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Abstract
The behavior of  Euclid’s  algorithm to compute  Greatest Common Divisors  and its connection 
with continued fractions are explained advantageously in terms of products of  2-by-2  matrices.  
One byproduct is a quick proof of  Lamé’s  theorem,  which bounds the number of divisions the 
algorithm must perform,  thus explaining its speed.  Among other applications of the algorithm 
are the solution of linear congruences  a·x ≡ c  mod b   and the quick computation of determinants 
of integer matrices.  A  GCD  is needed also to compute a  Least Common Multiple.  Actual 
computer programs to compute  GCDs  and  LCMs  malfunction when their inputs or outputs are 
integers so big that the programs encounter overflow or roundoff.  Because it is overlooked so 
often,  roundoff incurred by floating-point arithmetic can have noxious consequences unless the 
programs incorporate complicated precautions exemplified by  MATLAB  programs supplied here.  
When allowed to do so,  they take advantage of a little extra-precise arithmetic without which no 
practicable defense exists against plausible but utterly wrongly computed  GCDs  and  LCMs.

MATLAB  programs  gcd  and  lcm  supplied here are needed in  Hilbert  matrix computations in
  <www.cs.berkeley.edu/~wkahan/MathH110/HilbMats.pdf>  
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Given two positive integers  a ≥ b > 0  we seek their  Greatest Common Divisor  ( GCD ),  which 
is the biggest integer  d  that divides both  a  and  b  leaving no remainder.  Ordinary long division 
computes a positive integer quotient  q := a/b  and leaves a remainder  r := a – q·b  that satisfies  
0 ≤ r < b .  Clearly every divisor of both  a  and  b  divides  r  too,  and conversely every divisor of 
both  b  and  r  divides  a = q·b + r  too;  therefore  GCD(a, b) = GCD(b, r) .  But the pair  (b, r)  is  
smaller  than the pair  (a, b)  in the sense that  b ≤ a  and  r < b .  This leads to an algorithm …

Euclid’s  GCD  Algorithm
Given integers  a ≥ b > 0 ,  set  r0 := a  and  r1 := b  and perform successive long divisions getting,  
for  j = 1, 2, 3, …, n  in turn until  rn+1 = 0 ,  quotients  qj  and  remainders  rj  that satisfy

rj–1 = qj·rj + rj+1   with   0 ≤ rj+1 < rj .
( Here at step  j  we divide  rj–1  by  rj  to get quotient  qj  and remainder  rj+1 ,  stopping when a 
remainder  rn+1 = 0 .  At that point  qn > 1 ;  can you see why?)  The algorithm stops because this 
decreasing sequence of  n+1  positive integers,  r0 = a ≥ r1 = b > r2 > … > rn–1 > rn > rn+1 = 0 ,  
cannot have  n > b .  Then  GCD(a, b) = rn  because,  as explained in the first paragraph,

GCD(a, b) =: GCD(r0, r1) = GCD(r1, r2) = … = GCD(rn–1, rn) = GCD(rn, rn+1) = rn .

The quotients  qj  appear to play no important role in the foregoing algorithm,  but appearances 
can mislead.  By translating the algorithm’s recurrence into matrix language we find uses for  qj :

Set  :=   first;  then for  j = 1, 2, 3, …, n  in turn confirm that   =  ,  with  

0 ≤ rj+1 < rj  and  rn+1 = 0 ,  so   = …  .  

Now set row   := …   to obtain two 

integers  A  and  B  (not both positive)  satisfying  GCD(a, b) = rn = = = B·a + A·b .  

We have just found that  GCD(a, b)  is a linear combination of  a  and  b  with integer coefficients,  
thus proving  (regardless of whether  a ≥ b > 0  or  b ≥ a > 0 )  the following …

Theorem 1:  As  A  and  B  run independently through all integers the expression  B·a + A·b  runs 
through a set of integers among which the smallest positive integer is  GCD(a, b) = B·a + A·b .

Hard Exercise:  Running  A  and  B  through  all  integers is unnecessary:  Theorem 1  remains true after restrictions  
|A| < a  and  |B| ≤ b ≤ a  are imposed;  why?  Can you prove  |A| < a/GCD(a, b)  and  |B| ≤ b/GCD(a, b) ?  See below.

There are two ways to compute  A  and  B .  The easiest is to evaluate from-left-to-right the matrix 

product defining    after  all the  qj’s  have been computed;  this gives rise to a recurrence:

sn := 1 ;   sn–1 := –qn–1 ;   for  j = n–2, n–3, …, 2, 1  in turn   sj := sj+2 – qj·sj+1 .
Finally  A := s1  and  B := s2 .  Another way to compute them is to evaluate from-right-to-left the 

matrix product defining row    simultaneously  with the computation of the  qj’s :
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   :=  ;  :=  ;  for  j = 2, 3, …, n–1  in turn    :=  .

Finally   :=  .  Note that  qn  never figures in the computation of  A  and  B .  

Whichever way be chosen to compute  A,  B  and  GCD(a, b) = B·a + A·b ,  the algorithm is called 
“the Extended Euclidean Algorithm”  and has important applications.  Here is one of them:

Exercise:  Given integers  a, c  and  b > 0 ,  when does  “ a·x ≡ c  mod b ”  have integer solutions  x ?  Here we 
pronounce  “ p ≡ q  mod b ”  as  “ p  is congruent to  q  mod b ”  and mean that  p – q  is divisible by  b .  Let  
d := GCD(a, b) .  If  c ≡ 0  mod d  exhibit all  d  noncongruent solutions  x ;  otherwise prove no solution  x  exists.

Continued Fractions
If  d = GCD(a, b)  then  (a/d)/(b/d)  exhibits  a/b  “in lowest terms”  but it is not the only unique 
encoding of positive rational numbers.  By substituting  rj–1/rj = qj + 1/(rj/rj+1)  repeatedly for  
j = 1, 2, …, n  in turn we obtain a  Terminating Continued Fraction

 .

This is  the continued fraction for the rational number  a/b .  Here  q1 ≥ 1  because  a ≥ b > 0 ;  in 
fact every  qj ≥ 1  and the last  qn ≥ 2  to ensure that the encoding of each rational  a/b > 1  by a 
finite sequence  (q1, q2, q3, …, qn–1, qn–1)  of positive integers be unique.  Euclid’s  algorithm 
converts a rational number given as a ratio of integers into its continued fraction;  how do we get 
back?  The obvious way evaluates the continued fraction  “bottom-up” :  Rn+1 := 0 ;  Rn := 1 ;   for  
j = n, n–1, n–2, …, 2, 1  in turn  Rj–1 := qj·Rj + Rj+1 ;  finally  a/b = R0/R1  in lowest terms.
Exercise:  Confirm that every integer  Rj = rj/GCD(a, b) .

Translating the bottom-up evaluation of the continued fraction into matrix terms yields first  

=  ,  then  = …  .  This last expression offers 

two interesting opportunities.  One is a way to evaluate the continued fraction  “top-down” :

:=  ;   :=  ;   for  j = 2, 3, …, n  in turn   :=  ;  finally  :=  .

