
 

Math. H110          

 

Huge Generalized Inverses of Rank-Deficient Matrices

 

          Prof. W. Kahan

February 4, 2008 8:40 pm                                                                                                                     Page 1

 

Normally we think of the solution  x = F

 

–1

 

y  of a linear system  Fx = y  as a continuous function 

of the given data  F  and  y .  When no  F

 

–1

 

  exists,  any of a host of algebraic methods can be 
used to solve the system for  x ,  at least approximately,  although every solution’s usefulness 
may be undermined by violent variability.  This note assesses that violence quantitatively by  
relating it to the data’s nearness to perturbed data of lower rank.  Real number data is assumed.

Let  F  be a possibly rectangular matrix whose rank may be less than both of its dimensions for 
all we know.  A  

 

Generalized Inverse

 

  G  of  F  can be defined in many ways,  all characterized 
thus:       x := Gy  is a solution of the equation  Fx = y  whenever this equation has a solution,

      even if the solution  x  is not determined uniquely by the equation.  Consequently …

 

Lemma 0:

 

  The generalized inverses  G  of  F  are the solutions  G  of the equation  FGF = F .

 

Proof:

 

   y := Fx  runs through  F’s  range as  x  runs through its domain;  then  x = Gy  must be a 
solution of the equation  Fx = y ,  whence  Fx = FGy = FGFx  follows for all  x ,  so  FGF = F .

 

Lemma 1:

 

  Every matrix  F ,  including  F = 0 ,  has at least one generalized inverse  G .

This will be proved later.  But first let us consider a widely used instance,  the  

 

Moore-Penrose 

Pseudo-Inverse

 

  F

 

†

 

 .  It is the linear operator that solves a  

 

Least

 

2

 

-Squares

 

  problem:

Given  F  and  y  in  F’s  target space  (but perhaps not in  F’s  range),  find the vector  x 
in  F’s  domain that minimizes  || Fx – y ||  and,  if the minimizing  x  is not yet unique,

also minimizes  ||x|| .  Here  ||v|| := 

 

√

 

(v

 

T

 

v)  is the  Euclidean  length of real vector  v .

 

Lemma 2:

 

  The  Least

 

2

 

-Squares  problem’s solution  x = F

 

†

 

y  is obtainable from the  

 

Singular-

Value Decomposition

 

  F = QVP

 

T

 

 ,  in which  Q

 

T

 

Q = I  and  P

 

T

 

P = I  and  V  is a nonnegative 
diagonal matrix  (perhaps rectangular)  exhibiting the singular values of  F ,  by computing  

F

 

†

 

 := PV

 

†

 

Q

 

T

 

  where  V

 

†

 

  is obtained from the diagonal  V  by transposing it and then replacing 

therein every nonzero diagonal element by its reciprocal.  For example,   =  .

Lemma 2  will be proved later.  From its formula for pseudo-inverses will follow …

 

Lemma 3:

 

   FF

 

† 

 

F = F ,   F

 

† 

 

FF

 

†

 

 = F

 

†

 

 ,   (F

 

† 

 

F)

 

T

 

 = F

 

† 

 

F   and   (FF

 

†

 

)

 

T

 

 = FF

 

†

 

 ;  and these four 

equations characterize  F

 

†

 

  because it is the unique matrix satisfying of all of them.

Lemma 3’s  first equation says that  F

 

†

 

  is a generalized inverse of  F ,  and the second says that  

F  is a generalized inverse of  F

 

†

 

 ;  in fact,  (F

 

†

 

)

 

†

 

 = F .  In general,  generalized inverses are not 
reciprocal in this way;  later we shall see how to construct a generalized inverse  G  of  F  that 
violates any chosen subset of the latter three equations of  Lemma 3  unless  F = O  or  F  has 

full rank  (equal to  F’s  least dimension).  Unless  F

 

–1

 

  exists  (in which case  G = F

 

–1

 

 ),  there 
are infinitely many generalized inverses  G  of  F ,  almost all of them with gargantuan elements 
since  G+Z  is also a generalized inverse for every  Z  satisfying  FZ = O  or  ZF = O .
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Now,  a gargantuan generalized inverse  G  is hazardous to approximate because subsequent 
computations of  Gy  may encounter massive cancellation leaving little more than error as a 
residue.  And even when computation is performed exactly,  or without roundoff,  Gy  can be 
changed utterly by tiny perturbations of  y .  Consequently,  ample incentive exists to choose 
generalized inverses of near-minimal magnitudes;  an instance is the  Moore-Penrose Pseudo-

