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§0:  Abstract  and  Table of Contents

 

Applications of cross-products to geometrical problems in  Euclidean 3-Space  lead to formulas 
that are easier to manipulate with associative matrix multiplications than with conventional non-
associative and anti-commutative cross-products.  This thesis is supported by derivations of neat 
formulas for rotations and for solutions to nearest-point problems.  However,  regardless of their 
notation,  many neat formulas in textbooks can be traduced numerically by roundoff unless they 
are evaluated extra-precisely.  Otherwise,  unobvious extra steps must be taken to compute results 
at least about as accurately as the data deserve.  How accurately is that?
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§1:  

 

√

 

(–I)  in  Euclidean  2-Space  (a Summary and Review)

 

The operator  –I  reverses vectors.  In two dimensions it has a skew-symmetric square root   

J :=    determined uniquely but for its sign by the two equations   J

 

2

 

 = –I  and  J

 

T

 

 = –J .  This

operator  J  rotates the plane through a quarter turn;  whether clockwise or counter-clockwise 
depends upon the respectively left- or right-handed orientation of the coordinate system.  More 
generally,  exp(

 

θ

 

·J) := I·cos(

 

θ

 

) + J·sin(

 

θ

 

)  turns the plane through an angle  

 

θ

 

 .  To construct a 

vector of length  ||

 

u

 

|| = 

 

√

 

(

 

u

 

T

 

u

 

)  perpendicular to any given vector  

 

u

 

  in the  Euclidean  plane,  form  

J

 

u

 

 .  For any  2-by-2  matrix  B := [

 

u

 

  

 

v

 

]  we find that  B

 

T

 

JB = J·

 

v

 

T

 

J

 

u

 

 = J·det(B) ,  which implies  

Adj(B) = –JB

 

T

 

J .  (Recall  Adj(B) := det(B)·B

 

–1

 

  when  det(B) 

 

≠

 

 0 .)  Our formulas use associative 

matrix multiplication for the scalar product  

 

v

 

T

 

·

 

w

 

 = 

 

w

 

T

 

·

 

v

 

  instead of the non-associative dot 
product  

 

v

 

•

 

w

 

  for reasons that will become increasingly persuasive in the following pages.

Because  J  is unchanged by rotations of coordinates,  it can produce ostensibly coordinate-free 
solutions for many geometric problems in the  Euclidean  plane.  For instance,  the equation of a 

line through  

 

v

 

  perpendicular to  

 

w

 

  is  

 

w

 

T

 

(

 

x

 

–

 

v

 

) = 0

 

 

 

;  the equation of a line through  

 

v

 

  parallel to  

 

u

 

  is  

 

u

 

T

 

J(

 

x

 

–

 

v

 

) = 0

 

 

 

;  two lines whose equations are  

 

u

 

T

 

x

 

 = 

 

µ

 

  and  

 

v

 

T

 

x

 

 = ß  intersect at a point  

 

z

 

 := J·(

 

u

 

·ß – 

 

v

 

·

 

µ

 

)

 

/

 

(

 

v

 

T

 

J

 

u

 

) .  However,  not every orthogonal change of basis  (coordinates)  leaves  J  

unchanged;  a  

 

Reflection

 

  W = W

 

–1

 

 = W

 

T

 

 

 

≠

 

 

 

±

 

I  changes  J  to  W

 

–1

 

JW = W

 

T

 

JW = J·det(W) = –J ,  
which reminds us that reflection reverses orientation in the plane.

 

Do you see why such a  W  must be a reflection?  Why it must have the form  W = I – 2

 

ww

 

T

 

/

 

w

 

T

 

w

 

  for a suitable 
vector  

 

w

 

 ?  Why  det(W) = –1 ?  Can you confirm every unobvious assertion in the summary above?

In many ways,  but not all,  J  is to the  Euclidean  plane what  

 

ı

 

 := 

 

√

 

(–1)  is to the complex plane.  J  operates upon 
vectors in the plane but is not a vector in that plane,  whereas  

 

ı

 

  is simultaneously a multiplicative operator and a 
vector in the complex plane.  The two planes are topologically different,  though often confused:  Roughly speaking,  
the complex plane has just one point at infinity best visualized by  

 

Stereographically

 

  projecting the complex plane 
upon a sphere,  whereas the  Euclidean  plane has a circle  (or at least a line)  at infinity.  We won’t pursue this here.

 

Cross-products of vectors in  Euclidean 2-Space  appear in restrictions to  2-space  of formulas 
derived originally for vectors in  Euclidean 3-Space.  Consequently the  2-space  interpretation of  

“

 

 

 

u

 

×

 

v

 

 ”  often reduces to a scalar  

 

u

 

×

 

v

 

 = 

 

v

 

T

 

J

 

u

 

 .  Because cross-products are neither associative nor 
commutative,  triple products like  “

 

 

 

u

 

•

 

v

 

×

 

w

 

 

 

”,  “

 

 

 

u

 

×

 

v

 

•

 

w

 

 

 

”  and  “

 

 

 

u

 

×

 

v

 

×

 

w

 

 

 

”  can generate confusion 
if parsed improperly.  When all vectors  u,  v  and  w  lie in the same  Euclidean 2-Space,  …

u•(v×w)  and  (u×v)•w  should both be zero if they appear at all,  and

(u×v)×w = –w×(u×v) = w×(v×u) = Jw·(vTJu)   in  2-space.
These formulas will come from  §§4-5,  will be used in  §9’s problem #8,  and will make sense 
after we have found and adopted the matrix notation for cross-products that motivates these notes.

