
File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 1/21

Contents

Abstract Page 1

Euclid’s GCD Algorithm 2
Theorem 1 2
Exercise: Solve a·x ≡ c mod b 3

Continued Fractions 3
Lamé’s Theorem 3

Seven More Exercises: 4

Determinants of Integer Matrices 5

LCM, the Least Common Multiple 6

Computer Programs for GCD and LCM 7

MATLAB Programs for GCD and LCM 8

function [g,c,d] = gcd(a,b) 9

function L = lcm(a,b,x) 11

function y = r0und(x) 12

function m = precn(n) 13
CTRL87.EXE 14

gcdtest.m is a MATLAB script to test versions of gcd.m 16
GCDtest Results 17

lcmtest.m is a MATLAB script to test W.K.'s version of lcm.m 19
LCMtest Results 20

Abstract
The behavior of Euclid’s algorithm to compute Greatest Common Divisors and its connection
with continued fractions are explained advantageously in terms of products of 2-by-2 matrices.
One byproduct is a quick proof of Lamé’s theorem, which bounds the number of divisions the
algorithm must perform, thus explaining its speed. Among other applications of the algorithm
are the solution of linear congruences a·x ≡ c mod b and the quick computation of determinants
of integer matrices. A GCD is needed also to compute a Least Common Multiple. Actual
computer programs to compute GCDs and LCMs malfunction when their inputs or outputs are
integers so big that the programs encounter overflow or roundoff. Because it is overlooked so
often, roundoff incurred by floating-point arithmetic can have noxious consequences unless the
programs incorporate complicated precautions exemplified by MATLAB programs supplied here.
When allowed to do so, they take advantage of a little extra-precise arithmetic without which no
practicable defense exists against plausible but utterly wrongly computed GCDs and LCMs.

MATLAB programs gcd and lcm supplied here are needed in Hilbert matrix computations in
 <www.cs.berkeley.edu/~wkahan/MathH110/HilbMats.pdf>

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 2/21

Given two positive integers a ≥ b > 0 we seek their Greatest Common Divisor (GCD), which
is the biggest integer d that divides both a and b leaving no remainder. Ordinary long division
computes a positive integer quotient q := a/b and leaves a remainder r := a – q·b that satisfies
0 ≤ r < b . Clearly every divisor of both a and b divides r too, and conversely every divisor of
both b and r divides a = q·b + r too; therefore GCD(a, b) = GCD(b, r) . But the pair (b, r) is
smaller than the pair (a, b) in the sense that b ≤ a and r < b . This leads to an algorithm …

Euclid’s GCD Algorithm
Given integers a ≥ b > 0 , set r0 := a and r1 := b and perform successive long divisions getting,
for j = 1, 2, 3, …, n in turn until rn+1 = 0 , quotients qj and remainders rj that satisfy

rj–1 = qj·rj + rj+1 with 0 ≤ rj+1 < rj .
(Here at step j we divide rj–1 by rj to get quotient qj and remainder rj+1 , stopping when a
remainder rn+1 = 0 . At that point qn > 1 ; can you see why?) The algorithm stops because this
decreasing sequence of n+1 positive integers, r0 = a ≥ r1 = b > r2 > … > rn–1 > rn > rn+1 = 0 ,
cannot have n > b . Then GCD(a, b) = rn because, as explained in the first paragraph,

GCD(a, b) =: GCD(r0, r1) = GCD(r1, r2) = … = GCD(rn–1, rn) = GCD(rn, rn+1) = rn .

The quotients qj appear to play no important role in the foregoing algorithm, but appearances
can mislead. By translating the algorithm’s recurrence into matrix language we find uses for qj :

Set := first; then for j = 1, 2, 3, …, n in turn confirm that = , with

0 ≤ rj+1 < rj and rn+1 = 0 , so = … .

Now set row := … to obtain two

integers A and B (not both positive) satisfying GCD(a, b) = rn = = = B·a + A·b .

We have just found that GCD(a, b) is a linear combination of a and b with integer coefficients,
thus proving (regardless of whether a ≥ b > 0 or b ≥ a > 0) the following …

Theorem 1: As A and B run independently through all integers the expression B·a + A·b runs
through a set of integers among which the smallest positive integer is GCD(a, b) = B·a + A·b .

Hard Exercise: Running A and B through all integers is unnecessary: Theorem 1 remains true after restrictions
|A| < a and |B| ≤ b ≤ a are imposed; why? Can you prove |A| < a/GCD(a, b) and |B| ≤ b/GCD(a, b) ? See below.

There are two ways to compute A and B . The easiest is to evaluate from-left-to-right the matrix

product defining after all the qj’s have been computed; this gives rise to a recurrence:

sn := 1 ; sn–1 := –qn–1 ; for j = n–2, n–3, …, 2, 1 in turn sj := sj+2 – qj·sj+1 .
Finally A := s1 and B := s2 . Another way to compute them is to evaluate from-right-to-left the

matrix product defining row simultaneously with the computation of the qj’s :

r0

r1

a
b

r j

r j 1+

0 1

1 q j–

r j 1–

r j

rn

0

0 1
1 qn–

0 1
1 qn 1––

0 1
1 qn 2––

0 1
1 q2–

0 1
1 q1–

r0

r1

B A 1 0
0 1

1 qn–

0 1

1 qn 1––

0 1

1 qn 2––

0 1

1 q2–

0 1

1 q1–

1 0
rn

0
B A

a
b

B A

B A

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 3/21

 := ; := ; for j = 2, 3, …, n–1 in turn := .

Finally := . Note that qn never figures in the computation of A and B .

Whichever way be chosen to compute A, B and GCD(a, b) = B·a + A·b , the algorithm is called
“the Extended Euclidean Algorithm” and has important applications. Here is one of them:

Exercise: Given integers a, c and b > 0 , when does “ a·x ≡ c mod b ” have integer solutions x ? Here we
pronounce “ p ≡ q mod b ” as “ p is congruent to q mod b ” and mean that p – q is divisible by b . Let
d := GCD(a, b) . If c ≡ 0 mod d exhibit all d noncongruent solutions x ; otherwise prove no solution x exists.

Continued Fractions
If d = GCD(a, b) then (a/d)/(b/d) exhibits a/b “in lowest terms” but it is not the only unique
encoding of positive rational numbers. By substituting rj–1/rj = qj + 1/(rj/rj+1) repeatedly for
j = 1, 2, …, n in turn we obtain a Terminating Continued Fraction

 .

