Prof. w.Kahan Notes on Jensen’slnequality for Math. H90 september 27, 2000 6:23 am

A Convex Region inavector spaceisaregionwhich, together with any two pointsinthat region,
includes all of the straight line segment joining them. For example, interiors of elipses and
triangles and parallelograms are convex regionsin the plane, but a star or annulusis not.

The Convex Hull of aset{ z,, z,, z3, ... } of given pointsor vectorsisthe smallest convex region
that contains all of them. The convex hull can be shown to be the set of all ...

W.Z, +W,Z, +W,Z,+ ... +W Z
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Wy + W, + W+ L+ W
of finite subsets, here { z4, z,, z3, ..., z,} , of those points with positive Weights w; >0,
wy,>0, wy>0,..,w,>0. Infact, Caratheodory’s theorem says that the convex hull isthe

union of all simplices whose verticesare chosen fromthe given point set, and every such simplex
can easily be shown to consist of the set of positively weighted averages of itsvertices. Intheplane
simplicesaretriangles; in 3-space simplices are tetrahedra; in N-space asimplex isthe convex
hull of N+1 pointsnot lyingina (hyper)plane of dimensionlessthan N . Usually n>N .

Another interpretation of the foregoing positively weighted averageisasthe Center of Mass or
Center of Gravity of acollection of positive masses wy, Wy, Ws, ..., W, positioned respectively

at the points z,, z,, 73, ..., Z,. Notethat the center of mass of positive masses lies strictly inside
their convex hull when n> 2, and strictly between them when n=2.

All the foregoing assertions above about convex regions seem too obvious for plane regions to
need explicit proofs here, but proofs for convex regionsin spaces of arbitrarily high dimensions
may be unobvious. (Seetextsby R.V.Benson, H.G. Egglestone, SR. Lay, F.A. Vaentine, ... .)

A real function U(x) of the vector argument x iscalled a Convex Function whenitsgraphis
the lower boundary of a convex region. Consequently every Secant (astraight linethat crosses
agraph at least twice) liesabove the graph of U(x) between every two crossings, so there can
be only two crossings. Moreover the graph of U(x) liesaboveitsevery Support-Line, whichis
astraight line, like atangent, that touches the graph somewhere without crossing it nor running
aboveit. Theletters U and V without serifs are examples of graphs of convex functions; the
letter V has no tangent at its sharp bottom vertex, but it hasinfinitely many support-lines there.
A round bowl, asatellite-dish, and an ice-cream cone can also be examples of convex graphs.

A convex function’s domain must be convex; do you see why? Every convex function must be
continuousin theinterior of itsdomain (thisisn’t obvious), and can be proved to be differentiable
almost everywhere, and one-sidedly differentiable once everywhere inside its domain, but not
necessarily twice differentiable anywhere; however, the second derivative must be nonnegative
definite wherever it exists. For instance, if x isascalar thismeans U"(x) =0.

What this means for vector arguments X is best explained with the aid of a Taylor Series:

U(z+h) = U(2) + U'(2)-h + (U" (2) + D(z, h))-h-h/2, where @(z,h) - 0 as h > 0,
wherever the second derivative U" (z) exists. Here U" isa bilinear operator: U" -p-b isareal-valued functional
linear in each of thevectors p and b separately. If wethink of U(x) asafunction of the components &4, &5, &3, ...
of x, then U"(x)-pb=3; >« (aZU(x)/OEjaEk)Tq 3 = p'Hb where T, Ty, T, ... and 3y, 3, B, ... arethe
componentsof p and of b respectively, and H isthe Hessian matrix of second partial derivativesof U. A well-
known theorem dueto H.A. Schwarz asserts that 62U(x)/anaEk = 62U(x)/aEk6£j provided either side existsand is

continuous, asisnormally the case; then H=H" issymmetricand U" (x)-p-b=U" (X)-b-p.
The convexity of U impliesthat U(x) = U(2) + U'(2)-(x—z) for every x inthedomainof U, which saysthe graph
of U(x) liesabove a (hyper)planetangent at z; substituting thisinequality into the Taylor seriesimplies that

(x=2)"H(x—=z) = 0 for all such x , especially thosevery near z, whichimpliesthat H andthus U" () isnonnegative
definite as asserted earlier. Conversely, if U"(z) isnonnegative definite at every z insideitsdomainthen U(x) is
convex, though to prove thiswe must replace U" + @ by aweighted average of U" on the segment from x to z.
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Analogously, areal function C(x) of avector argument x iscalled Concave whenitsgraphis
the upper boundary of a convex region; andthen C"(x) must be nonpositive definite wherever

C"(x) exists. Only an Affine-Linear (or Non-Homogeneous Linear) function c'x +b can be
both concave and convex everywhere on its domain.

