File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Contents
Abstract Page 1
Euclid's GCD Algorithm 2
Theorem 1 2
Exercise: Solve ax° ¢ mod b 3
Continued Fractions 3
Lamé s Theorem 3
Seven More Exercises: 4
Determinants of Integer Matrices 5
LCM, the Least Common Multiple 6
Computer Programs for GCD and LCM 7
MATLAB Programs for GCD and LCM 8
function [g,c,d] = gcd(a,b) 9
function L = Icm(a,b,x) 11
function y = rOund(x) 12
function m = precn(n) 13
CTRL87.EXE 14
gcdtest.m isa MATLAB script to test versions of gcd.m 16
GCDtest Results 17
Icmtest.m isa MATLAB script totest W.K.'s version of Icm.m 19
LCMtest Results 20

Abstract

The behavior of Euclid’s algorithm to compute Greatest Common Divisors and its connection
with continued fractions are explained advantageously in terms of products of 2-by-2 matrices.
One byproduct isaquick proof of Lamé's theorem, which bounds the number of divisions the
algorithm must perform, thus explaining its speed. Among other applications of the algorithm
are the solution of linear congruences a-x ° ¢ mod b and the quick computation of determinants
of integer matrices. A GCD is needed also to compute a L east Common Multiple. Actual
computer programsto compute GCDs and LCMs malfunction when their inputs or outputs are
integers so big that the programs encounter overflow or roundoff. Becauseit is overlooked so
often, roundoff incurred by floating-point arithmetic can have noxious consequences unless the
programs incorporate complicated precautions exemplified by MATLAB programs supplied here.
When allowed to do so, they take advantage of alittle extra-precise arithmetic without which no
practicable defense exists against plausible but utterly wrongly computed GCDs and LCMs.

MATLAB programs gcd and | cm supplied here are needed in Hilbert matrix computationsin
<www. cs. ber kel ey. edu/ ~wkahan/ Mat hH110/ Hi | bMat s. pdf >

Prof. W. Kahan Notesfor Math. H110 & 128B Page 1/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Given two positiveintegers a3 b >0 we seek their Greatest Common Divisor (GCD), which
isthe biggest integer d that dividesboth a and b leaving no remainder. Ordinary long division
computes a positive integer quotient q:= é/bl and leavesaremainder r := a—q-b that satisfies
O£r<b. Clearly every divisor of both a and b divides r too, and conversely every divisor of
both b and r divides a=q-b+r too; therefore GCD(a, b) = GCD(b, r) . But thepair (b, r) is
smaller thanthe pair (a b) inthesensethat b£ a and r<b. Thisleadsto an algorithm ...

Euclid’'s GCD Algorithm
Givenintegers a® b>0, set ry:=a and ry := b and perform successive long divisions getting,
for j=1,2,3,...,n inturnuntil r,,; =0, quotients g; and remainders r; that satisfy
Mg =0T + j+1 With O0£1j,1 <rj.

(Hereat step | wedivide r_y by r; toget quotient g; and remainder rj,q, stoppingwhena
remainder r,,; =0. Atthat point g,>1; canyouseewhy?) The algorithm stops because this
decreasing sequence of n+1 positiveintegers, rp=as ri=b>r,>...>r, 1>r,>r,41 =0,
cannot have n>b. Then GCD(a, b) =r,, because, asexplained in thefirst paragraph,

GCD(a, b) =: GCD(rg, r1) = GCD(ry, ry) = ... = GCD(rh—1,) = GCD(rp, Mp+1) =y -

The quotients g; appear to play no important role in the foregoing algorithm, but appearances
can mislead. By translating the algorithm'’s recurrence into matrix language we find uses for g :

Set M ::H first; thenfor j =1, 2,3, ..., n inturn confirm that PJ} = {0 1 Ei-l} , with
r b Mo 1| 1

Ero.<r _ M —|0 1| 0o 1 0 1] |0 10 1]
O£rj41<ry and ryq O,sou L‘anl I P e

Now set row = 0 1 0 1 0 L]9 1110 10 4o obtaintwo
4= [1d {1 —QJ { 1 94| 1 O 1 -0 |1 -9

j+

integers A and B (not both positive) satisfying GCD(a, b) =1 =[1 | H =B A @ =B-a+AD.
0

We havejust found that GCD(a, b) isalinear combination of a and b with integer coefficients,
thus proving (regardless of whether a2 b>0 or b3 a>0) thefollowing ...

Theorem 1: As A and B runindependently through all integers the expression B-a+ A-b runs
through a set of integers among which the smallest positive integer is GCD(a, b) =B-a+ Ab.

Hard Exercise: Running A and B through all integersisunnecessary: Theorem 1 remainstrue after restrictions
[A]<a and |B|£b£ a areimposed; why? Canyou prove |A|<a/GCD(a, b) and |B|£ b/GCD(a, b) ? See below.

There aretwo waysto compute A and B . Theeasiest isto evaluate from-left-to-right the matrix
product defining [a] after al the g’s have been computed; this gives rise to arecurrence:

S$H =15 S = O forj=n2,n3,...,2, 1 intun §:=5:-0pS+1-
Finally A:=s; and B :=s,. Another way to compute them isto evaluate from-right-to-left the

matrix product defining row [g o] simultaneously with the computation of the ¢;’s:

Prof. W. Kahan Notesfor Math. H110 & 128B Page 2/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Bj_2 A]-_2

BoAg=l01 5 [ByA/=[1 g ; for j=2,3,.,nlintun [B A|:=[1] N

Finaly [g Al ::[Bn_lAn_J . Notethat g, never figuresin the computationof A and B .

Whichever way be chosen to compute A, B and GCD(a, b) =B-a+ A-b, thealgorithmiscalled
“the Extended Euclidean Algorithm” and has important applications. Hereisone of them:

Exercise: Givenintegers a, ¢ and b>0, whendoes “ ax® ¢ mod b” haveinteger solutions x ? Herewe
pronounce “p° g modb” as “ p iscongruentto g mod b” and meanthat p—q isdivisibleby b. Let
d:=GCD(a,b). If c° 0 modd exhibitall d noncongruent solutions x ; otherwise prove no solution x exists.

