functions;  the 
letter  

 

V

 

  has no tangent at its sharp bottom vertex,  but it has infinitely many support-lines there.  
A round bowl,  a satellite-dish,  and an ice-cream cone can also be examples of convex graphs.

A convex function’s domain must be convex;  do you see why?  Every convex function must be 
continuous in the interior of its domain  (this isn’t obvious),  and can be proved to be differentiable 
almost everywhere,  and one-sidedly differentiable once everywhere inside its domain,  but not 
necessarily twice differentiable anywhere;  however,  the second derivative must be  

 

nonnegative 
definite

 

  wherever it exists.  For instance,  if  x  is a scalar this means  U

 

"

 

(x) 

 

≥

 

 0 .

 

What this means for vector arguments  x  is best explained with the aid of a  

 

Taylor Series

 

:
U(z+h) =  U(z) + U

 

'

 

(z)·h + (U

 

"

 

(z) + Ø(z, h))·h·h/2 ,   where  Ø(z, h) 

 

→

 

 0  as  h 

 

→

 

 o ,
wherever the second derivative  U

 

"

 

(z)  exists.  Here  U

 

"

 

  is a  

 

bilinear

 

  operator:  U

 

"

 

·p·b  is a real-valued functional 
linear in each of the vectors  p  and  b  separately.  If we think of  U(x)  as a function of the components  
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of  x ,  then  U
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(x)·p·b = 
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, …  are the 
components of  p  and of  b  respectively,  and  H  is the  Hessian  matrix of second partial derivatives of  U .  A well-
known theorem due to  H.A. Schwarz  asserts that   
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   provided either side exists and is 

continuous,  as is normally the case;  then  H = H

 

T

 

  is symmetric and  U

 

"

 

(x)·p·b = U

 

"

 

(x)·b·p .

The convexity of  U  implies that  U(x) 

 

≥

 

 U(z) + U

 

'

 

(z)·(x–z)  for every  x  in the domain of  U ,  which says the graph 
of  U(x)  lies above a (hyper)plane tangent at  z ;  substituting this inequality into the  Taylor  series implies that  
(x–z)

 

T

 

H(x–z) 

 

≥

 

 0  for all such  x ,  especially those very near  z ,  which implies that  H  and thus  U

 

"

 

(z)  is nonnegative 
definite as asserted earlier.  Conversely,  if  U

 

"

 

(z)  is nonnegative definite at every  z  inside its domain then  U(x)  is 
convex,  though to prove this we must replace  U

 

"

 

 + Ø  by a weighted average of  U

 

"

 

   on the segment from  x  to  z .

w1z1 w2z2 w3z3 … wnzn+ + + +

w1 w2 w3 … wn+ + + +
--------------------------------------------------------------------------------
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Analogously,  a real function  C(x)  of a vector argument  x  is called  Concave  when its graph is 
the upper boundary of a convex region;  and then  C"(x)  must be nonpositive definite wherever  
C"(x)  exists.  Only an  Affine-Linear  (or Non-Homogeneous Linear)  function   cTx + b  can be 
both concave and convex everywhere on its domain.

Suppose now that  x1, x2, ..., xn  are  distinct  vector arguments in the domain of a convex function  
U(x) ,  and suppose  w1, w2, ..., wn  are all positive weights.  Then the weighted average

x0 :=  

lies in the domain of  U  also.  Now set  yk := U(xk)  for  k = 0, 1, 2, …, n ;   Jensen’s Inequality  

is this  Theorem: y0  ≤  ÿ :=  

Its proof goes roughly as follows:  Let  zk = (xk, yk)  for  k = 0, 1, 2, …, n ;  all these points lie on 
the graph of  U(x)  which,  as the lower boundary of its convex hull,  also falls below or on the 
boundary of the convex hull of the points  z1, z2, ..., zn .  In particular,  z0  lies below or on that last 
boundary,  so  z0 lies directly below or on the positively weighted average

(x0, ÿ) =   .

This confirms  Jensen's Inequality.  Replacing a convex function  U(x)   by a concave function  C(x)  
merely reverses the inequality after  y0 .

Jensen’s Inequality  becomes equality only when  n = 1  or function  U  is affine-linear over at least 
the convex hull of the given arguments  xj ;  can you see why?  (It takes a while.)

Jensen’s Inequality  has many applications.  An important one is the  Inequality  among the  
Arithmetic,  Geometric  and  Harmonic  Means:

Given  n  positive weights  w1, w2, ..., wn  and  n  positive numbers  x1, x2, ..., xn ,  define

A :=   ,

G :=   ,   and

H :=   .

Here  A  is a  Weighted Arithmetic Mean  of the set  { x1, x2, ..., xn }  and  G  a  Weighted Geometric 
Mean  with the same set of weights  { w1, w2, ..., wn } ,  and  H  is a  Weighted Harmonic Mean  
with the same weights.

 Theorem:  H ≤ G ≤ A ,  with equality only when  x1 = x2 = ... = xn .