Suppose now that x4, X, ..., X, are distinct vector argumentsin the domain of aconvex function
U(x) , and suppose wyq, Wo, ..., W,, areall positive weights. Then the weighted average
xo = W Xq + WXy + WoXo+ .o+ W X

W+ W, +Wat .+ W,
liesinthedomain of U also. Now set y :=U(x,) for k=0,1,2,...,n; Jensen’slnequality
WY, +WoY, +Woy + .. +W
isthis Theorem:  yg < y:= 1™ Wa¥p 7 Ws¥s n/n
W+ W, + Wt .+ W
Its proof goes roughly asfollows: Let z, = (X, yi) for k=0,1,2, ...,n; al thesepointslieon

the graph of U(x) which, asthelower boundary of its convex hull, also falls below or on the
boundary of the convex hull of the points z, z,, ..., z,, . Inparticular, z, liesbelow or on that |ast
boundary, so zjliesdirectly below or on the positively weighted average
W.Z, +W,Z, + WoZ,+ ... + W Z
(Xo,y)z 171 272 373 n“n

Wy +W, + W+ .+ W

Thisconfirms Jensen'sinequality. Replacing aconvex function U(x) by aconcavefunction C(x)
merely reversesthe inequality after yq .

Jensen’sInequality becomesequality only when n=1 or function U isaffine-linear over at least
the convex hull of the given arguments X; ; can you see why? (It takesawhile.)

Jensen’ s Inequality has many applications. Animportant oneisthe Inequality among the
Arithmetic, Geometric and Harmonic Means:

Given n positive weights wq, Wy, ..., W, and n positive numbers Xy, Xo, ..., X,,, define

A= W1X1+W2X2+W3X3+ +Wan
W, +W,+Wot . + W

w1/ (W +wy+wa+ . +w)

L Wy W, W3 n
G:= (Xl D(2 D(3 .. Qn ) , and
W1+W2+W3+... tw,

H:=

Here A isa Weighted Arithmetic Mean of theset { X4, Xo, ..., X, } and G a Weighted Geometric
Mean with the same set of weights { wy, ws, ..., w,} , and H isa Weighted Harmonic Mean
with the same weights.

Theorem: H<G <A, with equality only when x; =X, =... = X,.
Toprovethat G<A apply Jensen’'sInequality to the concave function log(x) to deduce that

log(G) <log(A) . Toprove H< G apply theinequality of the arithmetic and geometric means to
thereciprocals of X4, Xo, ..., X5, G and H.
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An elementary application of the inequalities among the arithmetic and geometric meansyields a
proof that e =2.718281828459... exists asthe limit of the increasing sequence s, := (1 + 1/n)"

and also of the decreasing sequence S;, := 1/(1- 1/n)" asinteger n approaches +o . First observe
that s, < s+, because the geometric mean of n+1 numbers { 1+ 1/n, 1+ 1/n,..,1+1Un, 1}
islessthan their arithmetic mean. Therefore s, really doesincrease with n. Next observe that
VS, < 1S4, becausethe n+1l numbers { 1-1/n, 1-1n,..,1-1/n, 1} haveasmaler
geometric mean than arithmetic mean; S;, really does decrease as n increases. Meanwhile
S, < S, because s/S,=(1- ]an)n < 1. Thisimpliesthat every term in the increasing sequence
S, islessthan every term in the decreasing sequence S;,, so both sequences must converge; s,
increasesto some limit & while S, decreasesto somelimit € as n - +oo, and é=2é. Must
€=¢é? Foral n>2 consider

0<6-8< §-5, = (1-(1-UM)")§, = (1-WS,)")S,

< (1-Us")s, ~ 0 asn - +w.

So é—é=0. Therefore both sequences converge to the samelimit, called e, asclaimed. (The
sequence V(s,S,) — e faster, but still requires n to be hugeto achieve appreciable accuracy. Can

you see why roundoff may blight the computation of termsin any of the three sequences for very
huge n unlessit isrestricted to powersof 10 on acalculator, or powersof 2 on acomputer?)

Another important application of Jensen’s Inequality isaproof of ...
Holder’sInequality:
Suppose g/(g-1) =p>1 (andso p/(p-1) =g>1 too), and suppose
al of ug, uy, ug, ... and vq, vy, V3, ... arepositive. Then
Siuvi < WV uP)- WS v
with equality just when u;P/v,% = uPiv,9=usPivyd= ...

To provethis, apply Jensen's Inequality to the convex function x4 with weights w; = ujp and
arguments  x; = u;-vj/w; . Notethat the inequality staystrueinthelimitsas p —» 1 or — +oo.

The special case p=q=2 iscaled Cauchy’slInequality, and justifiescalling the angle
arccos(ab/(|lallIbll) = arccos(( 3 gb; JV( 3ja% - Tk b?)) the unsigned angle between two
column vectors a and b in Euclidean N-space. In non-Euclidean spaces generally no useful
notion of angle need exist, but often the length of row-vectors a' :=[&, &, ..., ay] isdefined
usefully as [|a’[ly := W(F; 1319 in conjunction with [lbll, :=PV(; IbjP) for column vectors
b:=[by, by, ..., bN]", andthen “ a’b < |[af||y|lbll,” isthe mnemonic for Holder's inequality.
These definitions of length ||...|| make sense because they satisfy ...

Minkowski’s Triangle Inequality:
Suppose p>1, andall of uq, uy, Us, ... and vq, vy, V3, ... arepositive. Then

PV +v)P) < PV(3uP) +V(55vP),
with equa“ty ]USt when U]_/Vl = U2/V2 = U3/V3 = ...
To provethis, apply Jensen'sInequality again, now with w; :vjp and x; = (uj/vj)p and the

concave function (1 + Pvx)P. Note again that the inequality remainstrueinthelimitsas p - 1
or — +co. The mnemonic for Minkowski’s inequality is “ ||b + c|l, < [[b]l, + [Icll, " -
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