Inverse,  minimal because it solves the  Least

 

2

 

-Squares  problem  (Lemma 2).  In fact, …

 

Lemma 4:

 

  Among generalized inverses  G  of  F  with minimal  ||G|| := max

 

y

 

≠

 

o 

 

||Gy||/||y||  (the 

 

Operator norm

 

  based upon  Euclidean  vector norms  ||Gy||  and  ||y|| ),  one turns out to be  F

 

†

 

 ,  

and only it minimizes the  

 

Root-Sum-Squares

 

  norm  

 

|

 

G

 

|

 

 := 

 

√

 

(

 

Trace(G

 

T

 

G)

 

)

 

 = 

 

√

 

(

 

∑

 

i

 

∑

 

j 

 

G

 

ij
2

 

)

 

 .

The operator norm  ||G||  here turns out to be the biggest singular value of  G ,  and  ||F

 

†

 

||  turns 

out to be the reciprocal of  F’s  smallest nonzero singular value.  

 

|

 

F

 

†

 

|

 

  turns out to be the  Root-
Sum-Squares  of reciprocals of all  F’s  nonzero singular values.  All this will become clear later.

Choosing a generalized inverse of near minimal magnitude cannot always avoid troubles with 
gargantuan magnitudes;  they may be unavoidable if  F  is too near another matrix  F + 

 

∆

 

F  of 
lower rank because then every generalized inverse  G  of  F  must be huge.  A quantitative 
statement of this cause-and-effect relationship involves matrix norms thus:

 

Theorem 5:

 

  Every generalized inverse  G  of  F  has

 

||

 

G

 

||

 

 

 

≥

 

  1

 

/(

 

 min 

 

||

 

∆

 

F

 

||

 

  such that  rank(F–

 

∆

 

F) < rank(F) 

 

)

 

 .

This will be proved later for  

 

any

 

  matrix norms  

 

||

 

…

 

||

 

  satisfying  

 

Multiplicative Dominance

 

  
relations  ||Gy|| 

 

≤

 

 

 

||

 

G

 

||

 

·||y||  and  ||Fx|| 

 

≤

 

 

 

||

 

F

 

||

 

·||x||  required for  

 

Compatibility

 

  with vector norms;  
all plausible matrix norms are compatible that way.  Theorem 5  says that the existence of at 
least one moderately sized generalized inverse of  F  implies that  F  is relatively well separated 
from all matrices  F–

 

∆

 

F  of lower rank when separation is gauged by the chosen matrix norm.

 

Theorem 5  says nothing if the norms have been chosen to make  F  and  G  look good.  For example,  choose new 
coordinate bases in the domain and target spaces of  F  to represent it by a new matrix  

 

F

 

  consisting of an identity 
matrix bordered perhaps by zero matrices;  the dimension of the identity matrix must equal the rank of  F .  Then  

 

G

 

 := 

 

F

 

T

 

  is the representative in the new coordinates of a generalized inverse  G  of  F  in the old coordinates,  and 
choosing  

 

any

 

  of the customary operator norms  ||…|| in the new coordinates will induce corresponding operator 
norms  

 

||

 

…

 

||

 

  in the original coordinates such that  

 

||

 

F

 

||

 

 := ||

 

F

 

|| = 1  and  

 

||

 

G

 

||

 

 := ||G|| = 1 .  This is what is meant by 
norms  "chosen to make  F  and  G  look good."  Such a choice is not always praiseworthy.

Ideally,  the chosen norm should serve the intended application.  For instance, …
Ideally,  all vector perturbations of roughly the same length,

gauged by the chosen norm,
should be roughly equally  (in)consequential  or  (un)likely.

