Math. H110  Huge Generalized Inverses of Rank-Deficient Matriceserof. w. Kahan

Normally we think of the solution x = of a linear system Fx =y as a continuous function

of the given data F and y. When no' fexists, any of a host of algebraic methods can be

used to solve the system for x, at least approximately, although every solution’s usefulness
may be undermined by violent variability. This note assesses that violence quantitatively by
relating it to the data’s nearness to perturbed data of lower rank. Real number data is assumed.

Let F be a possibly rectangular matrix whose rank may be less than both of its dimensions for

all we know. A Generalized Inversés of F can be defined in many ways, all characterized

thus: X := Gy is a solution of the equation Fx =y whenever this equation has a solution,
even if the solution x is not determined uniquely by the equation. Consequently ...

Lemma O: The generalized inverses G of F are the solutions G of the equation FGF =F.

Proof: y:=Fx runsthrough F's range as x runs through its domain; then x = Gy must be a
solution of the equation Fx =y, whence Fx =FGy = FGFx follows forall x, so FGF=F.

Lemma 1: Every matrix F, including F =0, has at least one generalized inverse G.

This will be proved later. But first let us consider a widely used instanceldloee-Penrose
Pseudo-Inverse . Itis the linear operator that solvesk.aas?—Squaresproblem:
Given F and y in F's target space (but perhaps notin F's range), find the vector x
in F’'s domain that minimizes || Fx -y || and, if the minimizing X is not yet unique,
also minimizes ||x||. Here ||v|[V&'v) is the Euclidean length of real vector v .

Lemma 2: The LeastSquares problem’s solution x ityFis obtainable from th&ingular-

Value DecompositiorF = QVP , inwhich Q=1 and PP =1 and V is a nonnegative
diagonal matrix (perhaps rectangular) exhibiting the singular values of F, by computing

F:= PVQ" where V is obtained from the diagonal V by transposing it and then replacing

13 0| _
0 0|~
0 0

Lemma 2 will be proved later. From its formula for pseudo-inverses will follow ...

. . . . T
therein every nonzero diagonal element by its reciprocal. For exar{gﬂé,

Lemma3: FFF=F, EFF =F, (FA"=FF and (FOT=FF ; and these four
equations characterize! Pecause it is the unique matrix satisfying of all of them.

Lemma 3’s first equation says that 5 a generalized inverse of F, and the second says that

F is a generalized inverse of Fin fact, (FT)Jr =F . In general, generalized inverses are not
reciprocal in this way; later we shall see how to construct a generalized inverse G of F that
violates any chosen subset of the latter three equations of Lemma 3 unless F =0 or F has

full rank (equalto F's least dimension). Unlesg Exists (in which case G =F), there
are infinitely many generalized inverses G of F, almost all of them with gargantuan elements
since G+Z is also a generalized inverse for every Z satisfying FZ=0 or ZF=0.
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Now, a gargantuan generalized inverse G is hazardous to approximate because subsequent
computations of Gy may encounter massive cancellation leaving little more than error as a
residue. And even when computation is performed exactly, or without roundoff, Gy can be
changed utterly by tiny perturbations of y . Consequently, ample incentive exists to choose
generalized inverses of near-minimal magnitudes; an instance is the Moore-Penrose Pseudo-

Inverse, minimal because it solves the L%Sstuares problem (Lemma 2). Infact, ...

Lemma 4: Among generalized inverses G of F with minimal ||G]|| :5m#Gy|l/lyl| (the

Operator normbased upon Euclidean vector norms ||Gy|| and ||y||), one turns ouf'to be F
and only it minimizes theRoot-Sum-Squaresorm |G| := V(Trace(@G)) = V(3,3 G;°) -

The operator norm ||G|| here turns out to be the biggest singular value of G ,T|artdr|1||st:

out to be the reciprocal of F's smallest nonzero singular véfiie.turns out to be the Root-
Sum-Squares of reciprocals of all F's nonzero singular values. All this will become clear later.