This is the continued fraction for the rational number a/b . Here q1 ≥ 1 because a ≥ b > 0 ; in
fact every qj ≥ 1 and the last qn ≥ 2 to ensure that the encoding of each rational a/b > 1 by a
finite sequence (q1, q2, q3, …, qn–1, qn–1) of positive integers be unique. Euclid’s algorithm
converts a rational number given as a ratio of integers into its continued fraction; how do we get
back? The obvious way evaluates the continued fraction “bottom-up” : Rn+1 := 0 ; Rn := 1 ; for
j = n, n–1, n–2, …, 2, 1 in turn Rj–1 := qj·Rj + Rj+1 ; finally a/b = R0/R1 in lowest terms.
Exercise: Confirm that every integer Rj = rj/GCD(a, b) .

Translating the bottom-up evaluation of the continued fraction into matrix terms yields first

= , then = … . This last expression offers

two interesting opportunities. One is a way to evaluate the continued fraction “top-down” :

:= ; := ; for j = 2, 3, …, n in turn := ; finally := .

This top-down evaluation turns out to be a good way to evaluate endless continued fractions that
encode non-rational numbers; successive ratios hj/gj can be shown to converge alternatingly.
Exercise: The endless continued fraction in which every qj = 1 represents µ := (1 + √5)/2 ; can you see why?

Another opportunity offered by that long matrix product is a clear proof of Lamé’s Theorem : To
compute d := GCD(a, b) for a ≥ b > 0 , Euclid’s algorithm needs n ≤ 1 + ln(b/d)/ln(µ) divisions.
Exercise: Prove it by showing every Rj is at least as big as if every qj = 1 except qn = 2 , so R1 ≥ ƒn+1 , a

Fibonacci number, and ƒn+1 = (µn+1 – (–1/µ)n+1)/(µ + 1/µ) ≥ µn–1 .

B0 A0 0 1 B1 A1 1 q– 1 B j A j 1 q– j

B j 2– A j 2–

B j 1– A j 1–

B A Bn 1– An 1–

a
b
--- q1

1

q2
1

q3
1

… 1

qn 1–
1
qn
-----+

------------------------+
-------------------------------------+

---+
---+=

R j 1–

R j

q j 1

1 0

R j

R j 1+

R0

R1

q1 1

1 0

q2 1

1 0

qn 1– 1

1 0

qn 1

1 0

1
0

h0

g0

1
0

h1

g1

q1

1

h j

g j

h j 1– h j 2–

g j 1– g j 2–

q j

1

R0

R1

hn

gn

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 4/21

Seven More Exercises:

Suppose given integers M > 1 and N > 1 have GCD(M, N) = 1 = n·M – m·N for some integers
m and n whose signs are not yet determined. Whether M ≥ N or not won’t matter anymore.

1) Show why m and n must have the same nonzero sign.

Henceforth we can assume that n > 0 and m > 0 ; otherwise swap M and N , etc.

2) What is GCD(m, n) ?

3) Show how to replace m and n respectively by m and n satisfying
0 < m < M , 0 < n < N and 1 = n·M – m·N = n·M – m·N .

Henceforth we can assume that 0 < m < M and 0 < n < N and n·M – m·N = 1 . (†)

4) Exhibit instances of pairs (M, N) and (m, n) which satisfy these assumptions (†), but for
which M > N in one instance, and M < N in another.

5) Given that the pairs (M, N) and (m, n) satisfy (†), show how to obtain a pair (m, n) that
satisfies 0 < m < M and 0 < n < N and m·N – n·M = 1 , as if M and N had been swapped.

6) Show why (†) implies that M – N and m – n have the same nonzero signs unless m = 1 = n .
(Hint: (m + n)·(M – N) – 1 = (m – n)·(M + N) + 1 .)

. .

7) Any two nonzero integers x and y determine a family of sets { i, j, k, m, n } of five integers

satisfying n > 0 , and det() = 1 . However { i, j, k, m, n } may be found,

which of the five integers are determined uniquely by x and y ?
. .

Solution 7): Integers k, m and n are determined uniquely but i and j are not. To see why,
observe first from the determinant that k and m can have no nontrivial (other than ±1)
common divisor since it has to divide the determinant 1 . Next compute the inverse of the 2-by-

2 matrix to obtain and infer = n . This means that m/k = –x/y in lowest terms,

and that n is the Greatest Common Divisor of x and y . Thus are k, m and n fixed uniquely
by x and y . However, i and j can be replaced respectively by i + L·k and j + L·m respectively
for any integer L with no alteration to the given constraints; this amounts merely to replacing

 by · .

The foregoing solution explains all that the problem requested, namely the uniqueness of the last
three integers in the set { i, j, k, m, n } . To explain why integers i and j must exist is easier
than explaining the Extended Euclidean Greatest-Common-Divisor algorithm that finds them.

i j
k m

x
y

⋅ n
0

= i j
k m

m j–
k– i

x
y

m
k–

i j
k m

1 L
0 1

i j
k m

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 5/21

Determinants of Integer Matrices
What use are Exercise 7’s integers i, j, k, m, n ? One use is in a little-known but fairly efficient
algorithm to compute the determinant or inverse of a matrix of modest dimensions whose entries
are all integers. Consider the determinant of a given integer matrix E :

We can reduce E to an upper-triangular U whose determinant, the product of its diagonal
elements, is the same as det(E) . To this end we premultiply E by a sequence of matrices each
with determinant 1 and different from the identity matrix only in a 2-by-2 submatrix on the
diagonal. First premultiply to annihilate the lower left corner element of E ; next annihilate the
element above it, and so on up the first column until only its first element is nonzero. Then do the
same to the second column’s subdiagonal elements, and so on until all subdiagonal elements
become zeros. Before each premultiplication construct a 2-by-2 matrix like the one in problem
7, using for x and y the leading (presumably nonzero) elements of adjacent rows; then the
premultiplication will replace x by n > 0 and y by 0 . This n takes the place of the y in the
next annihilation.

Relatively few divisions occur in this algorithm, all concerned with finding the 2-by-2 matrices,
and most of these divisions have either short divisors or short quotients. Moreover annihilations
starting at the bottom of each column produce a value of n , which becomes y at the next
annihilation, that usually turns out to be 1 (or the column’s greatest common divisor). Thus, in
most of the 2-by-2 matrices three of the four elements are ±1 or 0 ; this is why the method is
efficient despite that the integers in triangular factor U can grow very big.

Hard Exercise: Compare the computational costs of the foregoing algorithm and Chio’s Trick,
q.v., posted for this course at <www.cs.berkleley.edu/~wkahan/MathH110/Chio.pdf>.

The foregoing algorithm is part of the reduction of E to an upper-triangular Hermite Normal Form, which is on the
path towards the Smith Normal Form, but these are stories for a different course on Abstract Algebra involving not
just integers but also matrices whose entries are polynomials with rational coefficients. These normal forms can
entail gargantuan integers, so their efficient computation requires algorithms much more subtle than the foregoing.