This top-down evaluation turns out to be a good way to evaluate endless continued fractions that 
encode non-rational numbers;  successive ratios  hj/gj  can be shown to converge alternatingly.
Exercise:  The endless continued fraction in which every  qj = 1  represents  µ := (1 + √5)/2 ;  can you see why?

Another opportunity offered by that long matrix product is a clear proof of  Lamé’s Theorem :  To 
compute  d := GCD(a, b)  for  a ≥ b > 0 ,  Euclid’s  algorithm needs  n ≤ 1 + ln(b/d)/ln(µ)  divisions.
Exercise:  Prove it by showing every  Rj  is at least as big as if every  qj = 1  except  qn = 2 ,  so  R1 ≥ ƒn+1 ,  a  

Fibonacci  number,  and  ƒn+1 = (µn+1 – (–1/µ)n+1)/(µ + 1/µ)  ≥  µn–1 .
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Seven More Exercises:

Suppose given integers  M > 1  and  N > 1  have  GCD(M, N) = 1 = n·M – m·N  for some integers  
m  and  n  whose signs are not yet determined.  Whether  M ≥ N  or not won’t matter anymore.

1)  Show why  m  and  n  must have the same nonzero sign.

Henceforth we can assume that  n > 0  and  m > 0 ;  otherwise swap  M  and  N ,  etc.

2)  What is  GCD(m, n) ?

3)  Show how to replace  m  and  n  respectively by  m  and  n  satisfying
0 < m < M ,    0 < n < N   and   1 =  n·M – m·N  =  n·M – m·N  .

Henceforth we can assume that   0 < m < M   and   0 < n < N   and   n·M – m·N = 1 .        (†)

4)  Exhibit instances of pairs  (M, N)  and  (m, n)  which satisfy these assumptions  (†),  but for 
which  M > N  in one instance,  and  M < N  in another.

5)  Given that the pairs  (M, N)  and  (m, n)  satisfy  (†),  show how to obtain a pair  (m, n)  that 
satisfies   0 < m < M   and   0 < n < N   and   m·N – n·M = 1 ,  as if  M  and  N  had been swapped.

6)  Show why  (†)  implies that  M – N  and  m – n  have the same nonzero signs unless  m = 1 = n .
( Hint:    (m + n)·(M – N) – 1  =  (m – n)·(M + N) + 1  .)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7)  Any two nonzero integers  x  and  y  determine a family of sets  { i, j, k, m, n }  of five integers 

satisfying  n > 0 ,      and   det( ) = 1 .  However  { i, j, k, m, n }  may be found,  

which of the five integers are determined uniquely by  x  and  y ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution 7):  Integers  k,  m  and  n  are determined uniquely but  i  and  j  are not.  To see why,  
observe first from the determinant that  k  and  m  can have no nontrivial  (other than  ±1 )  
common divisor since it has to divide the determinant  1 .  Next compute the inverse of the  2-by-

2  matrix to obtain    and infer    = n .  This means that  m/k = –x/y  in lowest terms,  

and that  n  is the  Greatest Common Divisor  of  x  and  y .  Thus are  k,  m  and  n  fixed uniquely 
by  x  and  y .  However,  i  and  j  can be replaced respectively by  i + L·k  and  j + L·m  respectively 
for any integer  L  with no alteration to the given constraints;  this amounts merely to replacing  

   by   ·  .

The foregoing solution explains all that the problem requested,  namely the uniqueness of the last 
three integers in the set  { i, j, k, m, n } .  To explain why integers  i  and  j  must exist is easier 
than explaining the  Extended Euclidean Greatest-Common-Divisor  algorithm that finds them.
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Determinants of Integer Matrices
What use are  Exercise 7’s  integers  i, j, k, m, n ?  One use is in a little-known but fairly efficient 
algorithm to compute the determinant or inverse of a matrix of modest dimensions whose entries 
are all integers.  Consider the determinant of a given integer matrix  E :

We can reduce  E  to an upper-triangular  U  whose determinant,  the product of its diagonal 
elements,  is the same as  det(E) .  To this end we premultiply  E  by a sequence of matrices each 
with determinant  1  and different from the identity matrix only in a  2-by-2  submatrix on the 
diagonal.  First premultiply to annihilate the lower left corner element of  E ;  next annihilate the 
element above it,  and so on up the first column until only its first element is nonzero.  Then do the 
same to the second column’s subdiagonal elements,  and so on until all subdiagonal elements 
become zeros.  Before each premultiplication construct a  2-by-2  matrix like the one in problem 
7,  using for  x  and  y  the leading  (presumably nonzero)  elements of adjacent rows;  then the 
premultiplication will replace  x  by  n > 0  and  y  by  0 .  This  n  takes the place of the  y  in the 
next annihilation.

Relatively few divisions occur in this algorithm,  all concerned with finding the  2-by-2  matrices,  
and most of these divisions have either short divisors or short quotients.  Moreover annihilations 
starting at the bottom of each column produce a value of  n ,  which becomes  y  at the next 
annihilation,  that usually turns out to be  1  (or the column’s greatest common divisor).  Thus,  in 
most of the  2-by-2  matrices three of the four elements are  ±1  or  0 ;  this is why the method is 
efficient despite that the integers in triangular factor  U  can grow very big.

Hard Exercise:  Compare the computational costs of the foregoing algorithm and  Chio’s Trick,  
q.v.,  posted for this course at  <www.cs.berkleley.edu/~wkahan/MathH110/Chio.pdf>.

The foregoing algorithm is part of the reduction of  E  to an upper-triangular  Hermite Normal Form,  which is on the 
path towards the  Smith Normal Form,  but these are stories for a different course on  Abstract Algebra  involving not 
just integers but also matrices whose entries are polynomials with rational coefficients.  These normal forms can 
entail gargantuan integers,  so their efficient computation requires algorithms much more subtle than the foregoing.
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LCM,  the  Least Common Multiple
LCM(j, k) = LCM(|j|, |k|)  is the least positive integer that both nonzero integers  j  and  k  divide 
leaving no remainder;  consequently   LCM(j, k) = |j|·|k|/GCD(j, k) .

Exercise:  Confirm the last equation and then  LCM(k, j) = LCM(j, k)  &   GCD(k, j) = GCD(j, k) .

Both functions  GCD  and  LCM  can be extended to sets  {k1, k2, k3, …, km}  of  m > 2  nonzero 
integers by defining first   GCD(k1, k2, k3, …, kn) := GCD(GCD(k1, k2, …, kn–1), kn)  and then  
LCM(k1, k2, k3, …, kn) := LCM(LCM(k1, k2, …, kn–1), kn)  for  n = 3, 4, 5, …, m   in turn.

Exercise:  Confirm that the order of the integers in the set  {k1, k2, k3, …, km}  does not matter.

The functions  GCD  and  LCM  have interesting interlocking properties whose description will be 
eased first by temporary abbreviations  γ(…) := GCD(…)  and  λ(…) := LCM(…) ,  and second 
by the temporary assumption that all three integers  i,  j  and  k  are positive.  For a more extensive 
discussion of these properties see  ch. 2  of  K.H. Rosen’s  book  Elementary Number Theory and 
its Applications,  4th ed. (2000),  Addison-Wesley,  Mass.