Continued Fractions
If d=GCD(a, b) then (a/d)/(b/d) exhibits a/b “inlowest terms’ but it is not the only unique
encoding of positive rational numbers. By substituting ri_4/r; = g; + 1/(r;/rj+1) repeatedly for
j=1,2,...,n inturn we obtain a Terminating Continued Fraction
§ = q + 1
b ™ 1
gz +

Vo + 1 1

+ —
On-1 o

Thisis the continued fraction for the rational number a/b. Here g, 2 1 because a2 b>0; in
factevery g3 1 andthelast g,3 2 to ensurethat the encoding of each rational ab>1 by a
finite sequence (qy, Oy, 03, ---» On-1, Or—1) Of positiveintegers be unique. Euclid's algorithm

converts arational number given as aratio of integersinto its continued fraction; how do we get
back? The obviousway evaluatesthe continued fraction “bottom-up” : R+1:=0; R,:=1; for

j=nn1,n2 ...,2,1 inturn Rj_l = qj-Rj + Rj+1; finally a/b=RyR; inlowest terms.
Exerciser Confirm that every integer R; =r;/GCD(a, b) .

Trand ating the bottom-up evaluation of the continued fraction into matrix terms yields first

Ri-1 {qi 1} Ril | then |Fo=|% 1 {‘h 1 ..{qn—l 1 } Fn 1} H . Thislast expression offers
L R]‘ 10 Rj+l R, 10/|10 1 0 100

two interesting opportunities. Oneisaway to evaluate the continued fraction “top-down” :

hﬂ ::H : H ::H ;. for j=2,3,...,n inturn {hi ::{hi—lhi—ﬂ H : finally rﬂ ::H .
1% 0 *]] 1 g; 9j-19j-2 (1 R, On

This top-down evaluation turns out to be a good way to evaluate endless continued fractions that
encode non-rational numbers; successiveratios h/g; can be shown to converge aternatingly.
Exerciser The endless continued fraction in which every ¢ =1 represents m:= (1 + CB)/2 ; can you see why?

Another opportunity offered by that long matrix product isaclear proof of Lamé sTheorem: To
compute d:=GCD(a, b) for a3 b>0, Euclid's algorithm needs n £ 1+ In(b/d)/In(m) divisions.
Exercise: Proveit by showingevery R isatleastashigasif every g =1 except g,=2, s0 Ry 3 fre1, @

Fibonacci number, and fpq = (M — (—U/M™H/(m+ /m) 3 nfL.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 3/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Seven Mor e Exercises:

Supposegivenintegers M >1 and N >1 have GCD(M, N) =1=n-M —m:N for some integers
m and n whose signs are not yet determined. Whether M 3 N or not won't matter anymore.

1) Show why m and n must have the same nonzero sign.
Henceforth we can assumethat n>0 and m>0; otherwiseswap M and N, etc.
2) Whatis GCD(m, n) ?

3) Show how toreplace m and n respectively by m and n satisfying
0<m<M, 0<n<N and 1=nM-mN =nM-mN .

Henceforth we can assumethat O<m<M and O<n<N and nM-mN=1. ()

4) Exhibit instances of pairs (M, N) and (m, n) which satisfy these assumptions (), but for
which M >N inoneinstance, and M <N in another.

5) Given that the pairs (M, N) and (m, n) satisfy (1), show how to obtain apair (m, n) that
satisfies 0<m<M and 0<n<N and mN-nM =1, asif M and N had been swapped.

6) Show why (1) impliesthat M—N and m—n have the same nonzero signsunless m=1=n.
(Hint: (m+n):M-N)-1 = (m-n)-(M+N)+1))

7) Any two nonzero integers x and y determineafamily of sets { i, j, k, m,n} of fiveintegers

satisfying n>0, {i J} xﬂ = H and det({i l})=1. However {i,j,k,m,n} may befound,
km| |y 0 k m

which of the five integers are determined uniquely by x and y ?

Solution 7): Integers k, m and n are determined uniquely but i and j arenot. To seewhy,
observe first from the determinant that k and m can have no nontrivial (other than +£1)
common divisor since it hasto divide the determinant 1. Next compute the inverse of the 2-by-

2 matrix to obtain {m ‘_J} and infer ﬂ = ﬁl n. Thismeansthat m/k =—x/y inlowest terms,
y p—

andthat n isthe Greatest Common Divisor of x and y. Thusare k, m and n fixed uniquely
by x and y. However, i and j canbereplaced respectively by i+L-k and j+L-m respectively
for any integer L with no alteration to the given constraints; this amounts merely to replacing

i 1L i]
o
The foregoing solution explains all that the problem requested, namely the uniqueness of the last

threeintegersintheset {i,j,k,m,n} . Toexplainwhy integers i and | must exist iseasier
than explaining the Extended Euclidean Greatest-Common-Divisor agorithm that finds them.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 4/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Determinants of I nteger Matrices

What use are Exercise7’'s integers i, j, k, m,n? Oneuseisin alittle-known but fairly efficient
algorithm to compute the determinant or inverse of amatrix of modest dimensions whose entries
are all integers. Consider the determinant of a given integer matrix E:

We can reduce E to an upper-triangular U whose determinant, the product of its diagonal
elements, isthesameas det(E) . To thisend we premultiply E by a sequence of matrices each
with determinant 1 and different from the identity matrix only in a 2-by-2 submatrix on the
diagonal. First premultiply to annihilate the lower left corner element of E; next annihilate the
element aboveit, and so on up thefirst column until only itsfirst element isnonzero. Then do the
same to the second column’ s subdiagonal elements, and so on until al subdiagonal elements
become zeros. Before each premultiplication construct a 2-by-2 matrix like the onein problem
7, usingfor x and y theleading (presumably nonzero) elements of adjacent rows, then the
premultiplication will replace x by n>0 and y by 0. This n takesthe place of the y inthe
next annihilation.

Relatively few divisions occur in thisalgorithm, all concerned with finding the 2-by-2 matrices,
and most of these divisions have either short divisors or short quotients. Moreover annihilations
starting at the bottom of each column produce avalue of n, which becomes y at the next
annihilation, that usually turnsout to be 1 (or the column’s greatest common divisor). Thus, in
most of the 2-by-2 matrices three of the four elementsare +1 or 0; thisiswhy the method is
efficient despite that the integersin triangular factor U can grow very hig.

Hard Exercise: Compare the computational costs of the foregoing algorithm and Chio’s Trick,
g.v., posted for thiscourseat <www. cs. ber kl el ey. edu/ ~wkahan/ Mat hH110/ Chi o. pdf >.

The foregoing algorithm is part of the reduction of E to an upper-triangular Hermite Normal Form, whichisonthe
path towards the Smith Normal Form, but these are storiesfor adifferent course on Abstract Algebra involving not
just integers but also matrices whose entries are polynomials with rational coefficients. These normal forms can
entail gargantuan integers, so their efficient computation requires algorithms much more subtle than the foregoing.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 5/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

LCM, the Least Common Multiple
LCM(j, k) = LCM(Jj|, |k|) istheleast positive integer that both nonzero integers j and k divide
leaving no remainder; consequently LCM(j, k) = |j|-|k/GCD(j, k) .