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 6/21

LCM, the Least Common Multiple
LCM(j, k) = LCM(|j|, |k|) is the least positive integer that both nonzero integers j and k divide
leaving no remainder; consequently LCM(j, k) = |j|·|k|/GCD(j, k) .

Exercise: Confirm the last equation and then LCM(k, j) = LCM(j, k) & GCD(k, j) = GCD(j, k) .

Both functions GCD and LCM can be extended to sets {k1, k2, k3, …, km} of m > 2 nonzero
integers by defining first GCD(k1, k2, k3, …, kn) := GCD(GCD(k1, k2, …, kn–1), kn) and then
LCM(k1, k2, k3, …, kn) := LCM(LCM(k1, k2, …, kn–1), kn) for n = 3, 4, 5, …, m in turn.

Exercise: Confirm that the order of the integers in the set {k1, k2, k3, …, km} does not matter.

The functions GCD and LCM have interesting interlocking properties whose description will be
eased first by temporary abbreviations γ(…) := GCD(…) and λ(…) := LCM(…) , and second
by the temporary assumption that all three integers i, j and k are positive. For a more extensive
discussion of these properties see ch. 2 of K.H. Rosen’s book Elementary Number Theory and
its Applications, 4th ed. (2000), Addison-Wesley, Mass.

Exercise: Confirm the following identities:

γ(i·j, i·k) = i·γ(j, k) and λ(i·j, i·k) = i·λ(j, k) .

γ(λ(i, j), k) = λ(γ(i, j), γ(j, k)) and λ(γ(i, j), k) = γ(λ(i, j), λ(j, k)) .

γ(λ(i·j), λ(j·k), λ(k·i)) = λ(γ(i·j), γ(j·k), γ(k·i)) .

γ(i, j, k)·λ(i·j, j·k, k·i) = λ(i, j, k)·γ(i·j, j·k, k·i) = i·j·k .

i·j·k·γ(i, j, k) = λ(i, j, k)·γ(i, j)·γ(j·k)·γ(k·i) .

They are not all easy to prove.

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 7/21

Computer Programs for GCD and LCM
Every computer has limited extent in space and time. Preoccupation with the limits distinguishes
computer scientists from mathematicians. When we write a program to compute a mathematical
function, we choose, perhaps unwittingly, to reconcile our expectations with those limits. A
conscientious choice poses mathematical challenges some of which are sampled in what follows.

First we must decide how the programs shall handle boundary integers, namely 0 and ∞ . If you
prefer to exclude ∞ from the set of integers, you are in good company. Computer programs
cannot be so picky; they must handle in a reasonable manner whatever input comes their way.
The only alternative is to stop the computer when a program refuses to accept some input deemed
invalid; but the consequences of stopping a computer are difficult to predict, always annoying,
and sometimes dangerous. A program should refuse to accept data only if refusal is the least
unreasonable option after all others have been considered and found to cause worse confusion.

Therefore convention assigns GCD(k, 0) := GCD(k, ∞) := k except GCD(0, ∞) := 0 , and then
LCM(k, 0) := 0 and LCM(k, ∞) := ∞ except LCM(0, ∞) := NaN , which stands for “Not a
Number”. It is an unacceptable input whose creation from non-NaN inputs raises an Invalid
Operation flag that the program’s user can detect subsequently at his/her/its convenience. This
flag exists in hardware conforming to IEEE Standard 754 for Floating-Point Arithmetic but,
alas, is inaccessible through most programming languages like MATLAB and Java.

Computers cope with at most finitely many distinct integers; the rest are too big. This limitation
afflicts LCM(…) because its output is usually bigger than its inputs. If too big, the output must
either Overflow or get Rounded Off to something else. Many programming languages cannot
detect the altered result of Integer Overflow; and it stops the computer with an error message for
many of the others, like MAPLE and Prof. Yuji Kida’s UBASIC. Some languages, MATLAB
and early versions of BASIC among them, represent all but their smallest integers as floating-
point variables with some preassigned number of so-called Significant Digits. Any integer wider
than that gets rounded off to a represenatable value or else, if extremely big, overflows to ∞ .
Either Procrustean action raises an Inexact Operation flag in standard-conforming hardware
but, alas, this flag too is inaccessible from MATLAB and most other programming languages.

In short, integer inputs and outputs bigger than some obscure thresholds can invalidate computed
GCDs and LCMs. In floating-point arithmetic GCDs are threatened, despite that no integers in
the Euclidean algorithm need be bigger than its inputs, because some of those integers, though
smaller in magnitude, may require an extra significant digit beyond the inputs’. LCMs may need
more significant digits than the arithmetic affords. Extra-precise intermediate arithmetic, when
available, produces correct GCDs and helps warn of LCMs too big. Even so, the following
MATLAB programs are complicated almost grotesquely by their attempts to cope with all threats.

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 8/21

MATLAB Programs for GCD and LCM
MATLAB’s own programs for these functions can be exhibited by the commands type gcd and
type lcm . Partly because MATLAB’s own gcd and lcm programs do not make fuller use of
the floating-point hardware they run on, they malfunction for some inputs. For instance, they
compute gcd(3, 2^80) = 3 ≠ 1 and gcd(28059810762433, 2^53) = 28059810762433 ≠ 1 .
They abort if ∞ is an input. They cannot handle more than pairs of inputs, so LCM(i, j, k) must
be obtained from the expression lcm(lcm(i, j), k) . Its value should not depend upon the
order of { i, j, k } but does for { 12647423, 712176643, 12658905 } , giving lcm(lcm(…)…)
two values 1.14021279681837e23 and 1.98608743567039e19 of which one is the true LCM
19860874356703880745 rounded correctly to 53 sig. bits.

MATLAB’s roundoff threshold for its 53-sig.-bit floating-point variables is eps = 2–52
 . They

can hold the consecutive integers 0, 1, 2, 3, …, 253 = 9007199254740992 . Numbers bigger
than this 16-digit integer get rounded off to 53-sig.-bit integers. Because current versions of
MATLAB display at most 15 sig. dec. instead of 17 , distinct big integers may look the same on
screen unless displayed in a 16-digit hexadecimal format eschewed here.

By exploiting arithmetic capabilities accessible through some versions of MATLAB on some
computers, the functions gcd and lcm provided below either malfunction far less often than
MATLAB’s own, or offer easy ways to detect almost all practically unavoidable malfunctions.

Without those capabilities, the functions gcd and lcm provided below are slightly faster than
MATLAB’s own but no more reliable. Some of their malfunctions are exposed by the two test
programs gcdtest and lcmtest provided below along with some of their results.