Worthwhile ideals are not easy to achieve;  achieving this one,  when possible,  is a long story 
for another day.  For now let us assume the norm is fixed in advance.  For any given  F  we seek 
as small a generalized inverse  G  as can be computed at a tolerable cost.  When the norm is the 
biggest-singular-value-norm used in  Lemma 4,  then a minimal generalized inverse  G  barely 
big enough to comply with  Theorem 5  can be identified easily:
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Corollary 6:   The  Moore-Penrose Pseudo-Inverse  F†  is a generalized inverse of  F  satisfying

||F†|| =  1/( min ||∆F||  such that  rank(F–∆F) < rank(F) ) ;
here  ||F†||  is the biggest singular value of  F† ,  which is the reciprocal of  F’s  smallest nonzero 
singular value which,  in turn,  is the distance from  F  to the nearest  F–∆F  of lower rank.

Exercise:  Show that  F† = limß→0+ (ßI+FTF)–1FT = limß→0+ F(ßI+FFT)–1 .

For other operator norms  ||…||  derived from  non-Euclidean  vector norms,  a near minimal 

generalized inverse of  F ≠ O  can be difficult to construct unless  F–1  exists,  in which case …

Theorem 7:   ||F–1|| = 1/( min ||∆F||  such that  det(F–∆F) = 0 )  for all operator norms  ||…|| .

Far harder than the proofs of the theorems,  corollary and lemmas above is the proof of … 

Theorem 8:  For every operator norm  ||…|| ,  at least one generalized inverse  G  of  F ,  besides 
satisfying  Lemma 0  and  Theorem 5,  also satisfies 

||G|| ≤  √(rank(F))/( min ||∆F||  such that  rank(F–∆F) < rank(F) ) .

Theorem 8  shows that  Theorem 5  is not excessively optimistic.  I found a proof in  1973,  but 
have not published it yet because I still hope some day to discover a much shorter proof.

• • • • • • • • • • • • • • • •

Here are proofs for the other assertions above.  First is  Lemma 1’s  assertion that every  F  has 
at least one generalized inverse  G .  One proof deduces that the equation  FGF = F  in  Lemma 
0  has a solution  G  by applying one of  Fredholm’s  criteria:  In general,  the linear equation  

Ag = f  must have at least one solution  g  if and only if  cTf = 0  whenever  cTA = oT .  In our 

case,  the linear operator  A  does to  g  what  FGF  does to  G ;  and  cTf  matches  Trace(CTF) .  

In short,  to apply  Fredholm’s  criterion we must decide whether  Trace(CTF) = 0  for every 

matrix  C  satisfying  Trace(CTFZF) = 0  for all  Z .  Since the trace of a product is unchanged 

by cyclic permutation of its factors,  the last equation implies that  Trace(FCTFZ) = 0  for all  

Z ,  whence  FCTF = O ,  whence follows  (CTF)2 = O ,  which implies that  CTF  has no nonzero 

eigenvalue,  whence follows that  Trace(CTF) = 0  as required to establish that a solution  G  of  
FGF = F  exists.

Another proof of  G’s  existence follows changes of coordinate bases in the domain and target 

spaces of  F  to exhibit its linear operator’s canonical form under  Equivalence:   F =   

wherein the dimension of the identity matrix  I  matches  Rank(F)  and the zero matrices  O  fill 
out the rest of the rows and columns;  the rest of the rows or the rest of the columns or both can 
be absent if  F  has full rank equal to one of its dimensions.  For these bases every generalized 

inverse  G =   with arbitrary matrices  R,  S  and  Z  so dimensioned  (if not absent)  that 

matrix products  F G  and  G F  both exist.  Then  F G F = F ,  and this equation persists in the 
form  FGF = F  after restoration of the original coordinate bases.

I O

O O

I R

S Z
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Exercise:  Continuing from the last paragraph,  prove that every generalized inverse  G  of  F  has  
Rank(G) ≥ Rank(F)  with equality if and  only  if  F  is a generalized inverse of  G  too.

To prove  Lemma 2  we use analogous coordinate changes,  but this time to new orthonormal
bases obtained from the orthogonal matrices  P  and  Q  of a singular value decomposition  