Exercise: Confirm the last equation and then LCM(k, j) =LCM(j, k) & GCD(k,j) = GCD(j, k) .

Both functions GCD and LCM can be extended to sets {kq, ko, k3, ..., Ky} of m>2 nonzero
integers by defining first GCD(Kky, Ko, K3, ..., k) := GCD(GCD(K4, ks, ..., kh1), ki) and then
LCM(Kq, ko, K, ..., Kp) :=LCM(LCM(Kq, Ky, ..., K1), Kp) for n=3,4,5,...,m inturn.

Exercise: Confirm that the order of the integersin the set {kq, ko, k3, ..., Ky} does not matter.

Thefunctions GCD and LCM haveinteresting interlocking properties whose description will be
eased first by temporary abbreviations (...) := GCD(...) and I (...) :=LCM(...), and second
by the temporary assumption that all threeintegers i, j and k arepositive. For amore extensive
discussion of these properties see ch. 2 of K.H. Rosen’s book Elementary Number Theory and
its Applications, 4th ed. (2000), Addison-Wesley, Mass.

Exercise: Confirm the following identities:
i, i-k) = igj, k) and 1(j,i-k) =il(,k).
o (1), K) = 1o, 1), o, k) and 1(a,]), k) = ol (i,)),1 G, k).
o (i9),1GK), T (ki)) = 1(di), Ai-k), gk-)) .
o, j, K (i, jk ki) = 1@, K-oij,)k ki) = ijk.
kel), K) = 13§, K)o, 1)-o6-k)ok) .
They are not all easy to prove.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 6/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

Computer Programs for GCD and LCM

Every computer has limited extent in space and time. Preoccupation with the limits distinguishes
computer scientists from mathematicians. When we write a program to compute a mathematical
function, we choose, perhaps unwittingly, to reconcile our expectations with those limits. A
conscientious choice poses mathematical challenges some of which are sampled in what follows.

First we must decide how the programs shall handle boundary integers, namely 0 and ¥ . If you
prefer to exclude ¥ from the set of integers, you arein good company. Computer programs
cannot be so picky; they must handle in areasonable manner whatever input comes their way.
The only alternative isto stop the computer when a program refuses to accept some input deemed
invalid; but the consequences of stopping a computer are difficult to predict, always annoying,
and sometimes dangerous. A program should refuse to accept dataonly if refusal isthe least
unreasonable option after all others have been considered and found to cause worse confusion.

Therefore convention assigns GCD(k, 0) := GCD(k, ¥) := k except GCD(0, ¥) :=0, andthen
LCM(k,0):=0 and LCM(k, ¥) :=¥ except LCM(O, ¥) :=NaN, which standsfor “Not a
Number”. It isan unacceptable input whose creation from non-NaN inputsraisesan Invalid
Operation flag that the program’ s user can detect subsequently at his/her/its convenience. This
flag exists in hardware conforming to |EEE Standard 754 for Floating-Point Arithmetic but,
alas, isinaccessible through most programming languages like MATLAB and Java.

Computers cope with at most finitely many distinct integers; therest aretoo big. Thislimitation
afflicts LCM(...) becauseitsoutput isusually bigger than itsinputs. If too big, the output must
either Overflow or get Rounded Off to something else. Many programming languages cannot
detect the altered result of Integer Overflow; and it stops the computer with an error message for
many of the others, like MAPLE and Prof. Yuji Kida's UBASIC. Some languages, MATLAB
and early versionsof BASIC among them, represent all but their smallest integers as floating-
point variables with some preassigned number of so-called Sgnificant Digits. Any integer wider
than that gets rounded off to arepresenatable value or else, if extremely big, overflowsto ¥ .
Either Procrustean action raisesan Inexact Operation flag in standard-conforming hardware
but, alas, thisflagtoo isinaccessiblefrom MATLAB and most other programming languages.

In short, integer inputs and outputs bigger than some obscure threshol ds can invalidate computed
GCDs and LCMs. Infloating-point arithmetic GCDs are threatened, despite that no integersin
the Euclidean agorithm need be bigger than itsinputs, because some of those integers, though
smaller in magnitude, may require an extrasignificant digit beyond the inputs. LCMs may need
more significant digits than the arithmetic affords. Extra-precise intermediate arithmetic, when
available, produces correct GCDs and helpswarn of LCMs too big. Even so, the following
MATLAB programs are complicated almost grotesquely by their attempts to cope with all threats.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 7/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

MATLAB Programs for GCD and LCM

MATLAB’s own programs for these functions can be exhibited by the commands t ype gcd and
type | cm. Partly because MATLAB’S own gcd and | cm programs do not make fuller use of
the floating-point hardware they run on, they malfunction for someinputs. For instance, they
compute gcd(3, 2780) =31 1 and gcd(28059810762433, 2753) =280598107624331* 1.
They abort if ¥ isaninput. They cannot handle more than pairsof inputs, so LCM(i, j, k) must
be obtained from the expression | cn(lcn(i, j), k) . Itsvaue should not depend upon the
order of {1i,], k} butdoesfor {12647423, 712176643, 12658905} , giving | cn(lcn(.).)
two values 1.14021279681837e23 and 1.98608743567039e19 of which oneisthetrue LCM
19860874356703880745 rounded correctly to 53 sig. bits.

MATLAB's roundoff threshold for its 53-sig.-bit floating-point variablesis eps = 27°2. They

can hold the consecutive integers 0, 1,2, 3, ..., 2°3 = 9007199254740992 . Numbers bigger
than this 16-digit integer get rounded off to 53-sig.-bit integers. Because current versions of
MATLAB display at most 15 sig. dec. instead of 17, distinct bigintegers may look the same on
screen unless displayed in a 16-digit hexadecimal format eschewed here.

By exploiting arithmetic capabilities accessible through some versionsof MATLAB on some
computers, thefunctions gcd and | cm provided below either malfunction far less often than
MATLAB’S own, or offer easy ways to detect ailmost all practically unavoidable malfunctions.

Without those capabilities, the functions gcd and | cm provided below are slightly faster than
MATLAB’s own but no more reliable. Some of their malfunctions are exposed by the two test
programs gcdtest and | cnt est provided below along with some of their results.