Exercise:  Confirm the following identities:

γ(i·j, i·k)  =  i·γ(j, k)     and      λ(i·j, i·k)  =  i·λ(j, k) .

γ(λ(i, j), k)  =  λ(γ(i, j), γ(j, k))     and     λ(γ(i, j), k)  =  γ(λ(i, j), λ(j, k)) .

γ(λ(i·j), λ(j·k), λ(k·i))  =  λ(γ(i·j), γ(j·k), γ(k·i)) .

γ(i, j, k)·λ(i·j, j·k, k·i)  =  λ(i, j, k)·γ(i·j, j·k, k·i)  =  i·j·k .

i·j·k·γ(i, j, k)  =  λ(i, j, k)·γ(i, j)·γ(j·k)·γ(k·i) .

They are not all easy to prove.
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Computer Programs  for  GCD  and  LCM
Every computer has limited extent in space and time.  Preoccupation with the limits distinguishes 
computer scientists from mathematicians.  When we write a program to compute a mathematical 
function,  we choose,  perhaps unwittingly,  to reconcile our expectations with those limits.  A 
conscientious choice poses mathematical challenges some of which are sampled in what follows.

First we must decide how the programs shall handle boundary integers,  namely  0  and  ∞ .  If you 
prefer to exclude  ∞  from the set of integers,  you are in good company.  Computer programs 
cannot be so picky;  they must handle in a reasonable manner whatever input comes their way.  
The only alternative is to stop the computer when a program refuses to accept some input deemed 
invalid;  but the consequences of stopping a computer are difficult to predict,  always annoying,  
and sometimes dangerous.  A program should refuse to accept data only if refusal is the least 
unreasonable option after all others have been considered and found to cause worse confusion.

Therefore convention assigns  GCD(k, 0) := GCD(k, ∞) := k  except  GCD(0, ∞) := 0 ,  and then  
LCM(k, 0) := 0  and  LCM(k, ∞) := ∞  except  LCM(0, ∞) := NaN ,  which stands for  “Not a 
Number”.  It is an unacceptable input whose creation from  non-NaN  inputs raises an  Invalid 
Operation  flag that the program’s user can detect subsequently at  his/her/its  convenience.  This 
flag exists in hardware conforming to  IEEE Standard 754  for  Floating-Point Arithmetic  but,  
alas,  is inaccessible through most programming languages like  MATLAB  and  Java.

Computers cope with at most finitely many distinct integers;  the rest are too big.  This limitation 
afflicts  LCM(…)  because its output is usually bigger than its inputs.  If too big,  the output must 
either  Overflow  or get  Rounded Off  to something else.  Many programming languages cannot 
detect the altered result of  Integer Overflow;  and it stops the computer with an error message for 
many of the others,  like  MAPLE  and  Prof. Yuji Kida’s  UBASIC.  Some languages,  MATLAB  
and early versions of  BASIC  among them,  represent all but their smallest integers as floating- 
point variables with some preassigned number of so-called  Significant Digits.  Any integer wider 
than that gets rounded off to a represenatable value or else,  if extremely big,  overflows to  ∞ .  
Either  Procrustean  action raises an  Inexact Operation  flag in standard-conforming hardware 
but,  alas,  this flag too is inaccessible from  MATLAB  and most other programming languages.

In short,  integer inputs and outputs bigger than some obscure thresholds can invalidate computed  
GCDs  and  LCMs.  In floating-point arithmetic  GCDs  are threatened,  despite that no integers in 
the  Euclidean  algorithm need be bigger than its inputs,  because some of those integers,  though 
smaller in magnitude,  may require an extra significant digit beyond the inputs’.  LCMs  may need 
more significant digits than the arithmetic affords.  Extra-precise intermediate arithmetic,  when 
available,  produces correct  GCDs  and helps warn of  LCMs  too big.  Even so,  the following  
MATLAB  programs are complicated almost grotesquely by their attempts to cope with all threats.
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MATLAB  Programs  for  GCD  and  LCM
MATLAB’s  own programs for these functions can be exhibited by the commands  type gcd  and  
type lcm .  Partly because  MATLAB’s  own  gcd  and  lcm  programs do not make fuller use of 
the floating-point hardware they run on,  they malfunction for some inputs.  For instance,  they  
compute  gcd(3, 2^80) = 3 ≠ 1  and  gcd(28059810762433, 2^53) = 28059810762433 ≠ 1 .  
They abort if  ∞  is an input.  They cannot handle more than pairs of inputs,  so  LCM(i, j, k)  must 
be obtained from the expression  lcm(lcm(i, j), k) .  Its value should not depend upon the 
order of  { i, j, k }  but does for  { 12647423,  712176643,  12658905 } ,   giving  lcm(lcm(…)…)   
two values  1.14021279681837e23  and  1.98608743567039e19  of which one is the true  LCM  
19860874356703880745  rounded correctly to  53 sig. bits.

MATLAB’s  roundoff threshold for its  53-sig.-bit  floating-point variables is  eps = 2–52
 .  They 

can hold the  consecutive  integers  0, 1, 2, 3, …,  253 = 9007199254740992 .  Numbers bigger 
than this  16-digit  integer get rounded off to  53-sig.-bit integers.  Because current versions of  
MATLAB  display at most  15  sig. dec.  instead of  17 ,  distinct big integers may look the same on 
screen unless displayed in a  16-digit hexadecimal  format eschewed here.

By exploiting arithmetic capabilities accessible through some versions of  MATLAB  on some 
computers,  the functions  gcd  and  lcm  provided below either malfunction far less often than  
MATLAB’s  own,  or offer easy ways to detect almost all practically unavoidable malfunctions.

Without those capabilities,  the functions  gcd  and  lcm  provided below are slightly faster than  
MATLAB’s  own but no more reliable.  Some of their malfunctions are exposed by the two test 
programs  gcdtest  and  lcmtest  provided below along with some of their results.