F = QFPT  in which diagonal matrix  F =   has the same dimensions as matrix  F  whose

singular values appear on  F’s  diagonal;  the square diagonal matrix  V  exhibits all nonzero 
singular values.  We might as well assume  F = F  at the outset since these coordinate changes 

preserve  Euclidean  length in both domain and target spaces of  F ,  leaving the  Least2-Squares

problem unchanged.  Now,  with  F  diagonal,  the  Least2-Squares  problem’s solution is almost 

obviously  x = F†y  for  F† :=   with  F’s  dimensions transposed so that  F†F =   is

a square diagonal matrix,  as is  FF† .  Also this diagonal  F†  satisfies all four of  Lemma 3’s  
equations,  which persist after restoration of the original coordinate bases.  These equations

determine  F†  uniquely because they do so in the coordinate systems that diagonalize  F ,  as is 

easily verified.  In these coordinate systems,  any  G =   is a generalized inverse because

it satisfies the first equation  FGF = F  for any  R, S  and  Z .  Only  Z = –SV–1R  can satisfy the 

second equation  GFG = G  too.  Only  S = O  can satisfy the first and third,  (GF)T = GF ;  only  

R = O  can satisfy the first and fourth,  (FG)T = FG .  Consequently only  F†  satisfies all four 
equations.  This completes the proof of  Lemma 3  and the second sentence after it.

When any generalized inverse  G  of  F  is represented as above in orthonormal coordinate bases 

that diagonalize  F ,  the  Root-Sum-Squares  norm satisfies  |G|2 = |V–1|2 + |R|2 + |S|2 + |Z|2 ,  

which exceeds  |F†|2 = |V–1|2  unless  G = F† .  This confirms the second assertion in  Lemma 4.  
The first assertion’s proof begins with the observation that clearing  S  and  Z  to zeros cannot 
increase  ||G|| = maxy≠o ||Gy||/||y|| ,  nor can it be increased after that by clearing  R ;  therefore 

every generalized inverse  G  has its  ||G|| ≥ ||V–1|| = ||F†|| = 1/(F’s least nonzero singular value) .  
This completes the proof of  Lemma 4  and the paragraph after it.

Exercise:  Fill in all unobvious details of the proofs above.

Exercise:  Suppose that  F = LCRT  in which  L,  C  and  R  all have the same rank and  C  is square and invertible.  

Show that  L† = (LTL)–1LT,  R† = (RTR)–1RT  and  F† = R†TC–1L†,  so it is computable by rational arithmetic alone.

Current versions of  Matlab  compute an approximation  pinv(F)   to  F†  from a singular value 
decomposition of  F  after all singular values tinier than a roundoff-related threshold have been 
reset  to zeros.  Otherwise reciprocals of these tiny singular values would introduce gargantuan 

numbers that would swamp everything else in  F†  and render it useless numerically.  A  Matlab  
user can substitute his own threshold  Ω  for  Matlab’s  by invoking  pinv(F, Ω)  .  This is 

tantamount to perturbing  F ,  changing it  to  F–∆F  with  ||∆F|| < Ω  to get  ||(F–∆F)†|| ≤ 1/Ω ,  
provided  Ω > 0  of course.  If  F  has no singular values below that threshold,  ∆F = O ;  but 

otherwise  Rank(F–∆F) < Rank(F)  and  ||F†|| > 1/Ω .  How should the threshold  Ω  be chosen?

V O

O O

V
1–

O

O O

I O

O O

V
1–

R

S Z
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If insights into data revealed by computed results are not to be confounded by an accident of the computational 
algorithm,  then these results must be insensitive to ostensibly small changes in the threshold.  This will be the case 
only if  Ω  falls into a relatively wide gap between  F’s  small singular values and much tinier ones tiny enough to 
be discarded.  Otherwise the choice of  Ω  becomes problematical.

Singular value decompositions reveal almost everything knowable about linear operators from 
one  Euclidean  space to another.  What if the spaces are not both  Euclidean?  Vectors’ lengths 
may be gauged by any of various norms  ||…||  each of which satisfies all the familiar laws

||v|| > 0  except  ||o|| = 0 ,    ||µ·v|| = |µ|·||v|| ,   and    ||u+v|| ≤ ||u|| + ||v|| ,
but violates the  Euclidean  norm’s  Parallelogram Law  ||u+v||2 + ||u–v||2 = 2||u||2 + 2||v||2 ;  see 
our class notes on  “How to Recognize a Quadratic Form”.  This violation by  ||…||  deprives the 
vector space of a wealth of  Isometries  (length-preserving linear transformations,  the rotations 
and reflections represented by orthogonal matrices)  possessed by  Euclidean  spaces.  Here are 
two instances:  The only isometries available for the biggest-magnitude norm and for the sum-of-
magnitudes norm are the permutations and the sign reversals of column-vectors’ elements.  This 
is why non-Euclidean  normed spaces  (they are called  “Banach spaces”)  have turned out much 
more difficult to analyse in the course of about a century of study.