Function precn below isnot used by gcd nor | cm, butiscalled by gcdtest and I cntest
only to uncover the precision of arithmetic MATLAB uses to accumulate matrix products. Early
versionson PCs and old 680x0-based Macintoshes accumulated these products extra-precisely,
to 64 sig. bits, before rounding them downto 53 asthey were stored. MATLAB 6.5 on PCs can
be commanded to do that when the factors and products fit into the computer’ s cache-memory.
On Power-Macs and iMacs the accumulation benefits (rarely by much) from Fused Multiply-
Adds that commit only one 53 sig. bit rounding error per expression of theform “x +y-z” .
Most users of MATLAB ignore whatever precn exposes, though occasionally such details
matter crucially; e.g., see <www. cs. ber kel ey. edu/ ~wkahan/ McMul Eps. pdf >. And the test
results below show how such details determine whether gcd and | cm pass al their tests.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 8/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

function [g,c,d] = gcd(a,b)
%CD G eat est Conmon Divi sor.
% G=g9gcd(A B) is an array of G eatest Common Divisors of the

% corresponding elements of A and B . These arrays nust contain
% only integers and nust have the sane size unless one is a scal ar.
% By convention gcd(x, 0) = gcd(x, Inf) =|x|] ; gcd(0, Inf) =0 .

% Oherwise gcd is a finite positive integer conputed correctly,
% despite roundoff no matter how big elenments of A and B nay be,
% only under circunstances discussed in the fourth paragraph bel ow.
% Correct values of gcd(3, 2780) = gcd(28059810762433, 2753) =1 .
%

% G =g9gcd(A) is a row of which each elenent is the GCD of the

% corresponding columm of the array A of integers.

%

% [GCD = gcd(A B) alsoreturns Cand Dso that A*C+ B.*D =G
% and |C.*G<=|Bl and |D.*G<=|A wthequality only rarely.
% [C, D is useful for solving D ophantine equations and conputing
% Hernmite transformations. Note that another possibility for pair
% [C D is [C D - [S*B./G -S.*A /G where S =sign(B.*C ;
% one pair [C D rmay suit your application better than the other.
%

% Roundoff can spoil A *C+ B.*D =G unless |A*(C] < 2/eps and
% |B.*D < 2/eps . Werever max(|Al,|B|]) > 2/eps there [GC D
% MAY BE WRONG except on Power Macs, whose G is always correct
% evenif [CD isnot. |If wmax(|A,|B]) <= 2048/eps , or if

% mn(|A,|Bl) <= 2048 , then G (if not [C D)) is correct also
% on old 680x0-based Macs, and also on Intel-based PCs with
% 64-sig.-bit accunulation of matrix products enabled via WMtlab
% 6.x's invocation syst em dependent (' setprecision', 64) "

%

% See also LCM and, for Mtlab 3.5, reshape, isinf and, for
% 386-Matlab 3.5 & PC-Matlab 4.2, rOund, all as nodified by WK

% Algorithm See Knuth Volume 2, Section 4.5.2, Algorithm X sped up
% Oiginal Author: John G lbert, Xerox PARC, sped up by W Kahan
% Oiginal Copyright (c) 1984-98 by The Mat hWorks, Inc.

% Oiginal Revision: 5.9 Oiginal Date: 1997/11/21 23:45: 38

% First nodified by WK in 1990 to fix gcd(3, 2780) = 3 .

% $Revision: 6.5. WK $ $Date: 2008/ 09/14 06:09:59 $

if (nargin ==2) %.. Case gcd(a,b)
% Do scal ar expansion if necessary
sza = size(a) ; szb = size(b) ; %.. Mtlab 3.5 - 6.5 conpatible
if (sza == 1), a = a*ones(szb(1),szb(2)) ; %.. " " "
el seif (szb == 1), b = b*ones(sza(1),sza(2)) ; end

sza = size(a) ; if any(sza - size(b))
error('Arrays input to gcd(A B) nust have the same size.')
el se
a=a(:); b=0>b();
end;

if any(round(a) ~= a)|any(round(b) ~= b)|any(inmag(a))]|any(inmag(b))
error('gcd(A B) requires all inputs to be real integers.')
end %.. Inf is deenmed an integer, but NaN is not.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 9/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

if (nargout < 2) %... save time by omtting ¢ and d
Y=[a b]"; g=b; L=710 1; 1, 0] ;
for k = 1:length(a)
x =Y(:,k) ;5 %.. =TJa(k); b(k)]
if any(isinf(x)), g(k) = min(abs(x(:))) ;
el se % .. finite operands
while x(2) %... ~=0; MD(x(1),x(2)) and REM...) could
L(2,2) = -round(x(1)/x(2)) ; % be wong if x(1) is huge
X =L*x; %... new|x(2)] <=old |x(2)]|/2
end % ... of inner loop traversed fewer than 40 tines
g(k) = abs(x(1)) ; end %.. of usual finite case
end %... of Kk
g = reshape(g, sza) ;
return
end %... of Case gcd(A B) wth nargout < 2
% Case [GC D = gcd(A B) wth nargout == ., presumably.
Y =[a, b, b] % ... initialized to the right size

eye(2) ; i_:flipud(l) ;

for k = 1:length(a)

X=1l, Y(k,1:2)'] ; %... =1[1, 0, a(k); 0, 1, b(k)].
if isinf(X(1,3)), X=flipud(X) ; elseif ~isinf(X(2,3))
while X(2,3) %... ~= 0 and everything is finite ...

L(2,2) = -round(X(1,3)/X(2,3)) ;
X=L*X; %... new | X(2,3)] <=old |X(2,3)]|/2

end %... of inner loop traversed fewer than 40 tines.
end %... of finite a(k) and b(k)
if (X(1,3) <0, X=-X; end %... invert g(k) <O0.
Y(k,:) = X(1,:) ;
end %... of Kk

reshape(Y(:,3), sza)
reshape(Y(:,1), sza) ;
reshape(Y(:,2), sza) ;

eturn

% end of Case [G C D = gcd(A B)

g
c
d
r

elseif (nargin ==1) %.. Case gcd(A) treated recursively
if (nargout > 1)
error('G = gcd(A) has just one output.'), end

g=a(l,:) ; [isr, isc] = size(a) ;
for k = 2:isr, g =gcd(g, a(k,:)) ; end
return

% end of Case gcd(A)

el se error('gcd(A B) accepts just one or two argunents.')

% For Matlab 3.5, isinf(x) = ~(finite(x)|isnan(x)) , and
% retrofitted reshape(X, size(...)) works. And for

% 386-Matlab 3.5 & PC-Matlab 4.2, wuse rOund instead of buggy round .
end %.. of gcd

Prof. W. Kahan Notesfor Math. H110 & 128B Page 10/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

function L = Icn(a, b, x)

%.CM Least Conmon Multiple, with optional correctness test.