Function  precn  below is not used by  gcd  nor  lcm ,  but is called by  gcdtest  and  lcmtest  
only to uncover the precision of arithmetic  MATLAB  uses to accumulate matrix products.  Early 
versions on  PCs  and old  680x0-based  Macintoshes  accumulated these products extra-precisely,  
to  64 sig. bits,  before rounding them down to  53  as they were stored.  MATLAB 6.5  on  PCs  can 
be commanded to do that when the factors and products fit into the computer’s cache-memory.  
On  Power-Macs  and  iMacs  the accumulation benefits  (rarely by much)  from  Fused Multiply-
Adds  that commit only one  53 sig. bit  rounding error per expression of the form  “ x ± y·z ” .  
Most users of  MATLAB  ignore whatever  precn  exposes,  though occasionally such details 
matter crucially;  e.g.,  see   <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> .  And the test 
results below show how such details determine whether  gcd  and  lcm  pass all their tests.
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function [g,c,d] = gcd(a,b)
%GCD    Greatest Common Divisor.
%   G = gcd(A,B)  is an array of  Greatest Common Divisors  of the
%   corresponding elements of  A  and  B .  These arrays must contain
%   only integers and must have the same size unless one is a scalar.
%   By convention  gcd(x, 0) = gcd(x, Inf) = |x| ;  gcd(0, Inf) = 0 .
%   Otherwise  gcd  is a finite positive integer computed correctly,
%   despite roundoff no matter how big elements of  A and B  may be,
%   only under circumstances discussed in the fourth paragraph below.
%   Correct values of  gcd(3, 2^80) = gcd(28059810762433, 2^53) = 1 .
%
%   G = gcd(A)  is a row of which each element is the  GCD  of the
%   corresponding column of the array  A  of integers.
%
%   [G,C,D] = gcd(A,B)  also returns C and D so that  A.*C + B.*D = G
%   and  |C|.*G <= |B|  and  |D|.*G <= |A|  with equality only rarely.
%   [C, D]  is useful for solving Diophantine equations and computing
%   Hermite transformations.  Note that another possibility for pair
%   [C, D]  is  [C, D] - [S.*B./G, -S.*A./G]  where  S = sign(B.*C) ;
%   one pair  [C,D]  may suit your application better than the other.
%
%   Roundoff can spoil  A.*C + B.*D = G  unless  |A.*C| < 2/eps  and
%   |B.*D| < 2/eps .  Wherever  max(|A|,|B|) > 2/eps  there  [G,C,D]
%   MAY BE WRONG  except on  Power Macs,  whose  G  is always correct
%   even if  [C,D]  is not.  If  max(|A|,|B|) <= 2048/eps ,  or if
%   min(|A|,|B|) <= 2048 ,  then  G  (if not  [C,D])  is correct also
%   on old  680x0-based  Macs,  and also on  Intel-based  PCs  with
%   64-sig.-bit accumulation of matrix products enabled via  Matlab
%   6.x's  invocation  " system_dependent('setprecision', 64) " .
%
%   See also  LCM  and,  for  Matlab 3.5,  reshape,  isinf  and,  for
%   386-Matlab 3.5 & PC-Matlab 4.2,  r0und,  all as modified by  W.K.

%   Algorithm: See Knuth Volume 2, Section 4.5.2, Algorithm X sped up
%   Original Author: John Gilbert, Xerox PARC;  sped up by  W. Kahan
%   Original Copyright (c) 1984-98 by The MathWorks, Inc.
%   Original Revision: 5.9   Original Date: 1997/11/21 23:45:38
%   First modified by  W.K.  in  1990  to fix  gcd(3, 2^80) = 3 .
%   $Revision: 6.5.W.K. $  $Date: 2008/09/14 06:09:59 $

if (nargin == 2)  %...  Case  gcd(a,b)
% Do scalar expansion if necessary
sza = size(a) ;  szb = size(b) ;  %...  Matlab 3.5 - 6.5 compatible
if (sza == 1),   a = a*ones(szb(1),szb(2)) ;  %...  "  "  "
  elseif (szb == 1),   b = b*ones(sza(1),sza(2)) ;  end

sza = size(a) ;  if  any(sza - size(b))
    error('Arrays input to  gcd(A,B)  must have the same size.')
  else
    a = a(:) ;  b = b(:) ;
  end;

if  any(round(a) ~= a)|any(round(b) ~= b)|any(imag(a))|any(imag(b))
    error('gcd(A,B) requires all inputs to be real integers.')
  end  %...  Inf  is deemed an integer,  but  NaN  is not.



File  GCD5                Euclid’s  GCD  Algorithms vs. Programs          October 28, 2008 5:40 pm

Prof. W. Kahan                                           Notes for  Math. H110   &  128B                                                        Page 10/21

if  (nargout < 2)  % ...  save time by omitting  c  and  d
    Y = [a, b]' ;  g = b ;  L = [0, 1; 1, 0] ;
    for  k = 1:length(a)
        x = Y(:,k) ;  %... = [a(k); b(k)]
        if any(isinf(x)),   g(k) = min(abs(x(:))) ;
        else   %...  finite operands
        while  x(2)  % ... ~= 0 ;  MOD(x(1),x(2))  and  REM(...)  could
            L(2,2) = -round(x(1)/x(2)) ; %  be wrong if  x(1)  is  huge
            x = L*x ;  % ...  new |x(2)| <= old |x(2)|/2
          end % ... of inner loop traversed fewer than  40  times
        g(k) = abs(x(1)) ;  end %...  of usual finite case
      end  % ... of  k
    g = reshape(g, sza) ;
    return
  end  % ...  of  Case  gcd(A,B)  with  nargout < 2

%  Case  [G,C,D] = gcd(A,B)  with  nargout == 3 ,  presumably.
Y = [a, b, b] ;  % ...  initialized to the right size
I = eye(2) ;  L = flipud(I) ;

for  k = 1:length(a)
    X = [I, Y(k,1:2)'] ; % ... = [1, 0, a(k);  0, 1, b(k)].
    if  isinf(X(1,3)),  X = flipud(X) ;  elseif ~isinf(X(2,3))
        while X(2,3)  % ... ~= 0  and everything is finite ...
            L(2,2) = -round(X(1,3)/X(2,3)) ;
            X = L*X ; % ... new |X(2,3)| <= old |X(2,3)|/2
          end  % ... of inner loop traversed fewer than  40  times.
      end  % ...  of finite  a(k)  and  b(k)
    if  (X(1,3) < 0),  X = -X ;  end  % ...  invert  g(k) < 0 .
    Y(k,:) = X(1,:) ;
  end  % ...  of  k

g = reshape(Y(:,3), sza) ;
c = reshape(Y(:,1), sza) ;
d = reshape(Y(:,2), sza) ;
return
%  end of Case  [G,C,D] = gcd(A,B)

elseif  (nargin == 1)  %...  Case  gcd(A)  treated recursively
if (nargout > 1)
    error('G = gcd(A)  has just one output.'),  end
g = a(1,:) ;  [isr, isc] = size(a) ;
for  k = 2:isr,  g = gcd(g, a(k,:)) ;  end
return
%  end of  Case gcd(A)

else  error('gcd(A,B)  accepts just one or two arguments.')

%  For  Matlab 3.5,  isinf(x) = ~( finite(x)|isnan(x) ) ,  and
%  retrofitted  reshape(X, size(...))  works.  And for
%  386-Matlab 3.5 & PC-Matlab 4.2,  use  r0und  instead of buggy  round .
end  %...  of  gcd