The singular value decomposition has no useful counterpart for linear operators between spaces 
that are not both  Euclidean,  though the spaces’  Operator norm  ||F|| := maxv≠o ||Fv||/||v||  does 
resemble the biggest singular value in some respects,  and is easier to compute for the biggest-
magnitude and sum-of-magnitudes vector norms provided both spaces use the same norm.  All 

operator norms satisfy the product identity  ||uwT|| = ||u||·||wT||  for rank-1 operators,  as well as a 
multiplicative dominance relation  ||L·F|| ≤ ||L||·||F||  satisfied by all well-founded matrix norms.

Exercise:  Prove these,  recalling that the dual space’s vector norm is an operator norm  ||wT|| := maxv≠o |w
Tv|/||v|| .

Symmetrically  ||v|| = maxwΤ≠oΤ |wTv|/||wT|| ;  use this to prove all operator norms  ||F|| = maxwΤ≠oΤ ||wTF||/||wT||  too.

Exercise:  Prove  ||Fx|| ≤ |F|·||x|| (compatibility)  and  |FZ| ≤ |F|·|Z| (multiplicative dominance)  for  |…| ,  though …

Some matrix norms are not operator norms;  the root-sum-squares norm  |F|  is an instance.
Here is why:  Were there a pair of vector norms for which  |F|  is the operator norm,  it would satisfy the product 

identity  |uwT| = ||u||·||wT||  for vectors’ norm  ||…||  in the operators’ target space and functionals’ norm  ||…T||  in 

the domain’s dual space.  Actually  |uwT| = √Trace(wuTuwT) = ||u||·||wT||  for  Euclidean  norms in both spaces,  and 
their operator norm is the biggest-singular-value,  which is less that the root-sum-squares of singular values for all 
but rank-1 operators.  In short,  |…|  is generally too big to be an operator norm.  In general,  a matrix norm that is 
not an operator norm,  but is  Compatible  (satisfies the multiplicative dominance relation)  with the vector norms in 
the domain and target space,  can be proved always at least as big as the operator norm for those two spaces.

Exercise:  Prove that the  Sum-of-all-magnitudes  norm  |||F||| := ∑i ∑j |fij |  cannot be an operator norm for  2-by-2
matrices  F = {fij } ,  though it is compatible with the sum-of-magnitudes norm in its target space,  and the biggest-

element norm in its domain.  Hint:  try  F =  .  (The operator norm for those two spaces is tedious to compute.)

Exercise:  The  Biggest-of-all-elements norm  |G| ::= maxij |gij |  is an operator norm;  for which vector norms and 
why?  What is the least constant  µ  for which matrix norm  µ·|G|  is compatible with the biggest-element norm in 
both  G’s  domain and target spaces?  Similarly,  what … the sum-of-magnitudes norm in both … spaces?

Exercise:  Explain why,  if  B  is the matrix of a linear operator from a normed space to itself with a compatible  
||B|| < 1 ,  then  I–B  is nonsingular.  However,  if the square matrix  B  belongs to a linear operator beween two 
different normed spaces,  then  I–B  can be singular despite that a compatible  ||B|| < 1 = ||I|| ;  give an example.

1 1

1 1–
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Consider now two normed vector space  V  and  W ,  and two matrix norms,  one for matrices  F  
that map  V  to W ,  and a second norm for matrices  G  that map  W  to  V ;  and suppose both 
matrix norms are compatible with the spaces’ vector norms:   ||Fv|| ≤ ||F||·||v||  for all  v  in  V ,  
and  ||Gw|| ≤ ||G||·||w||  for all  w  in  W .  (Were a matrix norm incompatible,  multiplying it by a  
scalar constant big enough would make it compatible;  do you see how?)  For such norms,  a 
lower bound for all generalized inverses of  F  comes from  Theorem 5.  Here is its proof:

So long as   Rank(F) > Rank(F–∆F) ≥ Rank((F–∆F)GF) ,  the null-space of  (F–∆F)GF  must be 
a subspace of  F’s  domain with greater dimension than the null-space of  F .  Therefore vectors  
x  must exist satisfying   (F–∆F)GFx = o ≠ Fx ,  whence follows  o ≠ Fx = FGFx = ∆F·GFx  and 
then  0 < ||Fx|| = ||∆F·GFx|| ≤ ||∆F||·||GFx|| ≤ ||∆F||·||G||·||Fx||  because of compatibility.  Divide 
out  ||Fx||  and then minimize  ||∆F||  subject to  Rank(F+∆F) < Rank(F)  to complete the proof 
of  Theorem 5.  It combines with  Lemma 4  to yield  Corollary 6.