Choosing a generalized inverse of near minimal magnitude cannot always avoid troubles with
gargantuan magnitudes; they may be unavoidable if F is too near another mafxix &f +

lower rank because then every generalized inverse G of F must be huge. A guantitative
statement of this cause-and-effect relationship involves matrix norms thus:

Theorem 5: Every generalized inverse G of F has
[|Gl|= 2/( min||AF]|| such that rank(RAF) < rank(F)) .

This will be proved later foany matrix norms||...|| satisfying Multiplicative Dominance

relations ||GyK ||Gl|-|lyl| and [|F4]||F||-||X|| required folCompatibility with vector norms;

all plausible matrix norms are compatible that way. Theorem 5 says that the existence of at
least one moderately sized generalized inverse of F implies that F is relatively well separated
from all matrices FAF of lower rank when separation is gauged by the chosen matrix norm.

Theorem 5 says nothing if the norms have been chosen to make F and G look good. For example, choose new
coordinate bases in the domain and target spaces of F to represent it by a ne\¥ noatrsisting of an identity
matrix bordered perhaps by zero matrices; the dimension of the identity matrix must equal the rank of F. Then

G:=F" isthe representative in the new coordinates of a generalized inverse G of F in the old coordinates, and
choosingany of the customary operator norms ||...|| in the new coordinates will induce corresponding operator
norms []...[[ in the original coordinates such tHE]| ;= |[F|| =1 and]|G]] :=|[3|| = 1. This is what is meant by
norms "chosen to make F and G look good." Such a choice is not always praiseworthy.

Ideally, the chosen norm should serve the intended application. For instance, ...

Ideally, all vector perturbations of roughly the same length,

gauged by the chosen norm,

should be roughly equally (in)consequential or (un)likely.
Worthwhile ideals are not easy to achieve; achieving this one, when possible, is a long story
for another day. For now let us assume the norm is fixed in advance. For any given F we seek
as small a generalized inverse G as can be computed at a tolerable cost. When the norm is the
biggest-singular-value-norm used in Lemma 4, then a minimal generalized inverse G barely
big enough to comply with Theorem 5 can be identified easily:
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Corollary 6: The Moore-Penrose Pseudo-Inverseisa generalized inverse of F satisfying
Il = ¥( min |AF|| such that rank(B&F) < rank(F)) ;

here ||¢|| is the biggest singular value of Fwhich is the reciprocal of F's smallest nonzero
singular value which, in turn, is the distance from F to the neardst Bflower rank.

Exercise: Show that E= limg_ o, (BI+F F)F" = limg_ o, F(RI+FF)L.

For other operator norms ||...|| derived from non-Euclidean vector norms, a near minimal
generalized inverse of #O can be difficult to construct unlesstFexists, in which case ...

Theorem 7: ||FY| = ¥( min |AF|| such that det(&F) = 0) for all operator norms |]...|| .

Far harder than the proofs of the theorems, corollary and lemmas above is the proof of ...

Theorem 8: For every operator norm ||...||, at least one generalized inversfe FG besides
satisfying Lemma 0 and Theorem 5, also satisfies
[[G|< V(rank(F)Y( min |AF|| such that rank(BF) < rank(F)) .

Theorem 8 shows that Theorem 5 is not excessively optimistic. | found a proof in 1973, but
have not published it yet because | still hope some day to discover a much shorter proof.

Here are proofs for the other assertions above. Firstis Lemma 1's assertion that every F has
at least one generalized inverse G . One proof deduces that the equation FGF =F in Lemma
0 has a solution G by applying one of Fredholm’s criteria: In general, the linear equation

Ag =f must have at least one solution g if and only'f=c0 whenever LA =0 . Inour
case, the linear operator A doesto g what FGF doesto G ;'famdatches Trace(() .