%  =======================================================================
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function L = lcm(a,b,x)
%LCM    Least Common Multiple,  with optional correctness test.
%   L = lcm(A,B) = lcm(abs(A), abs(B)) >= 0  is an array of  Least
%   Common Multiples  of corresponding elements of integer arrays
%   A and B.  They must have the same size unless one is a scalar.
%   WARNING:  Roundoff may have spoiled  L  wherever  L >= 2/eps .
%
%   L = lcm(A,B,x)  substitutes the scalar  x  for any element of
%   L >= 2/eps  that fails an optional appended correctness test.
%   Among plausible choices  x  are  0, Inf  and  NaN,  depending
%   upon how  lcm's  user will respond to these error-indicators.
%
%   Alas,  some errors can evade detection by the test.  It works
%   best when  Matlab  accumulates matrix products either with
%   Fused Multiply-Adds,  as it does on  Power Macs,  or else
%   extra-precisely as do versions 3.5-5.2 on  680x0-based Macs,
%   and versions 3.5-4.2 on a PC,  and version 6.5 on a PC after
%   it executes the command  system_dependent('setprecision',64).
%   Then  lcm(A,B,x)  should detect any erroneous  L < 2048/eps .
%
%   L = lcm(A)  is a row whose every element is the  LCM  of the
%   corresponding column of the array  A  of integers.   WARNING:
%   Wherever  L >= 2/eps  roundoff may make  L  utterly erroneous
%   though  lcm(A)  tries to substitute  Inf  for each such error
%   unless aborted by a  NaN  produced by  lcm(0,Inf) .  Wherever
%   lcm(flipud(A))  differs from  lcm(A) ,  both may be wrong.
%
%   Requires  gcd(...)  as modified by  W.K.  after  1990.
%                                 W. Kahan,  1990 - 14 Sept. 2008

if any(imag(a(:)))
    error('lcm(A,...)  accepts no complex argument.'),  end
a = abs(a) ;
if (nargin > 1)  %...  Cases  lcm(a,b)  and  lcm(a,b,x)
if any(imag(b(:)))
    error('lcm(A,B,...)  accepts no complex argument.'),  end
b = abs(b) ;
% Do scalar expansion if necessary
sza = size(a) ;  szb = size(b) ;  %...  Matlab 3.5 - 6.5 compatible
if (sza == 1),   a = a(ones(szb(1),szb(2))) ;
  elseif (szb == 1),   b = b(ones(sza(1),sza(2))) ;  end

%  Gcd(A,B)  will expose other erroneous inputs,  namely ...
%     input arrays  A  and  B  of different sizes,  or
%     any element in  |A|  or  |B|  not an integer.
%     Gcd  deems  Inf  an integer,  but not  NaN .

g = gcd(a,b) ;  g = g+(g==0) ;  Lg = isinf(g) ;
if any(Lg(:)),  g(Lg) = Lg(Lg) ;  end  %...  lcm(inf, inf) = inf .
a = a./g ;  L = a.*b ;
if (nargin == 2),  return,  end  %...  of  Case  lcm(a,b)

%  Case  lcm(a,b,x)'s test:
if (L(~Lg) < 2/eps),  return,  end  %...  no further test needed
if (length(x(:)) ~= 1),  x = x
  error('x  in  lcm(A,B,x)  must be a scalar,  not array.'),  end
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%   What follows substitutes poorly for  IEEE 754's INEXACT flag:
g = g(:) ;  b = b(:)./g ;  a = a(:) ;  Lg = isinf(a)|isinf(b) ;
[m,n] = size(L) ;  mn = m*n ;
L = L(:) ;  q = round(L./g) ;
for  j = 1:mn  %...  seek erroneous finite  L(j)  only where ...
  if ~Lg(j)    %...  both  a(j)  and  b(j)  are finite:
    if ( [L(j), q(j)]*[-1; g(j)]~=0 ),  L(j) = x ;  %...  L  is wrong
    elseif ( [q(j), a(j)]*[-1; b(j)]~=0 ),  L(j) = x ;  end %... " "
   end, end  %...  of finite  a(j)  and  b(j) ,  and of  j
L = reshape(L, m,n) ;  return
end  %...  of  Case  lcm(a,b,x)

%  Case  lcm(A)  treated tail-recursively:
L = a(1,:) ;  [isr, isc] = size(a) ;
for  k = 2:isr ,  L = lcm(L, a(k,:), Inf) ;  end
%  end of  Case lcm(A)

%  For  Matlab 3.5,  isinf(x) = ~( finite(x)|isnan(x) ) .  For
%  386-Matlab 3.5,  use  W.K's  r0und  instead of buggy  round .

%  =======================================================================

The built-in function  round(x)  in  386-Matlab 3.5k  and in  PC-Matlab 4.2  has a bug:

If odd integer  |x| > 1/eps = 252  (in which case  |x| < 253  too)
then    round(x)  – x  ==  sign(x)     instead of  0 .

This bug is fixed,  albeit slowly,  by  r0und.m :

function  y = r0und(x)
%R0UND  Round to a nearest integer;  ONLY  for PCs Matlab 3.5 & 4.2
%  r0und(x) = integer "nearest"  x ,  fixing a bug in  round.m:
%  386-Matlab 3.5's  and  PC-Matlab 4.2's  buggy  round(x)  yields
%  x + sign(x)  whenever  odd  |x| > 2^52  (and therefore
%  |x| < 2^53  too).  This fixes  gcd.m,  lcm.m,  etc.
%                                   W. Kahan  22 Sept. 1997
y = round(x) ;
J = (abs(x) > 1/eps) ;
if any(J(:)),  y(J) = x(J) ;  end

%  =======================================================================
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function  m = precn(n)
%PRECN senses precision carried while accumulating matrix products
%  m = precn(n)  uses only  add,  subtract and multiply operations
%  (no divisions)  upon a few artfully chosen integers  (no loops)
%  to sense the current precision  |m| sig. bits  in which  MATLAB
%  accumulates matrix multiplications of not too big dimensions
%  before storing the product in  53 sig. bits.  This  m  depends
%  upon the version  ( < 7)  of  MATLAB,  the computer's hardware,
%  and possibly some control bits in the processor,  as follows:
%  v. 3.5  on  PCs & 680x0-based Macs:  m = 24, 53 or 64 (default)
%  v. 4.2 - 5.2  on  680x0-based Macs:  m = 64
%  v. 5.2  on  Power-Macs & iMacs (Fused Multiply-Adds):  m = -53
%  v. 4.2  on  PCs:  m = 64
%  v. 5.3  on  PCs & every v. on SUN SPARCS:  m = 53
%  v. 6.5  on  PCs:  m = 24, 53 (default) or 64
%
%  Argument  n  of  precn(n)  can be omitted and is ignored except
%  by versions of  precn  running on  PCs  under  MATLAB 3.5 & 6.5
%  with appropriate leading  "%"  characters deleted from the file.
%  Then  m = precn(n)  is determined after the precision is reset
%  to  n  by an invocation appropriate to the version.
%                            Revised 21 Sept. 2008.     W. Kahan

if (nargin == 0),  n = 0 ;  else

%  For  386-Matlab 3.5  on  PCs  delete leading  "%"  in this block:
%      if (n == 64)                                               %:
%          ! CTRL87 33D
%      elseif (n == 53)                                           %:
%          ! CTRL87 23D
%      elseif (n == 24)                                           %:
%          ! CTRL87 03D
%      else  N = n                                                %:
%          error(' precn(N)  requires  N = 24, 53 or 64 .')       %:
%        end                                                      %:

%  For  Matlab 6.5  on  PCs  delete leading  "%"  in this block:
%      if ~( (n==24)|(n==53)|(n==64) ),  N = n                %:
%          error(' precn(N)  requires  N = 24, 53 or 64 .')   %:
%        end                                                  %:
%      system_dependent('setprecision', n)                    %:

  n = 1 ;  end  % ...  to impede compiler over-optimization

a = 409891 ;  ab = 2731 + n ;  a = [ab, -a]*[a; n] ;
b = 7623851 ;  ab = 1441 + n ;  b = [ab, -b]*[b; n] ;
ab = a*b ;  % ... = (2^65 + 1)/3  rounded to  min(m, 53) sig. bits

c = 2761 ;  d = 4051+n ;  cd = [c, -n]*[d; c] ;  %... = (2^25 + 1)/3

t11 = 2048 ;  t15 = 16*t11 ;  t40 = t15*t15*1024 ;  %... tk = 2^k

e = ([c, -c, a]*[(d-n)*t15; (d-n)*t40; b])*3 - t15 ;  %... = 1 ?
f = ([a, -c, c]*[b; (d-n)*t40; (d-n)*t15])*3 - t15 ;  %... = 1 ?
ef = [e, f] ;
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if      (ef == [1, 1]),        m = 64  ;
elseif  (ef == [1, -t11]),     m = -53 ;
elseif  (ef == [-t11, -t11]),  m = 53  ;
elseif  (ef == [-t15, t40]),   m = 24  ;
else  Version = ver,  Machine = computer,  EF = ef
    error(' Why does  precn  malfunction on this machine?')
  end

%  =======================================================================

CTRL87.EXE  was compiled from the following  Borland Turbo-Pascal  program:

{$R-,S-,I-,D-,T-,F-,V-,B-,N-,L+ }
{$M 1024,0,1024 }

      program ctrl87;
   {  CTRL87 <ctl<, msk>>  uses two 3-hex-digit parameters  ctl and msk
        to set as many as 9 bits in the  ix87  Control-Word  as follows:
               New CW  :=  (msk AND ctl) OR (NOT(msk) AND Old CW) .
        If  msk  is omitted,  0F00  is used in its place.  If both  msk
        and  ctl  are omitted,  or if either is  " ? "  or not hexadecimal
        they will be prompted from the keyboard after the display of
        DOC  below,  which explains how they affect subsequent floating-
        point arithmetic operations.  To do nothing,  [Enter]  nothing.

        To prevent mishaps,  msk  is filtered thus:  msk := msk AND 0F3D
      ==================================================================
      }
      const
         n = 19 ;   {  n = current number of lines in  DOC  }
         DOC: array[1..n] of string[55] = (
            '  CTRL87 <ctl<, msk>>  sets the  ix87  Control-Word ',
            '  C-W := (msk AND ctl) OR (NOT(msk) AND C-W)  from 2',
            '  3-hex-digit parameters  ctl and msk .  C-W''s bits ',
            '  are  OR''d  to affect floating-point thus:     C-W ',
            '  TRAPS:  (default)   Disable All traps    ...  _3D ',
            '   or     Disable  trap for  INVALID OP    ...  _01 ',
            '     and  Disable  trap for  DIV by ZERO   ...  _04 ',
            '     and  Disable  trap for  OVERFLOW      ...  _08 ',
            '     and  Disable  trap for  UNDERFLOW     ...  _10 ',
            '     and  Disable  trap for  INEXACT       ...  _20 ',
            '  PRECISION:  (default) Round to  REAL*10  ...  3__ ',
            '               or else  Round to  REAL*8   ...  2__ ',
            '               or else  Round to  REAL*4   ...  0__ ',
            '  DIRECTION:  (default) Round to  Nearest  ...  0__ ',
            '               or else  Round     Down     ...  4__ ',
            '               or else  Round     Up       ...  8__ ',
            '               or else  Round to  Zero     ...  C__ ',
            '  Initial Control-Word  ctl  set by  FINIT ...  33D ',
            '  Default msk = 0F00 .  Maximal effective msk = F3D '  );
      Sctl = '  Current setting of  Control-Word  ctl    ... ' ;
      S3H =  '  Enter  3  hex digits for ' ;
      msx = $0F3D ;  { ... maximal  msk }

      var
         ctl, i, j, k, L, msk : word ;   s : string ;

       function  Wrd2Str( i : word ) :  string ;
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         { ...  converts word  i  to its string of  4  hex digits.}
         var  j, k : word ;  s : string[4] ;
         begin
           s := '' ;
           for  k := 0 to 3 do begin
             j := i AND $F ;
             i := i shr 4 ;
             if j > 9 then  j := j + $37
                      else  j := j + $30 ;
             s := Concat( Chr(j), s ) ;
             end ; {  k  }
           Wrd2Str := s
         end; { Wrd2Str }

      procedure  GetHex( var j, k : word;  s : string );
        begin   { converts string  s  to  4-hex-digit word  j }
           Val( ConCat('$',s), j, k ) ; { j = value of $s if  k = 0 }
           if  k > 0  then  Writeln(s, '  is not hexadecimal.') ;
           end ; { GetHex }

      begin
        inline( $9B/$D9/$3E/i/$9B ) ;  {  fstcw  i ;  old Control-Word }
        L := ParamCount ;
        if  L = 0  then  k := 1  else begin
          s := ParamStr(1) ;  { = first parameter on DOS command line }
          if  Copy(s,1,1) = '?'  then  k := 1  else  GetHex(ctl, k, s) ;
          if  k = 0  then
            if  L < 2  then  msk := $0F00
                       else  GetHex(msk, k, ParamStr(2)) ;
          end ;  { L > 0 }

        while  k > 0  do begin { Prompt for  ctl  and  msk .}
           for  j := 1 to n  do  Writeln( DOC[j] ) ;
           Writeln( Sctl, Wrd2Str( i AND msx ) ) ;
           Writeln( S3H, 'new  ctl :' ) ;
           Readln(s) ;
           if  (s = '') or (s = ' ') or (s = '  ')
                  then  Exit ;  { Do nothing.}
           if Copy(s,1,1) = '?' then  k := 1  else  GetHex(ctl, k, s) ;
           if  k = 0  then  { Prompt for  msk .}
             repeat
               Writeln( S3H, ' msk  or accept  0F00 :' ) ;
               Readln(s) ;
               if  (s = '') or (s = ' ') or (s = '  ')
                                              then  msk := $0F00
                                              else  GetHex(msk, k, s) ;
              until  k = 0 ;  { Prompted for  msk .}
            L := 0 ;
           end ;  { Prompted values for  ctl  and  msk .}

        msk := msk and msx ;  { Don't change  8087 vs. 387  C-W .}
        ctl := (msk and ctl) or ((not msk) and i) ;
        inline( $9B/$D9/$2E/ctl/$9B ) ;  {  fldcw  ctl  }
        if  L = 0  then  Writeln( Sctl, Wrd2Str( ctl AND msx ) ) ;
      end.
    { ================================================================== }
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%  gcdtest.m  is a  Matlab  script to test versions of  gcd.m
format compact,  format long g
diary  gcdtest.txt
disp ('  GCDtest  puts its results into  GcdTest.txt')
DateTime = round(clock)
Machine = computer,  ver
MatMultPrecn = precn
disp( '   ')
disp ('  1st test:  G = gcd(A, B)  and  gcd(B, A) :')