Historically  Corollary 6  is several decades older than  Theorem 5,  which seems three or four 
decades old.  (See  G.W. Stewart  “On the Early History of the Singular Value Decomposition”
in  SIAM Review 35 (1993) pp. 551-566,  for more chronology.)   Both statements  generalize  
Theorem 7,  said to have been known to  S. Banach  in the  1920s,  certainly known to  M.G. 
Krein  in the  1940s,  and resurrected by numerical analyst  N. Gastinel  in the early  1960s.

For  Theorem 7’s  proof we assume that  F  is a conventionally invertible square matrix,  and we 
seek the singular matrix  F–∆F  nearest  F  in the sense that operator norm  ||∆F||   is minimized.   

Theorem 5  says the minimum can’t be smaller than  1/||F–1|| ,  so constructing  ∆F  to achieve 
equality will prove the desired result.

( Note that the notation used for norms here is still,  as usual,  “overloaded”  because  ||∆F||  and  ||F–1||  can be 

gauged by different operator norms when the spaces between which  F  and  F–1  operate  (in opposite directions)  

are gauged by different vector norms.  None the less,  you should be able to see why  ||F||·||F–1|| ≥ ||I|| = 1 ;  try it!.)

We will devise a minimizing  ∆F := vwT  of rank  1  as follows:  Since  ||F–1|| = max||x||=1 ||F
–1x||  

let  x = v  be a maximizing vector;  then  ||F–1v|| = ||F–1||  and  ||v|| = 1 .  We also know that  

||F–1v|| = max||yΤ||=1 y
T(F–1v) ,  and can now choose a maximizing functional  yT = uT ;  then  

||F–1v|| = uT(F–1v)  and  ||uT|| = 1 .  Finally set  wT := uT/||F–1||  to get  wTF–1v = 1 .  Now  

∆F := vwT  has  ||∆F|| = ||v||·||wT|| = 1/||F–1||  and  (F–∆F)F–1v = v – vwTF–1v = o ,  which implies 
that  F–∆F  is a singular matrix nearest  F .  Theorem 7’s  proof ends.

Alas,  my proof of  Theorem 8  is much too long to reproduce here.
• • • • • • • • • • • • • • • •
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Perturbations
How does its generalized inverse change with  F ?   Put this way,  the question begs a crucial 
question:  Is  “its generalized inverse”  determined uniquely by  F ?   It is in important special 
cases.  For instance,  an easily verified identity satisfied by any invertible square matrix  F  is 

 (F+δF)–1 – F–1 =  –(F+δF)–1·δF·F–1  =  –F–1·δF·(F+δF)–1 

provided  (F+δF)–1 = (I + F–1·δF)–1F–1  exists too,  as it must when  ||F–1·δF|| < 1  for a suitable  

(see the previous exercise)  operator norm,  as is surely the case when  ||F–1||·||δF|| < 1 .  (Why?)  

Then  ||(F+δF)–1 – F–1||/||F–1|| ≤ 1/(1/||F–1δF|| – 1) ,  with equality for an apt  δF  of rank  1 .

Exercise:  Confirm the last sentence.  Then exhibit a  dF/dτ  for which  ||d(F–1)/dτ|| = ||F–1||2·||dF/dτ|| ≠ 0 .

Thus  F–1  and its derivative  dF–1/dτ  become huge together only as an invertible  F  approaches 
some singular matrix.  To behave analogously when  F  is not invertible,  its generalized inverse 
must be determined uniquely by some conditions besides the one in  Lemma 0.  Non-metric  (no 
norms)  conditions that sometimes determine a generalized inverse  G  of  F  uniquely do exist.