Function precn below is not used by gcd nor lcm , but is called by gcdtest and lcmtest
only to uncover the precision of arithmetic MATLAB uses to accumulate matrix products. Early
versions on PCs and old 680x0-based Macintoshes accumulated these products extra-precisely,
to 64 sig. bits, before rounding them down to 53 as they were stored. MATLAB 6.5 on PCs can
be commanded to do that when the factors and products fit into the computer’s cache-memory.
On Power-Macs and iMacs the accumulation benefits (rarely by much) from Fused Multiply-
Adds that commit only one 53 sig. bit rounding error per expression of the form “ x ± y·z ” .
Most users of MATLAB ignore whatever precn exposes, though occasionally such details
matter crucially; e.g., see <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> . And the test
results below show how such details determine whether gcd and lcm pass all their tests.

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 9/21

function [g,c,d] = gcd(a,b)
%GCD Greatest Common Divisor.
% G = gcd(A,B) is an array of Greatest Common Divisors of the
% corresponding elements of A and B . These arrays must contain
% only integers and must have the same size unless one is a scalar.
% By convention gcd(x, 0) = gcd(x, Inf) = |x| ; gcd(0, Inf) = 0 .
% Otherwise gcd is a finite positive integer computed correctly,
% despite roundoff no matter how big elements of A and B may be,
% only under circumstances discussed in the fourth paragraph below.
% Correct values of gcd(3, 2^80) = gcd(28059810762433, 2^53) = 1 .
%
% G = gcd(A) is a row of which each element is the GCD of the
% corresponding column of the array A of integers.
%
% [G,C,D] = gcd(A,B) also returns C and D so that A.*C + B.*D = G
% and |C|.*G <= |B| and |D|.*G <= |A| with equality only rarely.
% [C, D] is useful for solving Diophantine equations and computing
% Hermite transformations. Note that another possibility for pair
% [C, D] is [C, D] - [S.*B./G, -S.*A./G] where S = sign(B.*C) ;
% one pair [C,D] may suit your application better than the other.
%
% Roundoff can spoil A.*C + B.*D = G unless |A.*C| < 2/eps and
% |B.*D| < 2/eps . Wherever max(|A|,|B|) > 2/eps there [G,C,D]
% MAY BE WRONG except on Power Macs, whose G is always correct
% even if [C,D] is not. If max(|A|,|B|) <= 2048/eps , or if
% min(|A|,|B|) <= 2048 , then G (if not [C,D]) is correct also
% on old 680x0-based Macs, and also on Intel-based PCs with
% 64-sig.-bit accumulation of matrix products enabled via Matlab
% 6.x's invocation " system_dependent('setprecision', 64) " .
%
% See also LCM and, for Matlab 3.5, reshape, isinf and, for
% 386-Matlab 3.5 & PC-Matlab 4.2, r0und, all as modified by W.K.

% Algorithm: See Knuth Volume 2, Section 4.5.2, Algorithm X sped up
% Original Author: John Gilbert, Xerox PARC; sped up by W. Kahan
% Original Copyright (c) 1984-98 by The MathWorks, Inc.
% Original Revision: 5.9 Original Date: 1997/11/21 23:45:38
% First modified by W.K. in 1990 to fix gcd(3, 2^80) = 3 .
% $Revision: 6.5.W.K. $ $Date: 2008/09/14 06:09:59 $

if (nargin == 2) %... Case gcd(a,b)
% Do scalar expansion if necessary
sza = size(a) ; szb = size(b) ; %... Matlab 3.5 - 6.5 compatible
if (sza == 1), a = a*ones(szb(1),szb(2)) ; %... " " "
 elseif (szb == 1), b = b*ones(sza(1),sza(2)) ; end

sza = size(a) ; if any(sza - size(b))
 error('Arrays input to gcd(A,B) must have the same size.')
 else
 a = a(:) ; b = b(:) ;
 end;

if any(round(a) ~= a)|any(round(b) ~= b)|any(imag(a))|any(imag(b))
 error('gcd(A,B) requires all inputs to be real integers.')
 end %... Inf is deemed an integer, but NaN is not.

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 10/21

if (nargout < 2) % ... save time by omitting c and d
 Y = [a, b]' ; g = b ; L = [0, 1; 1, 0] ;
 for k = 1:length(a)
 x = Y(:,k) ; %... = [a(k); b(k)]
 if any(isinf(x)), g(k) = min(abs(x(:))) ;
 else %... finite operands
 while x(2) % ... ~= 0 ; MOD(x(1),x(2)) and REM(...) could
 L(2,2) = -round(x(1)/x(2)) ; % be wrong if x(1) is huge
 x = L*x ; % ... new |x(2)| <= old |x(2)|/2
 end % ... of inner loop traversed fewer than 40 times
 g(k) = abs(x(1)) ; end %... of usual finite case
 end % ... of k
 g = reshape(g, sza) ;
 return
 end % ... of Case gcd(A,B) with nargout < 2

% Case [G,C,D] = gcd(A,B) with nargout == 3 , presumably.
Y = [a, b, b] ; % ... initialized to the right size
I = eye(2) ; L = flipud(I) ;

for k = 1:length(a)
 X = [I, Y(k,1:2)'] ; % ... = [1, 0, a(k); 0, 1, b(k)].
 if isinf(X(1,3)), X = flipud(X) ; elseif ~isinf(X(2,3))
 while X(2,3) % ... ~= 0 and everything is finite ...
 L(2,2) = -round(X(1,3)/X(2,3)) ;
 X = L*X ; % ... new |X(2,3)| <= old |X(2,3)|/2
 end % ... of inner loop traversed fewer than 40 times.
 end % ... of finite a(k) and b(k)
 if (X(1,3) < 0), X = -X ; end % ... invert g(k) < 0 .
 Y(k,:) = X(1,:) ;
 end % ... of k

g = reshape(Y(:,3), sza) ;
c = reshape(Y(:,1), sza) ;
d = reshape(Y(:,2), sza) ;
return
% end of Case [G,C,D] = gcd(A,B)

elseif (nargin == 1) %... Case gcd(A) treated recursively
if (nargout > 1)
 error('G = gcd(A) has just one output.'), end
g = a(1,:) ; [isr, isc] = size(a) ;
for k = 2:isr, g = gcd(g, a(k,:)) ; end
return
% end of Case gcd(A)

else error('gcd(A,B) accepts just one or two arguments.')