p = 28059810762433 ;   %...  a prime
t53 = 2^53 ;
A = [ 77,  77,  77,   0;    3,     15, t53,  t53-1 ] ;
B = [132,   0, Inf, Inf; 2^80, 2+2^52,   p,     p  ] ;
G = [ 11,  77,  77,   0;    1,      3,   1,     1  ] ;
G0 = gcd(A, B) ;
G1 = gcd(B, A) ;
K = (G ~= G0)|(G ~= G1) ;
if ~any(K(:))
    disp('  1st test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...
    disp('  1st test failed in these cases:')
    F = [A(K)'; B(K)'; G0(K)'; G1(K)'; G(K)'] ;
    disp('  A;B;gcd(A,B);gcd(B,A);trueGCD = '), F
  end  %... of 1st test

disp('   ')
disp('  2nd test:  [G, C, D] = gcd(A,B)  and  gcd(B, A) :')
f80 = 2^40 ;
f80 = ((f80 - 1)/3)*(f80 + 1) ;  %... = (2^80 - 1)/3  rounded
A = [ 77, 77,  77,   0;    3,             -15, t53,        t53-1     ] ;
B = [132,  0, Inf, Inf; 2^80,          2+2^52,   p,           p      ] ;
G = [ 11, 77,  77,   0;    1,               3,   1,           1      ] ;
C = [  7,  1,   1,   1; -f80, 300239975158033,  -1,  -14029905381217 ] ;
D = [ -4,  0,   0,   0;    1,               1, 321, 4503599627370656 ] ;
[G0, C0, D0] = gcd(A, B) ;
[G1, C1, D1] = gcd(B, A) ;
K = (G0~=G)|(G1~=G)|(C0~=C)|(C1~=D)|(D0~=D)|(D1~=C) ;
if ~any(K(:))
    disp('  2nd test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...
    disp('  2nd test failed in these cases:')
    F = [A(K)'; B(K)'; G0(K)'; C0(K)'; D0(K)'; G1(K)'; C1(K)'; D1(K)'] ;
    disp(' A;B;[gcd(A,B);C0;D0];[gcd(B,A);C1;D1];trueGCD;C;D = ')
    F = [F; G(K)'; C(K)'; D(K)']
  end  %... of 2nd test

disp('   ')
disp('  3rd test:  G = gcd(E)  and  gcd(flipud(E)) :')
g = [1, 3, 11, 17] ;  e = [77; 132; 144] ;  E = e*g ;
E = [E, [124+t53; t53-19; t53+254]] ;  g = [g, 13] ;
g0 = gcd(E) ;  g1 = gcd(flipud(E)) ;
k = (g0~=g)|(g1~=g) ;
if ~any(k(:))



File  GCD5                Euclid’s  GCD  Algorithms vs. Programs          October 28, 2008 5:40 pm

Prof. W. Kahan                                           Notes for  Math. H110   &  128B                                                        Page 17/21

    disp('  3rd test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...
    disp('  3rd test failed in these cases:')
    disp('  E;gcd(E):gcd(flipud(E));trueGCD = ')
    F = [E(:,k); g0(k); g1(k); g(k)]
  end  %... of 3rd test
disp('  '),  disp('  ')

%  =======================================================================

The following  GCDtest results  were obtained from an  IBM T21  laptop running  MS Windows 
2000,  and were replicated on a  Dell Optiplex  running  MS Windows XP.  As expected,  the tests 
failed when run with the default  MatMultPrecn = 53  and passed with  MatMultPrecn = 64 .

As expected,  the failures for  MatMultPrecn = 53  were replicated by  PC MATLAB 5.3,  and the 
passed tests for  MatMultPrecn = 64  were replicated by  PC MATLABs 3.5 and 4.2,  and by  Mac 
MATLABs 3.5, 4.2 and 5.2  on a  68040-based  Mac Quadra 950.  Passed tests were replicated also 
by  Mac MATLAB 5.2  with  MatMultPrecn = -53  revealing  Fused Multiply-Adds  on a  Power 
Mac 8600  and on an  iMac.

  GCDtest  puts its results into  GcdTest.txt
DateTime =  2008  9  14          14:16:15
Machine = PCWIN
-----------------------------------------------------------------------------
MATLAB                                    Version 6.5        (R13)
MatMultPrecn =    53
   
  1st test:  G = gcd(A, B)  and  gcd(B, A) :
  1st test failed in these cases:
  A;B;gcd(A,B);gcd(B,A);trueGCD = 
F =
                         3     9.00719925474099e+015
     1.20892581961463e+024            28059810762433
                         3            28059810762433
                         3            28059810762433
                         1                         1
   
  2nd test:  [G, C, D] = gcd(A,B)  and  gcd(B, A) :
  2nd test failed in these cases:
 A;B;[gcd(A,B);C0;D0];[gcd(B,A);C1;D1];trueGCD;C;D = 
F =
                         3     9.00719925474099e+015     9.00719925474099e+015
     1.20892581961463e+024            28059810762433            28059810762433
                         3            28059810762433                         1
                         1                         0                        -1
                         0                         1                       321
                         3            28059810762433                         1
                         0                         1                       321
                         1                         0                        -1
                         1                         1                         1
    -4.02975273204876e+023                        -1           -14029905381217
                         1                       321     4.50359962737066e+015
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  3rd test:  G = gcd(E)  and  gcd(flipud(E)) :
  3rd test failed in these cases:
  E;gcd(E):gcd(flipud(E));trueGCD = 
F =
     9.00719925474112e+015
     9.00719925474097e+015
     9.00719925474125e+015
                         1
                        13
                        13
  
  
system_dependent('setprecision', 64)
gcdtest
  GCDtest  puts its results into  GcdTest.txt
DateTime =  2008  9  14          14:16:52
Machine = PCWIN 
-----------------------------------------------------------------------------
MATLAB                                    Version 6.5        (R13)
MatMultPrecn =    64
   
  1st test:  G = gcd(A, B)  and  gcd(B, A) :
  1st test passed.
   
  2nd test:  [G, C, D] = gcd(A,B)  and  gcd(B, A) :
  2nd test passed.
   