For instance,  when  F  is square the three equations   FGF = F ,  GFG = G   and  FG = GF  always have at most one 
solution  G ,  but sometimes none;  and when a solution  G  exists it can vary arbitrarily violently as  F  changes 
even though  Rank(F)  does not change.  I have heard this generalized inverse  G  called  “Drazin’s Semi-Inverse”  

when it exists,  which it does if and only if  Fz = o  whenever  Fkz = o  for any integer  k > 0 .  This means  G  exists 
if and only if  F’s  Jordan Normal Form  has no nonzero  Jordan  block with diagonal all zero.  To see why,  

suppose  Fkz = o  for some  k > 0 ,  and that a solution  G  exists.  Then  Gz = (GF)kGz = Gk+1Fkz = o ,  whence  

Fz = F2Gz = o  too.  This restricts  Jordan’s Normal Form  of  F  to have no eigenvalue  0  with a  Jordan  block 
bigger than  1-by-1 .  Conversely,  suppose the  Jordan  blocks of  F  are constrained that way.  The characteristic 

polynomial of  F  is then  det(ßI – F) = ∑0≤j≤m µjß
j+k  with  µm = 1 ,  µ0 ≠ 0  and some  k ≥ 0 ,  and the Cayley-

Hamilton Theorem  ensures that this polynomial vanishes when  F  is substituted for  ß .  The constraint implies  

∑0≤j≤m µjF
j+K = O  with  K := min{k, 1} = 0 or 1 .  Now  G := (∑1≤j≤m µjF

j–1/µ0)
2F  turns out to be the solution of 

the three equations in question;  can you confirm this?  There is no other solution because,  if  Z  also satisfies the 

three equations  FZF = F ,  ZFZ = Z   and  FZ = ZF ,  then  Z = (ZF)2Z = Z3F2 = Z3F4G2 = (ZF)3FG2 = FG2 = G ;  it 
is unique.  Note that this solution  G  (when it exists)  is a rational function of  F .

Exercise:  Given a rank-1 square matrix  F = uvT  with  Euclidean  ||u|| = ||vT|| = 1  and  vTu = cos(θ) ≠ 0 ,  show 

that  F† = FT  but  Drazin’s  semi-inverse  G = F/cos2(θ) .  Evidently it can be enormously bigger than  F† .

Among uniquely defined generalized  (not ordinary)  inverses,  the  Moore-Penrose Pseudo-

Inverse  F†  is the most commonly used.  How does it change when  F  is perturbed?  Because  

F†  is a rational function of  F ,  formulas generalizing the identity near the top of this page must 

exist presenting the change in a way that allows a limit process to express the derivative  dF†/dτ  
(when it exists)  in terms of  dF/dτ .  Here is such a formula  (with  E  in place of  F+δF ):

Lemma 9:   E† – F† =  –F†(E–F)E† + (I – F†F)(E–F)TE†TE† + F†F†T(E–F)T(I – EE†) .

Proof:  The identity’s right-hand side expands into ten terms.  Two of them condense,  as does  F†F†TFT  to  F† ,  

and persist.  Four of them condense,  as does  F†FFTE†TE†  to  FTE†TE† ,  and cancel the remaining four terms,  
thus confirming the identity.  I presented it in  1971  at an  IFIP Congress  in  Ljubljiana,  but it had already been 
discovered in  Lund  by  P-Å. Wedin  for his  1969  thesis,  most of which he published in  1973 in  BIT 13.



Math. H110          Huge Generalized Inverses of Rank-Deficient Matrices          Prof. W. Kahan

February 4, 2008 8:40 pm                                                                                                                     Page 8

Lemma 9  leads to the following overestimate of the biggest-singular-value norm of  E†–F† :

Theorem 10:  If  E ≠ F  then

 ||E† – F†||/||E–F|| ≤  √( ||E†||4 + ||E†||2·||F†||2 + ||F†||4 )  ≤  √3·max{||E†||, ||F†||}2 .