In short, to apply Fredholm’s criterion we must decide whether TrjéE)aéQ) for every
matrix C satisfying Trace(&ZzF)=0 for all Z. Since the trace of a product is unchanged
by cyclic permutation of its factors, the last equation implies that TratE@G 0 for all

Z , whence FE&F =0, whence follows ()%= 0, which implies that & has no nonzero
eigenvalue, whence follows that TracBE=0 as required to establish that a solution G of

FGF = F exists.
Another proof of G’s existence follows changes of coordinate bases in the domain and target
spaces of F to exhibit its linear operator’s canonical form ubdgivalence T:={C'Jg}

wherein the dimension of the identity matrix | matches Rank(F) and the zero matrices O fill
out the rest of the rows and columns; the rest of the rows or the rest of the columns or both can
be absent if F has full rank equal to one of its dimensions. For these bases every generalized

inverse_G{'Sj with arbitrary matrices R, S and Z so dimensioned (if not absent) that

matrix products & and G- both exist. Then 6F = F, and this equation persists in the
form FGF = F after restoration of the original coordinate bases.
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Exercise: Continuing from the last paragraph, prove that every generalized inverse G of F has
Rank(G)= Rank(F) with equality if andnly if F is a generalized inverse of G too.

To prove Lemma 2 we use analogous coordinate changes, but this time to new orthonormal

bases obtained from the orthogonal matrices P and Q of a singular value decomposition
F = QFP" in which diagonal matrix_ E{\ég} has the same dimensions as matrix F whose
singular values appear orisFdiagonal; the square diagonal matrix V exhibits all nonzero
singular values. We might as well assume F atFhe outset since these coordinate changes

preserve Euclidean length in both domain and target spaces of F, leaving tﬁeSdJ,ea&Is

problem unchanged. Now, with F diagonal, the I_ZeﬁqUares problem’s solution is almost
vio
O O

a square diagonal matrix, as is TEFAIso this diagonal F satisfies all four of Lemma 3's
equations, which persist after restoration of the original coordinate bases. These equations

determine uniquely because they do so in the coordinate systems that diagonalize F, asis

obviously x = By for F':=

with F's dimensions transposed so thiE EL‘)(OJ is

easily verified. In these coordinate systems, any

<1 , , :
\G'= R} Is a generalized inverse because
s z

it satisfies the first equation FGF =F forany R, S and Z. Only Z =*RS¥an satisfy the
second equation GFG =G too. Only S =0 can satisfy the first and third, G ; only

R = O can satisfy the first and fourth, (FG)FG . Consequently onIyTFsatisfies all four
equations. This completes the proof of Lemma 3 and the second sentence after it.

When any generalized inverse G of F is represented as above in orthonormal coordinate bases
that diagonalize F, the Root-Sum-Squares norm satigtiés= [V—4? +[R]? + ]S +|Z]?,
which exceeddF'2 = V42 unless G =F. This confirms the second assertion in Lemma 4.

The first assertion’s proof begins with the observation that clearing S and Z to zeros cannot
increase [|G|| = mgax [|Gy||/|ly|| , nor can it be increased after that by clearing R ; therefore

every generalized inverse G has its #CHN/‘1|| = ||If|| = 1/(F's least nonzero singular value) .
This completes the proof of Lemma 4 and the paragraph after it.

Exercise: Fill in all unobvious details of the proofs above.

Exercise: Suppose that F = LCRin which L, C and R all have the same rank and C is square and invertible.
Showthat = (L") UT, R = (R'TR)IRT and E=RMCILT, soitis computable by rational arithmetic alone.