  3rd test:  G = gcd(E)  and  gcd(flipud(E)) :
  3rd test passed.
  
  
quit

%  =======================================================================
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%  lcmtest.m  is a  Matlab  script to test  W.K.'s  version of  lcm.m
format compact,  format long g
diary  lcmtest.txt
disp ('  lcmtest  puts its results into diary  lcmtest.txt')
DateTime = round(clock)
Machine = computer,  ver
MatMultPrecn = precn
disp( '   ')

disp ('  1st test:  L = lcm(A, B)  and  lcm(B, A) :')
p = 28059810762433 ;  i = 712176643 ;  %... primes
j1 = 2203 ;  j2 = 5741 ;  %... primes
k1 = 2205 ;  k = k1*j2 ;  j = j1*j2 ;
t52 = 2^52 ;  t53 = 2*t52 ;  t80 = 2^80 ;
A = [ 77,    j,   i,   i;     3,       15,   t53,   t53-1 ] ;
B = [132,    k,   j,   k;   t80,    2+t52,     p,       p ] ;
L = [924, j*k1, i*j, i*k; 3*t80, 10+5*t52, p*t53, t53*p-p ] ;
L0 = lcm(A, B) ;
L1 = lcm(B, A) ;
K = (L ~= L0)|(L ~= L1) ;
if ~any(K(:))
    disp('  1st test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...
    disp('  1st test failed in these cases:')
    F = [A(K)'; B(K)'; L0(K)'; L1(K)'; L(K)'] ;
    disp('  A;B;lcm(A,B);lcm(B,A);trueLCMrounded  = '), F
  end  %... of 1st test
disp('   ')

disp('  2nd test:  L = lcm(A, B, Inf)  and  lcm(B, A, Inf) :')
A = [ 77,    j,   i,   i;     3,       15,   t53,   t53-1 ] ;
B = [132,    k,   j,   k;   t80,    2+t52,     p,       p ] ;
L = [924, j*k1, i*j, Inf; 3*t80,      Inf, p*t53,     Inf ] ;
L0 = lcm(A, B, Inf) ;
L1 = lcm(B, A, Inf) ;
K = (L ~= L0)|(L ~= L1) ;
if ~any(K(:))
    disp('  2nd test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...
    disp('  2nd test failed in these cases:')
    F = [A(K)'; B(K)'; L0(K)'; L1(K)'; L(K)'] ;
    disp('  A;B;lcm(A,B,Inf);lcm(B,A,Inf);expectedLCMchecked  = '), F
  end  %... of 2nd test
disp('   ')

disp('  3rd test:  L = lcm(E)  and  lcm(flipud(E)) :')
g = [1, 3, 11, 17] ;  e = [77; 132; 144; 11088] ;  E = e*g ;
l = E(4,:) ;  E = E(1:3,:) ;
E = [E, [i, j; j, i; k, k]] ;  l = [l, Inf, Inf] ;
l0 = lcm(E) ;  l1 = lcm(flipud(E)) ;
k = (l0~=l)|(l1~=l) ;
if ~any(k(:))
    disp('  3rd test passed.')
  else  %...  when matrix mult'n is not accumulated extra-precisely ...



File  GCD5                Euclid’s  GCD  Algorithms vs. Programs          October 28, 2008 5:40 pm

Prof. W. Kahan                                           Notes for  Math. H110   &  128B                                                        Page 20/21

    disp('  3rd test failed in these cases:')
    disp('  E;lcm(E):lcm(flipud(E));expectedLCM = ')
    F = [E(:,k); l0(k); l1(k); l(k)]
  end  %... of 3rd test
disp('  ')

disp('  4th test:  lcm(0, x),  lcm(Inf, x)  and  lcm(Inf, 0) :')
a = [  77,  0, Inf, 0, Inf, Inf ] ;
b = [ 132, 77,  77, 0, Inf,   0 ] ;
L = [ 924,  0, Inf, 0, Inf, NaN ] ;
L0 = lcm(a,b) ;  L1 = lcm(b,a) ;  L2 = lcm(a,b,99) ;
K = [0,0,0,0,0, isnan(L0(6))&isnan(L1(6))&isnan(L2(6))] ;
K = ((L0==L)&(L1==L)&(L2==L))|K ;
if all(K(:))
    disp('  4th test passed.')
  else
    disp('  4th test failed in these cases:')
    disp('  a;b;lcm(a,b);lcm(b,a);lcm(a,b,99);expectedLCM = ')
    F = [a(~K); b(~K); L0(~K); L1(~K); L2(~K); L(~K)]
  end  %... of 4th test
disp('  '),  disp('  ')

%  =======================================================================

The following  LCMtest results  were obtained from an  IBM T21  laptop running  MS Windows 
2000,  and were replicated on a  Dell Optiplex  running  MS Windows XP.  As expected,  the tests 
failed when run with the default  MatMultPrecn = 53  and passed with  MatMultPrecn = 64 .

As expected,  the failures for  MatMultPrecn = 53  were replicated by  PC MATLAB 5.3,  and the 
passed tests for  MatMultPrecn = 64  were replicated by  PC MATLABs 3.5 and 4.2,  and by  Mac 
MATLABs 3.5, 4.2 and 5.2  on a  68040-based  Mac Quadra 950.  Passed tests were replicated also 
by  Mac MATLAB 5.2  with  MatMultPrecn = -53  revealing  Fused Multiply-Adds  on a  Power 
Mac 8600  and on an  iMac.

  lcmtest  puts its results into diary  lcmtest.txt
DateTime =  2008  9  14          14:18:04
Machine = PCWIN
-----------------------------------------------------------------------------
MATLAB                                    Version 6.5        (R13)
MatMultPrecn =    53
   
  1st test:  L = lcm(A, B)  and  lcm(B, A) :
  1st test failed in these cases:
  A;B;lcm(A,B);lcm(B,A);trueLCMrounded  = 
F =
                         3     9.00719925474099e+015
     1.20892581961463e+024            28059810762433
     1.20892581961463e+024     9.00719925474099e+015
     1.20892581961463e+024     9.00719925474099e+015
     3.62677745884389e+024      2.5274030658756e+029
   
  2nd test:  L = lcm(A, B, Inf)  and  lcm(B, A, Inf) :
  2nd test failed in these cases:
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  A;B;lcm(A,B,Inf);lcm(B,A,Inf);expectedLCMchecked  = 
F =
  Columns 1 through 3 
                         3     9.00719925474099e+015                 712176643
     1.20892581961463e+024            28059810762433                  12658905
     1.20892581961463e+024                       Inf     9.01537646695592e+015
     1.20892581961463e+024                       Inf     9.01537646695592e+015
     3.62677745884389e+024      2.5274030658756e+029                       Inf
  Column 4 
     9.00719925474099e+015
            28059810762433
      2.5274030658756e+029
      2.5274030658756e+029
                       Inf
   
  3rd test:  L = lcm(E)  and  lcm(flipud(E)) :
  3rd test failed in these cases:
  E;lcm(E):lcm(flipud(E));expectedLCM = 
F =
                 712176643                  12647423
                  12647423                 712176643
                  12658905                  12658905
     1.98608743567039e+019     1.98608743567039e+019
     1.98608743567039e+019     1.14021279681837e+023
                       Inf                       Inf
  
  4th test:  lcm(0, x),  lcm(Inf, x)  and  lcm(Inf, 0) :
  4th test passed.
  
  
system_dependent('setprecision', 64)
lcmtest
  lcmtest  puts its results into diary  lcmtest.txt
DateTime =  2008  9  14          14:18:54
Machine = PCWIN
-----------------------------------------------------------------------------
MATLAB                                    Version 6.5        (R13)
MatMultPrecn =    64
   
  1st test:  L = lcm(A, B)  and  lcm(B, A) :
  1st test passed.
   
  2nd test:  L = lcm(A, B, Inf)  and  lcm(B, A, Inf) :
  2nd test passed.
   
  3rd test:  L = lcm(E)  and  lcm(flipud(E)) :
  3rd test passed.
  
  4th test:  lcm(0, x),  lcm(Inf, x)  and  lcm(Inf, 0) :
  4th test passed.
  
quit