To prove that  G ≤ A  apply  Jensen’s Inequality  to the concave function  log(x)  to deduce that  
log(G) ≤ log(A) .  To prove  H ≤ G  apply the inequality of the arithmetic and geometric means to 
the reciprocals of  x1, x2, ..., xn,  G  and  H .

w1x1 w2x2 w3x3 … wnxn+ + + +

w1 w2 w3 … wn+ + + +
----------------------------------------------------------------------------------

w1y1 w2y2 w3y3 … wnyn+ + + +

w1 w2 w3 … wn+ + + +
----------------------------------------------------------------------------------

w1z1 w2z2 w3z3 … wnzn+ + + +

w1 w2 w3 … wn+ + + +
--------------------------------------------------------------------------------

w1x1 w2x2 w3x3 … wnxn+ + + +

w1 w2 w3 … wn+ + + +
----------------------------------------------------------------------------------
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-----------------------------------------------------------
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An elementary application of the inequalities among the arithmetic and geometric means yields a 
proof that  e = 2.718281828459…  exists as the limit of the increasing sequence  sn := (1 + 1/n)n  

and also of the decreasing sequence  Sn := 1/(1 - 1/n)n  as integer  n  approaches  +∞ .  First observe 
that  sn < sn+1  because the geometric mean of  n+1  numbers  { 1 + 1/n,  1 + 1/n, ..., 1 + 1/n,  1 }  
is less than their arithmetic mean.  Therefore  sn  really does increase with  n .  Next observe that  
1/Sn < 1/Sn+1  because the  n+1  numbers  { 1 – 1/n,  1 – 1/n, ..., 1 – 1/n,  1 }  have a smaller 
geometric mean than arithmetic mean;  Sn  really does decrease as  n  increases.  Meanwhile  

sn < Sn  because  sn/Sn = (1 – 1/n2)n < 1 .  This implies that every term in the increasing sequence  
sn  is less than every term in the decreasing sequence  Sn ,  so both sequences must converge;  sn  
increases to some limit  ë  while  Sn  decreases to some limit  ê  as  n → +∞ ,  and  ê ≥ ë .  Must  
ê = ë ?  For all  n > 2  consider

0 ≤ ê – ê <  Sn – sn  =  ( 1 – (1 – 1/n2)n )·Sn  =  ( 1 – (1/Sn·n)1/n )·Sn 

   <  ( 1 – 1/S4
1/n )·S2  → 0   as  n → +∞ .

So  ê – ë = 0 .  Therefore both sequences converge to the same limit,  called  e ,  as claimed.  (The 
sequence  √(snSn) → e  faster,  but still requires  n  to be huge to achieve appreciable accuracy.  Can 
you see why roundoff may blight the computation of terms in any of the three sequences for very 
huge  n  unless it is restricted to powers of  10  on a calculator,  or powers of  2  on a computer?)
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Another important application of  Jensen’s Inequality  is a proof of …
Hölder’s Inequality:
Suppose  q/(q-1) = p > 1  (and so  p/(p-1) = q > 1  too),   and suppose
all of  u1, u2, u3, …  and  v1, v2, v3, …  are positive.  Then

∑j uj·vj  ≤  p√(∑j uj
p)· q√(∑j vj

q) ,

with equality just when   u1
p/v1

q = u2
p/v2

q = u3
p/v3

q = … .

To prove this,  apply  Jensen's Inequality  to the convex function  xq  with weights  wj = uj
p  and 

arguments   xj = uj·vj/wj .  Note that the inequality stays true in the limits as  p → 1  or  → +∞ .

The special case  p = q = 2  is called  Cauchy’s Inequality,  and justifies calling the angle 
arccos(a•b/(||a||·||b||) = arccos(( ∑j aj·bj )/√( ∑j aj

2 · ∑k bk
2 ))  the unsigned angle between two 

column vectors  a  and  b  in  Euclidean   N-space.  In  non-Euclidean  spaces generally no useful 
notion of angle need exist,  but often the length of row-vectors  aT := [a1, a2, ..., aN]  is defined 

usefully as  ||aT||q := q√(∑j |aj|
q)  in conjunction with  ||b||p := p√(∑j |bj|

p)  for column vectors  

b := [b1, b2, …, bN]T ,  and then  “ aTb ≤ ||aT||q·||b||p ”  is the mnemonic for  Hölder’s  inequality.  
These definitions of length  ||…||…  make sense because they satisfy …

Minkowski’s  Triangle Inequality:
Suppose  p > 1 ,  and all of  u1, u2, u3, ...  and  v1, v2, v3, ...  are positive.  Then

p√( ∑j (uj + vj)
p )  ≤  p√( ∑j uj

p ) + p√( ∑j vj
p ) ,

with equality just when  u1/v1 = u2/v2 = u3/v3 = … .

To prove this,  apply  Jensen's Inequality  again,  now with  wj = vj
p  and  xj = (uj/vj)

p  and the  

concave  function  (1 + p√x)p .  Note again that the inequality remains true in the limits as  p → 1  
or  → +∞ .  The mnemonic for  Minkowski’s  inequality is  “ ||b + c||p ≤ ||b||p + ||c||p ” .