Current versions of Matlab compute an approximatom(F) to F froma singular value
decomposition of F after all singular values tinier than a roundoff-related threshold have been
reset to zeros. Otherwise reciprocals of these tiny singular values would introduce gargantuan

numbers that would swamp everything else in afd render it useless numerically. A Matlab
user can substitute his own threshaldfor Matlab’s by invokingpinv(F, Q) . Thisis

tantamount to perturbing F, changing it toAF-with |AF|| <Q to get ||(FAF)'||< 1/,
provided Q > 0 of course. If F has no singular values below that threshéle; O ; but

otherwise Rank(FAF) < Rank(F) and |Tﬁ > 16 . How should the threshold be chosen?
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If insights into data revealed by computed results are not to be confounded by an accident of the computational
algorithm, then these results must be insensitive to ostensibly small changes in the threshold. This will be the case
only if Q falls into a relatively wide gap between F’'s small singular values and much tinier ones tiny enough to

be discarded. Otherwise the choice®dfbecomes problematical.

Singular value decompositions reveal almost everything knowable about linear operators from
one Euclidean space to another. What if the spaces are not both Euclidean? Vectors’ lengths
may be gauged by any of various norihs.|| each of which satisfies all the familiar laws

IM[>0 exceptljo][ =0, [ju-vi|=Rl{MI, and [u+vi|< juf] + ],
but violates the Euclidean normRarallelogram Law |[u+vff + [Ju=vf{ = 2||uff + 2||[vff ; see
our class notes on “How to Recognize a Quadratic Form”. This violatigh.dy deprives the
vector space of a wealth a§ometries (length-preserving linear transformations, the rotations
and reflections represented by orthogonal matrices) possessed by Euclidean spaces. Here are
two instances: The only isometries available for the biggest-magnitude norm and for the sum-of-
magnitudes norm are the permutations and the sign reversals of column-vectors’ elements. This
is why non-Euclidean normed spaces (they are called “Banach spaces”) have turned out much
more difficult to analyse in the course of about a century of study.

The singular value decomposition has no useful counterpart for linear operators between spaces
that are not both Euclidean, though the spa@gserator norm ||F|| := max, |[Fv|/|v|| does

resemble the biggest singular value in some respects, and is easier to compute for the biggest-
magnitude and sum-of-magnitudes vector norms provided both spaces use the same norm. All

operator norms satisfy the product identity ﬂuw||u||-||va|| for rank-1 operators, as well as a
multiplicative dominance relation ||L-E|||L||-||F|| satisfied by all well-founded matrix norms.

Exercise: Prove these, recalling that the dual space’s vector norm is an operatofdiin= maX,-o wvi/|v]] .
Symmetrically |[v|| = max,ror [WTv|/|w'||; use this to prove all operator norms ||F|| = max|w F|J/|wT|| too.

Exercise: Prove ||FxK |F-[|[X]| (compatibility) andFZ] < [F]-[Z] (multiplicative dominance) fof...[, though ...

Some matrix norms are not operator norms; the root-sum-squaregoisnan instance.

Here is why: Were there a pair of vector norms for whighis the operator norm, it would satisfy the product
identity [uw'] = [ju]|-|[w'|| for vectors’ norm|...|| in the operators’ target space and functionals’ nornT |||.in

the domain’s dual space. Actual[lyWTH = w/Trace(WJuwT) = ||u||-||\X/|| for Euclidean norms in both spaces, and
their operator norm is the biggest-singular-value, which is less that the root-sum-squares of singular values for alll
but rank-1 operators. In shoit,.| is generally too big to be an operator norm. In general, a matrix norm that is
not an operator norm, but Sompatible (satisfies the multiplicative dominance relation) with the vector norms in
the domain and target space, can be proved always at least as big as the operator norm for those two spaces.

Exercise: Prove that the Sum-of-all-magnitudes norm ||[FH| 5 [fj| cannot be an operator norm for 2-by-2
matrices F = {f}, though it is compatible with the sum-of-magnitudes norm in its target space, and the biggest-

element norm in its domain. Hint; try Iﬁ: j . (The operator norm for those two spaces is tedious to compute.)