Proof:  Lemma 9’s  identity exhibits  E† – F† = R + L – S  wherein   S :=  F†(E–F)E† ,   R :=  Φ(E–F)TE†TE†  and   

L :=  F†F†T(E–F)TΨ   in which the orthogonal projector  Φ := I – F†F = ΦT = Φ2   satisfies  FΦ = O = ΦF†  and  

||Φ|| = 1  except when   Φ = O ;  similarly for  Ψ := I – EE† .  Now we can estimate  ||E† – F†||  by using the easily 

verified formula   ||ZT||2 = ||Z||2 = ||ZTZ|| = (the biggest eigenvalue of  ZTZ ) .  Since  RTS = RTL = O  we find  

(E† – F†)T(E† – F†) = RTR + (L–S)T(L–S) ,  whence  ||E† – F†||2 ≤ ||R||2 + ||L–S||2 .  And since  LST = O  we find  

(L–S)(L–S)T = LLT + SST  whence  ||L–S||2 ≤ ||L||2 + ||S||2 .  Because  ||R|| ≤ 1·||E–F||·||E†||2 ,  ||L|| ≤ ||F†||2·||E–F||·1  

and  ||S|| ≤ ||F†||·||E–F||·||E†|| ,  putting it all together yields   ||E† – F†||/||E–F|| ≤  √( ||E†||4 + ||E†||2·||F†||2 + ||F†||4 )  as 
claimed.  P-Å. Wedin’s  more penetrating proof got a more complicated estimate with  (1+√5)/2  in place of  √3 .

E† := (F+δF)†  can change violently for a very tiny  δF  if  Rank(F+δF) > Rank(F)  since then  

Corollary 6  implies  ||(F+δF)†|| ≥ 1/||δF|| ,  rendering  Theorem 10’s  overestimate gargantuan 

and useless.  On the other hand,  when  Rank(F+δF) = Rank(F)  and  ||δF|| < 1/||F†|| ,  so  ||δF||  is 
too tiny for any perturbation of its size to drop the rank of  F+δF ,  then …

Lemma 11:  If positive,  ||F†||/(1 – ||F†||·||δF||) ≥ ||(F+δF)†||  provided  Rank(F+δF) = Rank(F)  too.

Proof:  Let  F–∆F  be the matrix of rank less than  Rank(F+δF)  nearest  F+δF  when gauged by the  Biggest-

singular-value  norm.  Then  Corollary 6  implies both   ||δF+∆F|| = ||F+δF – F+∆F|| = 1/||(F+δF)†||   and  

1/||F†|| ≤ ||∆F|| = ||δF+∆F – δF|| ≤ ||δF+∆F|| + ||δF|| = 1/||(F+δF)†|| + ||δF|| ,  which turns into the lemma’s inequality.  
Inequalities more general than this,  because they allow  δF  to be somewhat bigger,  and sharper than this and  
Theorem 10’s  inequalities can be found in  Wedin (1973) BIT (Nordisk Tidskrift for Informationsbehandling) 13 
pp. 217-232,  and in  Stewart (1977) SIAM Review 19 pp. 634-662  which surveys the subject in depth.  They go far 
deeper than necessary for this course.

Lemma 11  and  Theorem 10  imply that  ||(F+δF)† – F†|| ≤ √3||δF||·||F†||2/(1 – ||F†||·||δF||)2  so 

long as  Rank(F+δF) = Rank(F)  and  ||δF|| < 1/||F†|| .  Together with  Lemma 9,  these yield … 

Theorem 12:  Provided  Rank(F)  does not change as  F  varies,  F†  is a continuously 
differentiable rational function of  F  with

dF†/dτ = –F†(dF/dτ)F† +  (I – F†F)(dF/dτ)TF†TF† + F†F†T(dF/dτ)T(I – FF†) ,   and

||dF†/dτ|| ≤  √3·||dF/dτ||·||F†||2 ,

and,  since  ||F†|| = 1/(distance from  F  to the nearest matrix of lower rank) ,  neither  ||F†||  nor  

||dF†/dτ||/||dF/dτ||  can become gargantuan unless  F  approaches a matrix of lower rank.

This illustrates an important general theme among algebraic problems.  Each such problem may be embedded in a 
family of more general problems:  a linear system of equations,  or a system of polynomial equations.  If such an 
embedding loses sight of a significant combinatorial attribute of the given problem,  like the rank of a matrix,  or 
like the multiplicity of an eigenvalue or a polynomial’s zero,  the admission of even infinitesimal perturbations that 
upset that combinatorial attribute can turn a tame problem into a knotty  (if not naughty)  one.  The threshold  Ω  in  
Matlab’s  pinv   provides a way to restore a matrix’s rank after it was upset by rounding errors;  if successful,  this 
compensation improves the computed result enormously.  If compensation fails,  serious rethinking is in order.