% L =1lcmAB) =Ilcmabs(A), abs(B)) >= 0 is an array of Least
% Common Multiples of corresponding el enments of integer arrays
% A and B. They nust have the sanme size unless one is a scal ar.
% WARNING Roundoff may have spoiled L wherever L >= 2/eps .
%

% L =1lcm A B/ x) substitutes the scalar x for any el enent of
% L >= 2/eps that fails an optional appended correctness test.
% Among plausible choices x are 0, Inf and NaN, depending
% upon how lcms wuser will respond to these error-indicators.
%

% Alas, sone errors can evade detection by the test. It works
% best when Matlab accunulates nmatrix products either with

% Fused Multiply-Adds, as it does on Power Macs, or else

% extra-precisely as do versions 3.5-5.2 on 680x0-based Macs,
% and versions 3.5-4.2 on a PC, and version 6.5 on a PC after
% it executes the command system dependent (' setprecision', 64).
% Then Ilcm(A B,x) should detect any erroneous L < 2048/eps .
%

% L =1lcmA) is a row whose every element is the LCM of the
% corresponding colum of the array A of integers. WARNI NG
% \Wherever L >= 2/eps roundoff may make L utterly erroneous
% though Icnm(A) tries to substitute Inf for each such error
% unless aborted by a NaN produced by lcnm(O,Inf) . Werever
% lem(flipud(A)) differs from lcm(A) , both may be w ong.

%

% Requires gcd(...) as nodified by WK, after 1990.

% W Kahan, 1990 - 14 Sept. 2008
if any(imag(a(:)))

error('lcm(A ...) accepts no conplex argunent.'), end
a = abs(a) ;

if (nargin >1) %.. Cases lcmla,b) and Ilcnia,b,x)
if any(img(b(:)))

error('lcnmAB,...) accepts no conplex argunent.'), end

b = abs(b) ;
% Do scal ar expansion if necessary
sza = size(a) ; szb =size(b) ; %.. Mitlab 3.5 - 6.5 conpatible
if (sza == 1), a = a(ones(szb(1),szb(2)))

elseif (szb == 1), b = b(ones(sza(1),sza(2))) ; end
% Gcd(A, B) wll expose other erroneous inputs, nanely ...
% input arrays A and B of different sizes, or
% any element in |A or |B|l not an integer.

% CGcd deenms Inf an integer, but not NaN.

g = gcd(a,b) ; g =9g+(g==0) ; Lg =isinf(g) ;

if any(Lg(:)), 9(Lg) = Lg(Lg) ; end %.. lcn(inf, inf) = inf
a=alg; L=a*b;
if (nargin == 2), return, end %.. of Case lcnmia,b)

% Case lcm(a,b,x)'s test:

if (L(~Lg) < 2/eps), return, end %.. no further test needed
if (length(x(:)) ~=1), x =X

error("x in Ilcm A B,x) nust be a scalar, not array.'), end

Prof. W. Kahan Notesfor Math. H110 & 128B Page 11/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

% \What follows substitutes poorly for |EEE 754's | NEXACT fl ag:
g=9(:); b=Db(:)./g; a=a(:); Lg=isinf(a)|isinf(b) ;

[mn] =size(L) ; m = n¥n ;
L=L(:); qg-=round(L./9g) ;
for j =1.nm %.. seek erroneous finite L(j) only where ...

if ~Lg(j) %.. both a(j) and b(j) are finite:
it C (L), a(j)1*f-1; 9(j)1~=0), L(j) =x; %.. L is wong
elseif ([a(j), a(j)]*[-1; b(j)]~=0), L(j) =x; end %.. " "
end, end %.. of finite a(j) and b(j) , and of |

L = reshape(L, mn) ; return

end %.. of Case lcnmia,b,Xx)

% Case |lcm(A) treated tail-recursively:

L =a(l,:) ; [isr, isc] = size(a)

for k =2isr, L=IlcmlL, a(k,:), Inf) ; end
% end of Case |lcn(A)

% For Matlab 3.5, isinf(x) =~(finite(x)|isnan(x)) . For
% 386-Matlab 3.5, wuse WK's rOund instead of buggy round .

The built-in function round(x) in 386-Matlab 3.5k andin PC-Matlab 4.2 has abug:

If odd integer |x| > 1/eps=2°? (inwhich case [x| <23 too)
then round(x) - x == sign(x) insteadof O.

Thisbug isfixed, albeit sowly, by round. m:

function y = rOund(x)

%R0UND Round to a nearest integer; ONLY for PCs Matlab 3.5 & 4.2
% rOund(x) = integer "nearest" x , fixing a bug in round. m

% 386-Matlab 3.5's and PC-Matlab 4.2's buggy round(x) vyields
% x + sign(x) whenever odd |x| > 2752 (and therefore

% |x|] <2753 too). This fixes gcd.m Icmm etc.

% W Kahan 22 Sept. 1997

y = round(x) ;

J = (abs(x) > 1/eps) ;

if any(J(:)), y(J) =x(J) ; end

Prof. W. Kahan Notesfor Math. H110 & 128B Page 12/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

function m = precn(n)
%PRECN senses precision carried while accurmulating matrix products

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

i f

%
%
%
%
%
%
%
%
%
%

%
%
%
%
%

a
b

ab = a*b; %...

m = precn(n) uses only add, subtract and nultiply operations
(no divisions) wupon a few artfully chosen integers (no |oops)
to sense the current precision |n sig. bits in which MATLAB
accunul ates matrix nultiplications of not too big dinmensions
before storing the product in 53 sig. bits. This m depends
upon the version (< 7) of MATLAB, the conputer's hardware,
and possibly some control bits in the processor, as follows:
.5 on PCs & 680x0-based Macs: m= 24, 53 or 64 (default)
2 - 5.2 on 680x0-based Macs: m= 64

on Power-Mics & i Macs (Fused Multiply-Adds): m= -53
on PCs: m= 64

on PCs & every v. on SUN SPARCS: m = 53

on PCs: m= 24, 53 (default) or 64

SR ™

< =<=<s<£s«=
qwN N

Argument n of precn(n) can be onitted and is ignored except
by versions of precn running on PCs wunder MATLAB 3.5 & 6.5

with appropriate leading "% characters deleted fromthe file.