Exercise: The Biggest-of-all-elements nori] ::= may; |g;| is an operator norm; for which vector norms and

why? What is the least constamt for which matrix normp-|G| is compatible with the biggest-element norm in
both G’s domain and target spaces? Similarly, what ... the sum-of-magnitudes norm in both ... spaces?

Exercise: Explain why, if B is the matrix of a linear operator from a normed space to itself with a compatible
[IB]| <1, then |I-B is nonsingular. However, if the square matrix B belongs to a linear operator beween two
different normed spaces, then I-B can be singular despite that a compatible ||B|| <1 =||l|| ; give an example.
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Consider now two normed vector spa¢eand W, and two matrix norms, one for matrices F
that mapV toW, and a second norm for matrices G that iégo V ; and suppose both
matrix norms are compatible with the spaces’ vector norms: |flt||[v|| for all v inV,

and ||Gwl[k ||G|||lw]| forall w inW. (Were a matrix norm incompatible, multiplying it by a
scalar constant big enough would make it compatible; do you see how?) For such norms, a
lower bound for all generalized inverses of F comes from Theorem 5. Here is its proof:

Solong as Rank(F) > Rank@®&-) > Rank((F-AF)GF) , the null-space of (BF)GF must be

a subspace of F's domain with greater dimension than the null-space of F. Therefore vectors
X must exist satisfying (BAF)GFx = o# Fx, whence follows & Fx = FGFx =AF-GFx and

then O < ||Fx|| =4F-GFx|k ||AF||-[|GFx|E ||AF|||G]|-]|FX||] because of compatibility. Divide

out ||Fx|| and then minimizZgAF|| subject to Rank(FAF) < Rank(F) to complete the proof

of Theorem 5. It combines with Lemma 4 to yield Corollary 6.

Historically Corollary 6 is several decades older than Theorem 5, which seems three or four
decades old. (See G.W. Stewart “On the Early History of the Singular Value Decomposition”
in SIAM RevievB5 (1993) pp. 551-566, for more chronology.) Both statements generalize
Theorem 7, said to have been known to S. Banach in the 1920s, certainly known to M.G.
Krein in the 1940s, and resurrected by numerical analyst N. Gastinel in the early 1960s.

For Theorem 7's proof we assume that F is a conventionally invertible square matrix, and we
seek the singular matrix BF nearest F in the sense that operator nakfj| ||is minimized.

Theorem 5 says the minimum can’t be smaller than™3j||Fso constructing\F to achieve
equality will prove the desired result.

( Note that the notation used for norms here is still, as usual, “overloaded” bea&lisand ||| can be
gauged by different operator norms when the spaces between which FlangeFate (in opposite directions)
are gauged by different vector norms. None the less, you should be able to see wﬁ)}||w:||||||E 1; tryith)

We will devise a minimizingAF := v’ of rank 1 as follows: Since Tffi = mayy=4llF x|
let x =v be a maximizing vector; then—f\@| = ||FY| and ||v||=1. We also know that
IF V|| = mayy =1y (Fv) , and can now choose a maximizing functional=y' ; then
IIFV|| =Jd(F ) and [|0]| = 1. Finally set W:=u"/||F Y| to get WFv=1. Now

AF :=vw' has BF|| = |IVII-I\W| = 1||FY| and (FAF)F v =v—wwWFv =0, whichimplies
that F-AF is a singular matrix nearest F. Theorem 7’s proof ends.

Alas, my proof of Theorem 8 is much too long to reproduce here.

February 4, 2008 8:40 pm Page 6



Math. H110  Huge Generalized Inverses of Rank-Deficient Matriceserof. w. Kahan

Perturbations

How does its generalized inverse change with F ? Put this way, the question begs a crucial
guestion: Is “its generalized inverse” determined uniquely by F ? Itis in important special

cases. Forinstance, an easily verified identity satisfied by any invertible square matrix F is

(F+F) - Fl= (FoF)LoF-F1 = —FLoF-(F+oF)?
provided (F8F)™1= (I + F13F)1F ! exists too, as it must when 1t&F|| < 1 for a suitable
(see the previous exercise) operator norm, as is surely the case vVHMﬁI—‘HR 1. (Why?)
Then [|(F&F)~L = FY4y|IFY|< Y@/ |F%F|| - 1), with equality for an a@F of rank 1.