% For Matlab 3.5, isinf(x) = ~(finite(x)|isnan(x)) , and
% retrofitted reshape(X, size(...)) works. And for
% 386-Matlab 3.5 & PC-Matlab 4.2, use r0und instead of buggy round .
end %... of gcd

% ===

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 11/21

function L = lcm(a,b,x)
%LCM Least Common Multiple, with optional correctness test.
% L = lcm(A,B) = lcm(abs(A), abs(B)) >= 0 is an array of Least
% Common Multiples of corresponding elements of integer arrays
% A and B. They must have the same size unless one is a scalar.
% WARNING: Roundoff may have spoiled L wherever L >= 2/eps .
%
% L = lcm(A,B,x) substitutes the scalar x for any element of
% L >= 2/eps that fails an optional appended correctness test.
% Among plausible choices x are 0, Inf and NaN, depending
% upon how lcm's user will respond to these error-indicators.
%
% Alas, some errors can evade detection by the test. It works
% best when Matlab accumulates matrix products either with
% Fused Multiply-Adds, as it does on Power Macs, or else
% extra-precisely as do versions 3.5-5.2 on 680x0-based Macs,
% and versions 3.5-4.2 on a PC, and version 6.5 on a PC after
% it executes the command system_dependent('setprecision',64).
% Then lcm(A,B,x) should detect any erroneous L < 2048/eps .
%
% L = lcm(A) is a row whose every element is the LCM of the
% corresponding column of the array A of integers. WARNING:
% Wherever L >= 2/eps roundoff may make L utterly erroneous
% though lcm(A) tries to substitute Inf for each such error
% unless aborted by a NaN produced by lcm(0,Inf) . Wherever
% lcm(flipud(A)) differs from lcm(A) , both may be wrong.
%
% Requires gcd(...) as modified by W.K. after 1990.
% W. Kahan, 1990 - 14 Sept. 2008

if any(imag(a(:)))
 error('lcm(A,...) accepts no complex argument.'), end
a = abs(a) ;
if (nargin > 1) %... Cases lcm(a,b) and lcm(a,b,x)
if any(imag(b(:)))
 error('lcm(A,B,...) accepts no complex argument.'), end
b = abs(b) ;
% Do scalar expansion if necessary
sza = size(a) ; szb = size(b) ; %... Matlab 3.5 - 6.5 compatible
if (sza == 1), a = a(ones(szb(1),szb(2))) ;
 elseif (szb == 1), b = b(ones(sza(1),sza(2))) ; end

% Gcd(A,B) will expose other erroneous inputs, namely ...
% input arrays A and B of different sizes, or
% any element in |A| or |B| not an integer.
% Gcd deems Inf an integer, but not NaN .

g = gcd(a,b) ; g = g+(g==0) ; Lg = isinf(g) ;
if any(Lg(:)), g(Lg) = Lg(Lg) ; end %... lcm(inf, inf) = inf .
a = a./g ; L = a.*b ;
if (nargin == 2), return, end %... of Case lcm(a,b)

% Case lcm(a,b,x)'s test:
if (L(~Lg) < 2/eps), return, end %... no further test needed
if (length(x(:)) ~= 1), x = x
 error('x in lcm(A,B,x) must be a scalar, not array.'), end

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 12/21

% What follows substitutes poorly for IEEE 754's INEXACT flag:
g = g(:) ; b = b(:)./g ; a = a(:) ; Lg = isinf(a)|isinf(b) ;
[m,n] = size(L) ; mn = m*n ;
L = L(:) ; q = round(L./g) ;
for j = 1:mn %... seek erroneous finite L(j) only where ...
 if ~Lg(j) %... both a(j) and b(j) are finite:
 if ([L(j), q(j)]*[-1; g(j)]~=0), L(j) = x ; %... L is wrong
 elseif ([q(j), a(j)]*[-1; b(j)]~=0), L(j) = x ; end %... " "
 end, end %... of finite a(j) and b(j) , and of j
L = reshape(L, m,n) ; return
end %... of Case lcm(a,b,x)

% Case lcm(A) treated tail-recursively:
L = a(1,:) ; [isr, isc] = size(a) ;
for k = 2:isr , L = lcm(L, a(k,:), Inf) ; end
% end of Case lcm(A)

% For Matlab 3.5, isinf(x) = ~(finite(x)|isnan(x)) . For
% 386-Matlab 3.5, use W.K's r0und instead of buggy round .

% ===

The built-in function round(x) in 386-Matlab 3.5k and in PC-Matlab 4.2 has a bug:

If odd integer |x| > 1/eps = 252 (in which case |x| < 253 too)
then round(x) – x == sign(x) instead of 0 .

This bug is fixed, albeit slowly, by r0und.m :

function y = r0und(x)
%R0UND Round to a nearest integer; ONLY for PCs Matlab 3.5 & 4.2
% r0und(x) = integer "nearest" x , fixing a bug in round.m:
% 386-Matlab 3.5's and PC-Matlab 4.2's buggy round(x) yields
% x + sign(x) whenever odd |x| > 2^52 (and therefore
% |x| < 2^53 too). This fixes gcd.m, lcm.m, etc.
% W. Kahan 22 Sept. 1997
y = round(x) ;
J = (abs(x) > 1/eps) ;
if any(J(:)), y(J) = x(J) ; end

% ===

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 13/21

function m = precn(n)
%PRECN senses precision carried while accumulating matrix products
% m = precn(n) uses only add, subtract and multiply operations
% (no divisions) upon a few artfully chosen integers (no loops)
% to sense the current precision |m| sig. bits in which MATLAB
% accumulates matrix multiplications of not too big dimensions
% before storing the product in 53 sig. bits. This m depends
% upon the version (< 7) of MATLAB, the computer's hardware,
% and possibly some control bits in the processor, as follows:
% v. 3.5 on PCs & 680x0-based Macs: m = 24, 53 or 64 (default)
% v. 4.2 - 5.2 on 680x0-based Macs: m = 64
% v. 5.2 on Power-Macs & iMacs (Fused Multiply-Adds): m = -53
% v. 4.2 on PCs: m = 64
% v. 5.3 on PCs & every v. on SUN SPARCS: m = 53
% v. 6.5 on PCs: m = 24, 53 (default) or 64
%
% Argument n of precn(n) can be omitted and is ignored except
% by versions of precn running on PCs under MATLAB 3.5 & 6.5
% with appropriate leading "%" characters deleted from the file.
% Then m = precn(n) is determined after the precision is reset
% to n by an invocation appropriate to the version.
% Revised 21 Sept. 2008. W. Kahan

if (nargin == 0), n = 0 ; else

% For 386-Matlab 3.5 on PCs delete leading "%" in this block:
% if (n == 64) %:
% ! CTRL87 33D
% elseif (n == 53) %:
% ! CTRL87 23D
% elseif (n == 24) %:
% ! CTRL87 03D
% else N = n %:
% error(' precn(N) requires N = 24, 53 or 64 .') %:
% end %:

% For Matlab 6.5 on PCs delete leading "%" in this block:
% if ~((n==24)|(n==53)|(n==64)), N = n %:
% error(' precn(N) requires N = 24, 53 or 64 .') %:
% end %:
% system_dependent('setprecision', n) %:

 n = 1 ; end % ... to impede compiler over-optimization

a = 409891 ; ab = 2731 + n ; a = [ab, -a]*[a; n] ;
b = 7623851 ; ab = 1441 + n ; b = [ab, -b]*[b; n] ;
ab = a*b ; % ... = (2^65 + 1)/3 rounded to min(m, 53) sig. bits

c = 2761 ; d = 4051+n ; cd = [c, -n]*[d; c] ; %... = (2^25 + 1)/3

t11 = 2048 ; t15 = 16*t11 ; t40 = t15*t15*1024 ; %... tk = 2^k

e = ([c, -c, a]*[(d-n)*t15; (d-n)*t40; b])*3 - t15 ; %... = 1 ?
f = ([a, -c, c]*[b; (d-n)*t40; (d-n)*t15])*3 - t15 ; %... = 1 ?
ef = [e, f] ;

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 14/21

if (ef == [1, 1]), m = 64 ;
elseif (ef == [1, -t11]), m = -53 ;
elseif (ef == [-t11, -t11]), m = 53 ;
elseif (ef == [-t15, t40]), m = 24 ;
else Version = ver, Machine = computer, EF = ef
 error(' Why does precn malfunction on this machine?')
 end

% ===

CTRL87.EXE was compiled from the following Borland Turbo-Pascal program:

{$R-,S-,I-,D-,T-,F-,V-,B-,N-,L+ }
{$M 1024,0,1024 }

 program ctrl87;
 { CTRL87 <ctl<, msk>> uses two 3-hex-digit parameters ctl and msk
 to set as many as 9 bits in the ix87 Control-Word as follows:
 New CW := (msk AND ctl) OR (NOT(msk) AND Old CW) .
 If msk is omitted, 0F00 is used in its place. If both msk
 and ctl are omitted, or if either is " ? " or not hexadecimal
 they will be prompted from the keyboard after the display of
 DOC below, which explains how they affect subsequent floating-
 point arithmetic operations. To do nothing, [Enter] nothing.

 To prevent mishaps, msk is filtered thus: msk := msk AND 0F3D
 ==
 }
 const
 n = 19 ; { n = current number of lines in DOC }
 DOC: array[1..n] of string[55] = (
 ' CTRL87 <ctl<, msk>> sets the ix87 Control-Word ',
 ' C-W := (msk AND ctl) OR (NOT(msk) AND C-W) from 2',
 ' 3-hex-digit parameters ctl and msk . C-W''s bits ',
 ' are OR''d to affect floating-point thus: C-W ',
 ' TRAPS: (default) Disable All traps ... _3D ',
 ' or Disable trap for INVALID OP ... _01 ',
 ' and Disable trap for DIV by ZERO ... _04 ',
 ' and Disable trap for OVERFLOW ... _08 ',
 ' and Disable trap for UNDERFLOW ... _10 ',
 ' and Disable trap for INEXACT ... _20 ',
 ' PRECISION: (default) Round to REAL*10 ... 3__ ',
 ' or else Round to REAL*8 ... 2__ ',
 ' or else Round to REAL*4 ... 0__ ',
 ' DIRECTION: (default) Round to Nearest ... 0__ ',
 ' or else Round Down ... 4__ ',
 ' or else Round Up ... 8__ ',
 ' or else Round to Zero ... C__ ',
 ' Initial Control-Word ctl set by FINIT ... 33D ',
 ' Default msk = 0F00 . Maximal effective msk = F3D ');
 Sctl = ' Current setting of Control-Word ctl ... ' ;
 S3H = ' Enter 3 hex digits for ' ;
 msx = $0F3D ; { ... maximal msk }

 var
 ctl, i, j, k, L, msk : word ; s : string ;

 function Wrd2Str(i : word) : string ;

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 15/21

 { ... converts word i to its string of 4 hex digits.}
 var j, k : word ; s : string[4] ;
 begin
 s := '' ;
 for k := 0 to 3 do begin
 j := i AND $F ;
 i := i shr 4 ;
 if j > 9 then j := j + $37
 else j := j + $30 ;
 s := Concat(Chr(j), s) ;
 end ; { k }
 Wrd2Str := s
 end; { Wrd2Str }

 procedure GetHex(var j, k : word; s : string);
 begin { converts string s to 4-hex-digit word j }
 Val(ConCat('$',s), j, k) ; { j = value of $s if k = 0 }
 if k > 0 then Writeln(s, ' is not hexadecimal.') ;
 end ; { GetHex }

 begin
 inline($9B/$D9/$3E/i/$9B) ; { fstcw i ; old Control-Word }
 L := ParamCount ;
 if L = 0 then k := 1 else begin
 s := ParamStr(1) ; { = first parameter on DOS command line }
 if Copy(s,1,1) = '?' then k := 1 else GetHex(ctl, k, s) ;
 if k = 0 then
 if L < 2 then msk := $0F00
 else GetHex(msk, k, ParamStr(2)) ;
 end ; { L > 0 }

 while k > 0 do begin { Prompt for ctl and msk .}
 for j := 1 to n do Writeln(DOC[j]) ;
 Writeln(Sctl, Wrd2Str(i AND msx)) ;
 Writeln(S3H, 'new ctl :') ;
 Readln(s) ;
 if (s = '') or (s = ' ') or (s = ' ')
 then Exit ; { Do nothing.}
 if Copy(s,1,1) = '?' then k := 1 else GetHex(ctl, k, s) ;
 if k = 0 then { Prompt for msk .}
 repeat
 Writeln(S3H, ' msk or accept 0F00 :') ;
 Readln(s) ;
 if (s = '') or (s = ' ') or (s = ' ')
 then msk := $0F00
 else GetHex(msk, k, s) ;
 until k = 0 ; { Prompted for msk .}
 L := 0 ;
 end ; { Prompted values for ctl and msk .}

 msk := msk and msx ; { Don't change 8087 vs. 387 C-W .}
 ctl := (msk and ctl) or ((not msk) and i) ;
 inline($9B/$D9/$2E/ctl/$9B) ; { fldcw ctl }
 if L = 0 then Writeln(Sctl, Wrd2Str(ctl AND msx)) ;
 end.
 { == }