Then m= precn(n) is determined after the precision is reset
to n by an invocation appropriate to the version.
Revi sed 21 Sept. 2008. W Kahan

(nargin == 0), n =0, else

For 386-Matlab 3.5 on PCs delete leading "% in this block:

if (n == 64) %
! CTRL87 33D

el seif (n == 53) %
! CTRL87 23D

elseif (n == 24) %
! CTRL87 03D

else N=n %

error(' precn(N) requires N = 24, 53 or 64 .") %

end %

For Matlab 6.5 on PCs delete leading "% in this block:

if ~((n==24)|(n==53)|(n==64)), N =n %

error(" precn(N) requires N =24, 53 or 64 .'") %

end %

syst em dependent (' setpreci sion', n) %
n=1; end %... to inpede conpiler over-optimzation

409891 ; ab =2731 + n; a =[ab, -a]*[a; n] ;
7623851 ; ab 1441 + n; b = [ab, -b]*[b; n]
(2765 + 1)/3 rounded to mn(m 53) sig. bits

= 2761 ; d = 4051+n ; cd =[c, -n]*[d; c] ; %.. = (2725 + 1)/3

t11 = 2048 ; t15 = 16*t11 ; t40 = t15*t15*1024 ; %.. tk = 2"k

e = ([c, -c, a]*[(d-n)*t15; (d-n)*t40; b])*3 - t15; %.. =1 ?
f =([a, -¢c, c]*[b; (d-n)*t40; (d-n)*t15])*3 - t15; %.. =1 7?
ef =[e, f] ;

Prof. W. Kahan Notesfor Math. H110 & 128B

Page 13/21

File GCD5

i f (ef ==

elseif (ef ==

elseif (ef ==

elseif (ef ==

el se Version
error(' Wy

end

CTRL87.EXE wascompiled from the following Borland Turbo-Pascal program:

Euclid’s GCD Algorithmsyvs. Programs

[1, 11), m= 64 ;
[1, -t11]), m= -53 ;
[-t12, -t11]), m= 53 ;
[-t15, t40]), m= 24 ;
= ver, Machine = conputer,
does precn

{$R-,S,I-,D,T-,F,V-,B-, N, L+ }
{$M 1024, 0, 1024 }
program ctrl 87;
{ CTRL87 <ctl<, nsk>>
to set as many as 9 bits in the

uses two 3-hex-digit paraneters

EF = ef

mal function on this nachine?')

ctl
i x87 Control-Wrd

October 28, 2008 5:40 pm

and nsk
as foll ows:

New CW := (msk AND ctl) OR (NOT(msk) AND O d CW
If msk is omtted, OFO00 is used inits place. |If both nsk
and ctl are omtted, or if either is " ? " or not hexadecinal
they will be pronpted fromthe keyboard after the display of
DOC bel ow, which explains how they affect subsequent floating-
point arithmetic operations. To do nothing, [Enter] nothing.
To prevent mishaps, nsk is filtered thus: nsk := nmsk AND OF3D
}
const
n =19 ; { n = current nunber of lines in DOC }
DOC: array[l..n] of string[55] = (
' CTRL87 <ctl<, nsk>> sets the ix87 Control-Wrd ',
CW:= (nmsk AND ctl) OR (NOT(nsk) AND CGW from?2',
' 3-hex-digit paraneters ctl and msk . CW's bits '
' are OR'd to affect floating-point thus: cw'
TRAPS: (default) Di sable Al traps 3D "',
or Disable trap for |NVALID OP 01 ',
and Disable trap for DV by ZERO 04 ',
and Disable trap for OVERFLOW _08 ',
! and Disable trap for UNDERFLOW ~10 ',
! and Disable trap for | NEXACT 20",
PRECI SION: (default) Round to REAL*10 3",
or else Round to REAL*8 2 ",
or else Round to REAL*4 o_ ',
DI RECTION: (default) Round to Nearest o__ ',
' or else Round Down 4__ ',
' or else Round Up 8__ ',
or else Round to Zero .. C_ ",
Initial Control-Wrd ctl set by FINT ... 33D°',
Default nsk = OFO0 . Maximal effective nsk = F3D);
Sctl = ' Current setting of Control-Wrd ctl '
S3H = "' Enter 3 hex digits for ' ;
nmex = $0F3D ; { maxi mal sk }
var
ctl, i, j, k, L, nsk : word ; s . string ;
function Wd2Str(i word) string ;
Prof. W. Kahan Notesfor Math. H110 & 128B

Page 14/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

{ ... converts word i toits string of 4 hex digits.}
var j, k: word ; s : string[4] ;
begin
s ="'"
for k :=0to 3 do begin
j :=1i AND $F ;
i :=1i shr 4 ;
if j >9then j :=j + $37
else j :=j + $30 ;
s := Concat(Chr(j), s) ;
end ; { k }
wd2str :=s

end; { Wd2str }

procedure GetHex(var j, k : word; s : string);

begin { converts string s to 4-hex-digit word | }
Val (ConCat('$',s), j, k) ; {j =value of $s if k =0}
if k>0 then Witeln(s, ' is not hexadecimal.") ;
end ; { GetHex }
begin
inline($9B/ $D9/$3E/i/$9B) ; { fstcw i ; old Control-Wrd }

L : = ParanCount ;
if L=0 then k :=1 else begin

s := Paranttr(1) ; { = first paraneter on DOS conmand |ine }
if Copy(s,1,1) ='?" then k :=1 else GetHex(ctl, k, s) ;
if k=0 then

if L<2 then nsk := $0F00

el se GetHex(nsk, k, Paranttr(2)) ;
end ; {L>01}

while k >0 do begin { Pronpt for ctl and nsk .}

for j :=1ton do Witeln(DOCj]) ;
Witeln(Sctl, Wd2Str(i AND nmsx))
Witeln(S3H, 'new ctl :') ;

Readl n(s) ;

if (s="'"")or (s="")or (s="'"")

then Exit ; { Do nothing.}
if Copy(s,1,1) ="'?" then k :=1 else GCetHex(ctl, k, s) ;
if k=0 then { Pronpt for nsk .}

r epeat
Witeln(S3H ' nsk or accept OF00 :') ;
Readl n(s) ;
if (s="'"")or (s="")or (s="")

then msk : = $0FO0
el se GetHex(nmsk, k, s)
until k =0; { Pronpted for nsk .}

L:=0;

end ; { Pronpted values for ctl and nsk .}
nsk := nsk and msx ; { Don't change 8087 vs. 387 CW.}
ctl := (msk and ctl) or ((not nsk) and i)

inline($9B/$D9/$2E/ctl/$9B) ; { fldcw ctl }
if L=0 then Witeln(Sctl, Wd2Str(ctl AND nsx)) ;
end.