Exercise: Confirm the last sentence. Then exhibit dddFfor which [|d(FY/dt|| = ||FYP-||dFdt||# 0 .

Thus F! and its derivative dB/dt become huge together only as an invertible F approaches
some singular matrix. To behave analogously when F is not invertible, its generalized inverse
must be determined uniquely by some conditions besides the one in Lemma 0. Non-metric (no
norms) conditions that sometimes determine a generalized inverse G of F uniquely do exist.

For instance, when F is square the three equations FGF=F, GFG =G and FG = GF always have at most one
solution G, but sometimes none; and when a solution G exists it can vary arbitrarily violently as F changes
even though Rank(F) does not change. | have heard this generalized inverse G called “Drazin’s Semi-Inverse”

when it exists, which it does if and only if Fz =0 whenevér o for any integer k> 0. This means G exists
if and only if F's Jordan Normal Formhas no nonzero Jordan block with diagonal all zero. To see why,

suppose £ = o for some k>0, and that a solution G exists. Then Gz ¥GEE)G*FXz =0, whence

Fz = PGz =0 too. This restricts Jordan’s Normal Form of F to have no eigenvalue 0 with a Jordan block
bigger than 1-by-1. Conversely, suppose the Jordan blocks of F are constrained that way. The characteristic

polynomial of F is then det(Rl — F)Sojem KB with pun =1, po# 0 and some %0, and the Cayley-

Hamilton Theorem ensures that this polynomial vanishes when F is substituted for 3. The constraint implies
Sosjsm MFK = O with K:=min{k, 1}=00r1. Now G :=iqjem P 1o)?F tums out to be the solution of

the three equations in question; can you confirm this? There is no other solution because, if Z also satisfies the
three equations FZF=F, ZFZ=Z and FZ =ZF, then Z 21zFY°F? = 78F'G? = (ZFPFG?=F& =G ; it

is unigue. Note that this solution G (when it exists) is a rational function of F .

Exercise: Given a rank-1 square matrix F ='uwith Euclidean [|u]| =N =1 and Yu =cosf)#0, show
that F = F' but Drazin's semi-inverse G :!d'esz(e) . Evidently it can be enormously bigger thah. F

Among uniquely defined generalized (not ordinary) inverses, the Moore-Penrose Pseudo-
Inverse K is the most commonly used. How does it change when F is perturbed? Because
F' is a rational function of F, formulas generalizing the identity near the top of this page must

exist presenting the change in a way that allows a limit process to express the derivitive dF
(when it exists) in terms of dR/d Here is such a formula (with E in place ofdF9:

Lemma 9: E —F = —-F(E-FE + (I-F'F)E-FEE + FFT(E-F)'(1-EE") .
Proof: The identity’s right-hand side expands into ten terms. Two of them condense, a$rfdoES ® F |
and persist. Four of them condense, as dd&& ET'E" to FETTET, and cancel the remaining four terms,

thus confirming the identity. | presented itin 1971 at an IFIP Congress in Ljubljiana, but it had already been
discovered in Lund by P-A. Wedin for his 1969 thesis, most of which he published in 1BM31ia

February 4, 2008 8:40 pm Page 7



Math. H110  Huge Generalized Inverses of Rank-Deficient Matriceserof. w. Kahan

Lemma 9 leads to the following overestimate of the biggest-singular-value nortBf :E

Theorem 10:; If E#F then
IE - FIVIIE-FIE Y(IEE + IEIRIIFIR + IFIF) < v3max{||E]l, IF])}2.