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 16/21

% gcdtest.m is a Matlab script to test versions of gcd.m
format compact, format long g
diary gcdtest.txt
disp (' GCDtest puts its results into GcdTest.txt')
DateTime = round(clock)
Machine = computer, ver
MatMultPrecn = precn
disp(' ')
disp (' 1st test: G = gcd(A, B) and gcd(B, A) :')

p = 28059810762433 ; %... a prime
t53 = 2^53 ;
A = [77, 77, 77, 0; 3, 15, t53, t53-1] ;
B = [132, 0, Inf, Inf; 2^80, 2+2^52, p, p] ;
G = [11, 77, 77, 0; 1, 3, 1, 1] ;
G0 = gcd(A, B) ;
G1 = gcd(B, A) ;
K = (G ~= G0)|(G ~= G1) ;
if ~any(K(:))
 disp(' 1st test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...
 disp(' 1st test failed in these cases:')
 F = [A(K)'; B(K)'; G0(K)'; G1(K)'; G(K)'] ;
 disp(' A;B;gcd(A,B);gcd(B,A);trueGCD = '), F
 end %... of 1st test

disp(' ')
disp(' 2nd test: [G, C, D] = gcd(A,B) and gcd(B, A) :')
f80 = 2^40 ;
f80 = ((f80 - 1)/3)*(f80 + 1) ; %... = (2^80 - 1)/3 rounded
A = [77, 77, 77, 0; 3, -15, t53, t53-1] ;
B = [132, 0, Inf, Inf; 2^80, 2+2^52, p, p] ;
G = [11, 77, 77, 0; 1, 3, 1, 1] ;
C = [7, 1, 1, 1; -f80, 300239975158033, -1, -14029905381217] ;
D = [-4, 0, 0, 0; 1, 1, 321, 4503599627370656] ;
[G0, C0, D0] = gcd(A, B) ;
[G1, C1, D1] = gcd(B, A) ;
K = (G0~=G)|(G1~=G)|(C0~=C)|(C1~=D)|(D0~=D)|(D1~=C) ;
if ~any(K(:))
 disp(' 2nd test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...
 disp(' 2nd test failed in these cases:')
 F = [A(K)'; B(K)'; G0(K)'; C0(K)'; D0(K)'; G1(K)'; C1(K)'; D1(K)'] ;
 disp(' A;B;[gcd(A,B);C0;D0];[gcd(B,A);C1;D1];trueGCD;C;D = ')
 F = [F; G(K)'; C(K)'; D(K)']
 end %... of 2nd test

disp(' ')
disp(' 3rd test: G = gcd(E) and gcd(flipud(E)) :')
g = [1, 3, 11, 17] ; e = [77; 132; 144] ; E = e*g ;
E = [E, [124+t53; t53-19; t53+254]] ; g = [g, 13] ;
g0 = gcd(E) ; g1 = gcd(flipud(E)) ;
k = (g0~=g)|(g1~=g) ;
if ~any(k(:))

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 17/21

 disp(' 3rd test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...
 disp(' 3rd test failed in these cases:')
 disp(' E;gcd(E):gcd(flipud(E));trueGCD = ')
 F = [E(:,k); g0(k); g1(k); g(k)]
 end %... of 3rd test
disp(' '), disp(' ')

% ===

The following GCDtest results were obtained from an IBM T21 laptop running MS Windows
2000, and were replicated on a Dell Optiplex running MS Windows XP. As expected, the tests
failed when run with the default MatMultPrecn = 53 and passed with MatMultPrecn = 64 .

As expected, the failures for MatMultPrecn = 53 were replicated by PC MATLAB 5.3, and the
passed tests for MatMultPrecn = 64 were replicated by PC MATLABs 3.5 and 4.2, and by Mac
MATLABs 3.5, 4.2 and 5.2 on a 68040-based Mac Quadra 950. Passed tests were replicated also
by Mac MATLAB 5.2 with MatMultPrecn = -53 revealing Fused Multiply-Adds on a Power
Mac 8600 and on an iMac.

 GCDtest puts its results into GcdTest.txt
DateTime = 2008 9 14 14:16:15
Machine = PCWIN

MATLAB Version 6.5 (R13)
MatMultPrecn = 53

 1st test: G = gcd(A, B) and gcd(B, A) :
 1st test failed in these cases:
 A;B;gcd(A,B);gcd(B,A);trueGCD =
F =
 3 9.00719925474099e+015
 1.20892581961463e+024 28059810762433
 3 28059810762433
 3 28059810762433
 1 1

 2nd test: [G, C, D] = gcd(A,B) and gcd(B, A) :
 2nd test failed in these cases:
 A;B;[gcd(A,B);C0;D0];[gcd(B,A);C1;D1];trueGCD;C;D =
F =
 3 9.00719925474099e+015 9.00719925474099e+015
 1.20892581961463e+024 28059810762433 28059810762433
 3 28059810762433 1
 1 0 -1
 0 1 321
 3 28059810762433 1
 0 1 321
 1 0 -1
 1 1 1
 -4.02975273204876e+023 -1 -14029905381217
 1 321 4.50359962737066e+015

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 18/21

 3rd test: G = gcd(E) and gcd(flipud(E)) :
 3rd test failed in these cases:
 E;gcd(E):gcd(flipud(E));trueGCD =
F =
 9.00719925474112e+015
 9.00719925474097e+015
 9.00719925474125e+015
 1
 13
 13

system_dependent('setprecision', 64)
gcdtest
 GCDtest puts its results into GcdTest.txt
DateTime = 2008 9 14 14:16:52
Machine = PCWIN

MATLAB Version 6.5 (R13)
MatMultPrecn = 64

 1st test: G = gcd(A, B) and gcd(B, A) :
 1st test passed.

 2nd test: [G, C, D] = gcd(A,B) and gcd(B, A) :
 2nd test passed.