Prof. W. Kahan Notesfor Math. H110 & 128B Page 15/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

% gcdtest.m is a Mtlab script to test versions of gcd. m
format conpact, format long g

diary gcdtest.txt

disp (' GCDtest puts its results into GcdTest.txt')

Dat eTi me = round(cl ock)

Machi ne = conputer, ver

Mat Mul t Precn = precn

disp(© ")

disp (' 1st test: G = gcd(A B) and gcd(B, A :")

p = 28059810762433 ; %.. aprinme
t53 = 2753 ;
A=1[77, 77, 77, O; 3, 15, t53, t53-11] ;
B =132, 0, Inf, Inf; 2780, 2+2752, p, p 1 ;
G=1[11, 77, 77, O 1, 3, 1, 11 ;
& = gcd(A B) ;
GL = gcd(B, A ;
K=(G~= Q)| (G~=a) ;
if ~any(K(:))
di sp(' 1st test passed.')
else %.. when matrix nmult'n is not accunul ated extra-precisely ...
disp(' 1st test failed in these cases:')
F=[AK"; B(K'; O(K"; GLK'"; AK'] ;
disp(' A;B;gcd(A B);gcd(B,A);trueGD ="'), F
end % .. of 1st test
disp(" ")
disp(' 2nd test: [G C, D = gcd(A B) and gcd(B, A :')
f80 = 2740 ;
f80 = ((f80 - 1)/3)*(f80 + 1) ; %.. = (2780 - 1)/3 rounded
A=1[77, 77, 77, O; 3, -15, t53, t53-1 1 ;
B =1[132, 0, Inf, Inf; 2780, 2+2"52, p, p 1 ;
G=1[11, 77, 77, O; 1, 3, 1, 1 1 ;
c=1[7, 1, 1, 1; -f80, 300239975158033, -1, -14029905381217] ;
D=1 -4, 0, 0, 0; 1, 1, 321, 4503599627370656] ;
[@0, CO, DO] = gcd(A, B) ;
[GL, C1, D1] = gcd(B, A ;
K= (&0~=g|(GCl~=g| (C0~=Q | (C1~=D)| (D0~=D) | (D1~=C) ;
if ~any(K(:))
disp(' 2nd test passed.')
else %.. when matrix nult'n is not accunul ated extra-precisely ...
disp('" 2nd test failed in these cases:')
F=[AK"; B(K'; QO(K"'; C(K"; DO(K)'; GL(K)'; CL(K)'; DL(K)'] ;
disp(' A B;[gcd(A B); C0;D0];[gcd(B, A);Cl;D1];trueGCD;C,D = ")
F=I[F qK'; CK"'; DK"]
end % .. of 2nd test
disp(" ")
disp(' 3rd test: G = gcd(E) and gcd(flipud(E)) :")
g =11, 3, 11, 17] ; e = [77; 132; 144] ; E = e*g ;
E =[E [124+t53; t53-19; t53+254]]1 ; g =1[g, 13] ;

g0 = gcd(E) ; g1 = ged(flipud(E)) ;
k = (90~=9)| (91~=0) ;
if ~any(k(:))

Prof. W. Kahan Notesfor Math. H110 & 128B Page 16/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

disp(' 3rd test passed.')
else %.. when matrix nmult'n is not accunul ated extra-precisely ...
disp('" 3rd test failed in these cases:')
disp(" E gcd(E):gcd(flipud(E));trueGCD = ")
F=[E(:,k); g0(k); g1(k); g(k)]
end % .. of 3rd test
disp(* "), disp(" ")

The following GCDtest results were obtained froman IBM T21 laptop running MS Windows
2000, and werereplicated ona Dell Optiplex running MSWindows XP. Asexpected, thetests
failed when run with the default Mat Mul t Precn = 53 and passed with Mat Mul t Precn = 64 .

Asexpected, thefailuresfor mat Mul t Precn = 53 werereplicated by PC MATLAB 5.3, and the
passed testsfor Mat Mul t Precn = 64 werereplicated by PC MATLABS3.5and 4.2, andby Mac
MATLABS 3.5, 4.2 and 5.2 on a 68040-based Mac Quadra950. Passed tests were replicated also
by Mac MATLAB 5.2 with Mat Mul t Precn = -53 revealing Fused Multiply-Adds on a Power
Mac 8600 and on an iMac.

GCDtest puts its results into GcdTest.txt
DateTine = 2008 9 14 14:16: 15
Machi ne = PCW N
MATLAB Version 6.5 (R13)
Mat Mul t Precn = 53

1st test: G = gcd(A B) and gcd(B, A
1st test failed in these cases:
A; B; gcd(A, B); gcd(B, A ;trueGCD =

F =
3 9. 00719925474099e+015

1.20892581961463e+024 28059810762433

3 28059810762433

3 28059810762433

1 1

2nd test: [G C, D = gcd(A B) and gcd(B, A
2nd test failed in these cases:
A B;[gcd(A B); CO; DO] ; [ged(B, A); C1; D1] ;trueGCh, C, D =

F

3 9. 00719925474099e+015 9. 00719925474099e+015

1. 20892581961463e+024 28059810762433 28059810762433
3 28059810762433 1

1 0 -1

0 1 321

3 28059810762433 1

0 1 321

1 0 -1

1 1 1
-4.02975273204876e+023 -1 -14029905381217
1 321 4.50359962737066e+015

Prof. W. Kahan Notesfor Math. H110 & 128B Page 17/21

File GCD5 Euclid’'s GCD Algorithmsvs. Programs

3rd test: G = gcd(E) and gcd(flipud(E))
3rd test failed in these cases:
E; gcd(E): gcd(flipud(E));trueGCD =
F =
9. 00719925474112e+015
9. 00719925474097e+015
9. 00719925474125e+015
1
13
13

syst em dependent (' set preci sion', 64)

gcdt est
GCDtest puts its results into GcdTest.txt
DateTime = 2008 9 14 14:16: 52

Machi ne = PCW N

October 28, 2008 5:40 pm

MATLAB Version 6.5
Mat Mul t Precn = 64

1st test: G = gcd(A B) and gcd(B, A
1st test passed.

2nd test: [G C, D = gcd(A B) and gcd(B, A
2nd test passed.

3rd test: G = gcd(E) and gcd(flipud(E))
3rd test passed.

Prof. W. Kahan Notesfor Math. H110 & 128B

Page 18/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm

% lcntest.m is a Mtlab script totest WK 's version of lcmm
format conpact, format long g

diary Ilcntest.txt

disp (' lcntest puts its results into diary lcntest.txt')

Dat eTi me = round(cl ock)