Proof: Lemma 9's identity exhibits'E FF =R+ L - S wherein S :=TE-F)E, R:=PE-F)EE and
L:= FIFTT(E-F)'W in which the orthogonal projectsp := | - FF =®T =®? satisfies B =0 =®F' and
lP|| = 1 except whend = O ; similarly for ¥ := | — EE' . Now we can estimate [|E F'|| by using the easily
verified formula ||Z|P = ||Z|f = ||Z'Z|| = (the biggest eigenvalue of Z) . Since RS =R'L =0 we find
ET-ATE-F) =RR + (L-SJ(L-S) , whence |E- F|E< IR} + ||L-SH . And since LE=0 we find
(L-S)(L-S) =LLT + S whence ||L-Sik [ILIF + |ISft . Because ||R§|1-[|E-FII-|[&, IILIi< |IF|F-IE-FII-1
and ||Sk IIF|I-[E-FII-|[§ , putting it all together yields T|E FIVIIE-FIk (I[E + IEIP-IFIP + IFIF) as
claimed. P-A. Wedin’s more penetrating proof got a more complicated estimate with)/21in place ofv3.

El:= (F+6F)T can change violently for a very tiF if Rank(F®F) > Rank(F) since then
Corollary 6 implies ||(F8F)T||2 1/IpF|| , rendering Theorem 10’s overestimate gargantuan

and useless. On the other hand, when Ra@&F= Rank(F) and dF|| < 1/||||, so §F|| is
too tiny for any perturbation of its size to drop the rank obH-+ then ...

Lemma 11: If positive, ||F V(1 —|IF|[IBFI)= ||(F+F)"|| provided Rank(F3F)=Rank(F) too.

Proof: Let FAF be the matrix of rank less than RanldF} nearest F8F when gauged by the Biggest-
singular-value norm. Then Corollary 6 implies botbFH\F|| = ||F8F — FHAF|| = 1||(F+6F)T|| and

Y|IF7| < |IAF|| = BF+AF —8F||< |BF+AF| + BF|| = X||(F+3F)T|| + [BF|| , which turns into the lemma'’s inequality.
Inequalities more general than this, because they allewio be somewhat bigger, and sharper than this and
Theorem 10’s inequalities can be found in Wedin (18IB)(Nordisk Tidskrift for Informationsbehandlipg3

pp. 217-232, and in Stewart (19 &AM Reviewl 9 pp. 634-662 which surveys the subject in depth. They go far
deeper than necessary for this course.

Lemma 11 and Theorem 10 imply that |fFY — F'||< v3|I6F||-||EIR/(1 — ||F]|-|BF]|F so
long as Rank(F8F) = Rank(F) and dF|| < ]{||FT|| . Together with Lemma 9, these yield ...

Theorem 12: Provided Rank(F) does not change as F variess & continuously
differentiable rational function of F with

dF'/dt = —F(dF/dn)FT + (I-FTF)(dF/a) TFTTET + FTETT(dF/dr) T —FFT) , and
l|ldF/dt|| < v3-||dF/d]|-||F|P,
and, since ||TFH = 1/(distance from F to the nearest matrix of lower rank) , neitﬁ«ﬂr Nt
||dﬁ/dr||/||dF/d|| can become gargantuan unless F approaches a matrix of lower rank.

This illustrates an important general theme among algebraic problems. Each such problem may be embedded in a
family of more general problems: a linear system of equations, or a system of polynomial equations. If such an
embedding loses sight of a significant combinatorial attribute of the given problem, like the rank of a matrix, or

like the multiplicity of an eigenvalue or a polynomial’s zero, the admission of even infinitesimal perturbations that
upset that combinatorial attribute can turn a tame problem into a knotty (if not naughty) one. The tlf2eshold
Matlab’s pinv  provides a way to restore a matrix’s rank after it was upset by rounding errors; if successful, this
compensation improves the computed result enormously. If compensation fails, serious rethinking is in order.
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