 3rd test: G = gcd(E) and gcd(flipud(E)) :
 3rd test passed.

quit

% ===

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 19/21

% lcmtest.m is a Matlab script to test W.K.'s version of lcm.m
format compact, format long g
diary lcmtest.txt
disp (' lcmtest puts its results into diary lcmtest.txt')
DateTime = round(clock)
Machine = computer, ver
MatMultPrecn = precn
disp(' ')

disp (' 1st test: L = lcm(A, B) and lcm(B, A) :')
p = 28059810762433 ; i = 712176643 ; %... primes
j1 = 2203 ; j2 = 5741 ; %... primes
k1 = 2205 ; k = k1*j2 ; j = j1*j2 ;
t52 = 2^52 ; t53 = 2*t52 ; t80 = 2^80 ;
A = [77, j, i, i; 3, 15, t53, t53-1] ;
B = [132, k, j, k; t80, 2+t52, p, p] ;
L = [924, j*k1, i*j, i*k; 3*t80, 10+5*t52, p*t53, t53*p-p] ;
L0 = lcm(A, B) ;
L1 = lcm(B, A) ;
K = (L ~= L0)|(L ~= L1) ;
if ~any(K(:))
 disp(' 1st test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...
 disp(' 1st test failed in these cases:')
 F = [A(K)'; B(K)'; L0(K)'; L1(K)'; L(K)'] ;
 disp(' A;B;lcm(A,B);lcm(B,A);trueLCMrounded = '), F
 end %... of 1st test
disp(' ')

disp(' 2nd test: L = lcm(A, B, Inf) and lcm(B, A, Inf) :')
A = [77, j, i, i; 3, 15, t53, t53-1] ;
B = [132, k, j, k; t80, 2+t52, p, p] ;
L = [924, j*k1, i*j, Inf; 3*t80, Inf, p*t53, Inf] ;
L0 = lcm(A, B, Inf) ;
L1 = lcm(B, A, Inf) ;
K = (L ~= L0)|(L ~= L1) ;
if ~any(K(:))
 disp(' 2nd test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...
 disp(' 2nd test failed in these cases:')
 F = [A(K)'; B(K)'; L0(K)'; L1(K)'; L(K)'] ;
 disp(' A;B;lcm(A,B,Inf);lcm(B,A,Inf);expectedLCMchecked = '), F
 end %... of 2nd test
disp(' ')

disp(' 3rd test: L = lcm(E) and lcm(flipud(E)) :')
g = [1, 3, 11, 17] ; e = [77; 132; 144; 11088] ; E = e*g ;
l = E(4,:) ; E = E(1:3,:) ;
E = [E, [i, j; j, i; k, k]] ; l = [l, Inf, Inf] ;
l0 = lcm(E) ; l1 = lcm(flipud(E)) ;
k = (l0~=l)|(l1~=l) ;
if ~any(k(:))
 disp(' 3rd test passed.')
 else %... when matrix mult'n is not accumulated extra-precisely ...

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 20/21

 disp(' 3rd test failed in these cases:')
 disp(' E;lcm(E):lcm(flipud(E));expectedLCM = ')
 F = [E(:,k); l0(k); l1(k); l(k)]
 end %... of 3rd test
disp(' ')

disp(' 4th test: lcm(0, x), lcm(Inf, x) and lcm(Inf, 0) :')
a = [77, 0, Inf, 0, Inf, Inf] ;
b = [132, 77, 77, 0, Inf, 0] ;
L = [924, 0, Inf, 0, Inf, NaN] ;
L0 = lcm(a,b) ; L1 = lcm(b,a) ; L2 = lcm(a,b,99) ;
K = [0,0,0,0,0, isnan(L0(6))&isnan(L1(6))&isnan(L2(6))] ;
K = ((L0==L)&(L1==L)&(L2==L))|K ;
if all(K(:))
 disp(' 4th test passed.')
 else
 disp(' 4th test failed in these cases:')
 disp(' a;b;lcm(a,b);lcm(b,a);lcm(a,b,99);expectedLCM = ')
 F = [a(~K); b(~K); L0(~K); L1(~K); L2(~K); L(~K)]
 end %... of 4th test
disp(' '), disp(' ')

% ===

The following LCMtest results were obtained from an IBM T21 laptop running MS Windows
2000, and were replicated on a Dell Optiplex running MS Windows XP. As expected, the tests
failed when run with the default MatMultPrecn = 53 and passed with MatMultPrecn = 64 .

As expected, the failures for MatMultPrecn = 53 were replicated by PC MATLAB 5.3, and the
passed tests for MatMultPrecn = 64 were replicated by PC MATLABs 3.5 and 4.2, and by Mac
MATLABs 3.5, 4.2 and 5.2 on a 68040-based Mac Quadra 950. Passed tests were replicated also
by Mac MATLAB 5.2 with MatMultPrecn = -53 revealing Fused Multiply-Adds on a Power
Mac 8600 and on an iMac.

 lcmtest puts its results into diary lcmtest.txt
DateTime = 2008 9 14 14:18:04
Machine = PCWIN

MATLAB Version 6.5 (R13)
MatMultPrecn = 53

 1st test: L = lcm(A, B) and lcm(B, A) :
 1st test failed in these cases:
 A;B;lcm(A,B);lcm(B,A);trueLCMrounded =
F =
 3 9.00719925474099e+015
 1.20892581961463e+024 28059810762433
 1.20892581961463e+024 9.00719925474099e+015
 1.20892581961463e+024 9.00719925474099e+015
 3.62677745884389e+024 2.5274030658756e+029

 2nd test: L = lcm(A, B, Inf) and lcm(B, A, Inf) :
 2nd test failed in these cases:

File GCD5 Euclid’s GCD Algorithms vs. Programs October 28, 2008 5:40 pm

Prof. W. Kahan Notes for Math. H110 & 128B Page 21/21

 A;B;lcm(A,B,Inf);lcm(B,A,Inf);expectedLCMchecked =
F =
 Columns 1 through 3
 3 9.00719925474099e+015 712176643
 1.20892581961463e+024 28059810762433 12658905
 1.20892581961463e+024 Inf 9.01537646695592e+015
 1.20892581961463e+024 Inf 9.01537646695592e+015
 3.62677745884389e+024 2.5274030658756e+029 Inf
 Column 4
 9.00719925474099e+015
 28059810762433
 2.5274030658756e+029
 2.5274030658756e+029
 Inf

 3rd test: L = lcm(E) and lcm(flipud(E)) :
 3rd test failed in these cases:
 E;lcm(E):lcm(flipud(E));expectedLCM =
F =
 712176643 12647423
 12647423 712176643
 12658905 12658905
 1.98608743567039e+019 1.98608743567039e+019
 1.98608743567039e+019 1.14021279681837e+023
 Inf Inf

 4th test: lcm(0, x), lcm(Inf, x) and lcm(Inf, 0) :
 4th test passed.

system_dependent('setprecision', 64)
lcmtest
 lcmtest puts its results into diary lcmtest.txt
DateTime = 2008 9 14 14:18:54
Machine = PCWIN

MATLAB Version 6.5 (R13)
MatMultPrecn = 64

 1st test: L = lcm(A, B) and lcm(B, A) :
 1st test passed.

 2nd test: L = lcm(A, B, Inf) and lcm(B, A, Inf) :
 2nd test passed.

 3rd test: L = lcm(E) and lcm(flipud(E)) :
 3rd test passed.

 4th test: lcm(0, x), lcm(Inf, x) and lcm(Inf, 0) :
 4th test passed.

quit