Machi ne = conputer, ver

Mat Mul t Precn = precn

disp(* ")
disp (" 1st test: L =1lcmA B) and lcmB, A :')
p = 28059810762433 ; i = 712176643 ; % .. prines
j1 =2203; j2 =5741; %.. prines
ki = 2205 ; k = k1*j2; j =jl*j2 ;
t52 = 2252 ; t53 = 2*t52 ; t80 = 2780 ;
A= 77, I i, i; 3, 15, t 53, t53-11] ;
B =132, K, I K; t 80, 2+t 52, P, p1l;
L =924, j*k1, i*j, i*k; 3*t80, 10+5*t52, p*t53, t53*p-p] ;
LO = lcm(A B) ;
L1 =lcmB, A ;
K= (L ~= LO)|(L ~= L1) ;
if ~any(K(:))
di sp(' 1st test passed.')
else %.. when matrix nmult'n is not accunul ated extra-precisely ...
disp(' 1st test failed in these cases:')
F=[AK"; B(K'; LO(K)"; LI(K)'"; L(K)'] ;
disp(" AB;IlcmAB);lcmB,A;trueLCMounded ="'), F
end % .. of 1st test
disp(" ")
disp(' 2nd test: L =1IlcmA B, Inf) and lcm(B, A Inf) :")
A= 77, I i, i; 3, 15, t 53, t53-11] ;
B =132, K, I K; t 80, 2+t 52, P, p1l;
L =1]924, j*k1, i*j, Inf; 3*t80, I nf, p*t53, Inf] ;
LO = lcm(A B, Inf) ;
L1 =lcmB, A Inf) ;
K= (L ~= LO)|(L ~= L1) ;
if ~any(K(:))
disp(' 2nd test passed.')
else %.. when matrix nult'n is not accunul ated extra-precisely ...

disp('" 2nd test failed in these cases:')
F=1[AK"; B(K)"; LO(K)'"; LI(K)"; L(K)'] ;

disp('" A B;lcmA B, Inf);lcmB, A Inf);expectedLCMchecked ="'), F
end % .. of 2nd test
disp(" ")
disp(' 3rdtest: L =1Ilcm(E) and lcn(flipud(E)) :")
g=1[1, 3, 11, 17] ; e = [77; 132; 144; 11088] ; E = e*g ;
I = E4,:) ; E=FE21113,:) ;
E=I[E [i, j;], i; k. kIl ; I =7[I, Inf, Inf] ;
[0 =1lcm(E) ; |1 =1I1lcm(flipud(E)) ;
k = (10~=l)]|(l1~=l) ;
if ~any(k(:))
disp(' 3rd test passed.')
else %.. when matrix nmult'n is not accunul ated extra-precisely ...

Prof. W. Kahan Notesfor Math. H110 & 128B Page 19/21

File GCD5 Euclid’s GCD Algorithmsvs. Programs October 28, 2008 5:40 pm
disp('" 3rd test failed in these cases:')
disp(' ElcmE):lcm(flipud(E)); expectedLCM = ")
F=T[E(: k); 10(k); T1(k); 1(k)]
end % .. of 3rd test
disp(* ")
disp(' 4th test: Ilcm(0, x), lcn(Inf, x) and lcm(Inf, 0) :")
a=[77, 0, Inf, O, Inf, Inf] ;
b =1[132, 77, 77, 0, Inf, 0] ;
L= 924, 0, Inf, 0, Inf, NaN] ;
LO = lcma,b) ; L1 =1lcmb,a) ; L2 =Ilcma,b,99) ;
K=10,0,0,0,0, isnan(LO(6))& snan(L1(6))& snan(L2(6))] ;
K = ((LO==L) &(L1==L) &(L2==L))| K ;
if all(K(:))
disp(' 4th test passed.')
el se
disp(' 4th test failed in these cases:')
disp(" a;b;lcm(a,b);lcmb,a);lcma,b, 99); expectedLCM = ")
F=Tla(~K; b(~K); LO(~K); L1(~K); L2(~K); L(~-K)]
end % .. of 4th test
disp(* "), disp(" ")

Thefollowing LCMtest results were obtained froman IBM T21 laptop running MS Windows
2000, and werereplicated ona Dell Optiplex running MSWindows XP. Asexpected, thetests
failed when run with the default Mat Mul t Precn = 53 and passed with Mat Mul t Precn = 64 .

Asexpected, thefailuresfor mat Mul t Precn = 53 werereplicated by PC MATLAB 5.3, and the
passed testsfor Mat Mul t Precn = 64 werereplicated by PC MATLABS3.5and 4.2, andby Mac
MATLABS 3.5, 4.2 and 5.2 on a 68040-based Mac Quadra950. Passed tests were replicated also
by Mac MATLAB 5.2 with Mat Mul t Precn = -53 revealing Fused Multiply-Adds on a Power
Mac 8600 and on an iMac.

Icntest puts its results into diary Ilcntest.txt
DateTine = 2008 9 14 14:18: 04
Machi ne = PCW N
MATLAB Version 6.5 (R13)
Mat Mul t Precn = 53
1st test: L =1lcnmA B) and IlcmB, A

1st test failed in these cases:
A B lcn(A B);lcm(B, A ;trueLCMounded =

F =
3 9. 00719925474099e+015
1.20892581961463e+024 28059810762433
1.20892581961463e+024 9. 00719925474099e+015
1.20892581961463e+024 9. 00719925474099e+015
3.62677745884389e+024 2.5274030658756e+029
2nd test: L =1lcmA B, Inf) and Ilcm B, A Inf)
2nd test failed in these cases:
Prof. W. Kahan Notesfor Math. H110 & 128B Page 20/21

File GCD5

A B;lcn(A B, Inf);lcm B, A Inf);expectedLCMchecked =

F =
Colums 1 through 3
3 9. 00719925474099e+015
1.20892581961463e+024 28059810762433
1.20892581961463e+024 I nf
1.20892581961463e+024 I nf
3.62677745884389e+024 2.5274030658756e+029
Col um 4
9. 00719925474099e+015
28059810762433

2.5274030658756e+029
2.5274030658756e+029
| nf

3rd test: L =I1lcm(E) and lcn(flipud(E))
3rd test failed in these cases:
E lcm(E):lcm(flipud(E)); expectedLCM =

F =
712176643 12647423
12647423 712176643
12658905 12658905
1.98608743567039e+019 1.98608743567039e+019
1.98608743567039e+019 1.14021279681837e+023
I nf I nf
4th test: lcm(0, x), lecnm(Inf, x) and Ilcn(Inf, 0)
4t h test passed.
syst em dependent (' set preci sion', 64)
| cnt est
Icmest puts its results into diary Ilcntest.txt
DateTime = 2008 9 14 14:18: 54

Machi ne = PCW N

MATLAB Version 6.5
Mat Mul t Precn = 64
1st test: L =1lcmA B) and lcmB, A

1st test passed.

2nd test: L =1lcmA B, Inf) and
2nd test passed.

lem(B, A, Inf)

3rd test: L =I1cmE) and
3rd test passed.

len(flipud(E))

4th test: lcm(0, Xx),
4t h test passed.

len(Inf, x) and Ilcnm(Inf, 0)

qui t

Prof. W. Kahan Notesfor Math. H110 & 128B

Euclid’s GCD Algorithmsyvs. Programs

October 28, 2008 5:40 pm

712176643

12658905

9. 01537646695592e+015
9. 01537646695592e+015
| nf

Page 21/21