§2:  Cross-Products  and  Rotations  in  Euclidean  3-Space
Henceforth bold-faced lower-case letters  p, q, r, …, x, y, z  stand for real 3-dimensional column-

vectors.  Then row vector  pT := [p1  p2  p3]  is the transpose of column vector  p ,  and  pTq = pT·q  

is the scalar product  p•q  of row  pT  and column  q .   Euclidean length  ||p|| := √(pT·p) .

0 1–

1 0
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Do not confuse the scalar  pT·q = qT·p    with the  3–by–3  matrices  (“dyads”)  p·qT ≠ q·pT  of 
rank  1 ,  nor with the vector cross-product  p×q = –q×p .   Cross-products are important enough 

to justify introducing a notation  “ p¢
 ”,  pronounced  “ pee-cross ”,  for a  3-by-3  skew-symmetric  

( (p¢)T = –p¢
 )  matrix of rank  2  defined by the vector cross-product thus:  p×q = p¢·q .  We find 

the matrix to be this:  p¢ := .  We’ll see whence it comes after we see why we like it.

We like matrix notation for these geometrical entities because matrix multiplication is associative:

     pT·q¢·r  = (pT·q¢)·r  = pT·(q¢·r ) = p•(q×r )    and    p¢·q¢·r  = (p¢·q¢)·r  = p¢·(q¢·r ) = p×(q×r )  
unlike scalar and cross-products;   (p•q)·r  ≠ p·(q•r )  and    (p×q)×r  ≠ p×(q×r ) .  Besides legibility,  
a matrix notation promotes simpler expressions,  shorter proofs,  and easier operator overloading 
in programming languages.

Matrix-like cross-products are not new.  See precursors cited and an alternative notation offered in work by  Götz 
Trenkler  et al.  published in  Int. J. Math. Educ. Sci. & Technol. 29 #3 (1998) pp. 455-9,   30 #4 (1999) pp. 549-555,  
33 #3 (2002) pp. 431-6,  and  in  Discussiones Mathematicae — General Algebra & Appl’ns 21 (2001) pp. 67-82.  He 

explores in directions other than numerical stability.  I still prefer my notation  p¢  to his  Tp  after trying both.

§3:                              For Readers Reluctant to Abandon  •  and  x  Products
( Other readers can skip to  §4.)

We’re not abandoning familiar locutions;  we’re just writing most of them shorter.  Compare the 
following classical formulas with their matrix equivalents for succinctness and ease of proof:

   Triple Cross-Product:          (p×q)×r  =  q·p•r – p·q•r   vs.   (p¢·q)¢ =  q·pT – p·qT 

   Jacobi’s Identity:        p×(q×r ) + q×(r×p) = –r×(p×q)   vs.   p¢·q¢ – q¢·p¢ = (p¢·q)¢ 

   Lagrange’s Identity:   (t×u)•(v×w) = t•v·u•w – u•v·t•w   vs.   (t¢·u)T·(v¢·w) = det([t  u]T·[v  w]) 

Most things don’t change much;   p×q = –q×p   becomes  p¢·q = –q¢·p ,  so  p¢·p = o  ( the zero 

vector ),   and   p•(q×r )  =  pT·q¢·r   =  det([p  q  r ]) .

The notations’ difference becomes more pronounced as problems become more complicated.  For 
instance,  given a unit vector  û  ( with  ||û|| = 1 )  and a scalar  ψ ,  what orthogonal matrix  

R = (RT)–1  rotates  Euclidean  3–space through an angle  ψ  radians around the axis  û ?  In other 
words,  R·x  is to transform every vector  x  by rotating it through the angle  ψ  about the axis  û  
fixed through the origin  o .

An ostensibly simple formula  R := exp(ψ·û¢)   uses the skew-symmetric cross-product matrix  û¢  
defined above.  Here  exp(…)  is  not  the  array  exponential that is applied elementwise,  but is 
the  matrix  exponential;  think of  R = R(ψ)  as a matrix-valued function of  ψ  that solves the 

differential equation  dR/dψ = û¢·R = R·û¢  starting from the identity matrix  R(0) = I .  Given  û  

and  ψ ,  an explicit formula for this  R  is    R =  I  +  2·( I·cos(ψ/2) + û¢·sin(ψ/2) )·û¢·sin(ψ/2) .
Rewriting this expression with solely  •  and  ×  products doesn’t improve it.  Try to do so!

In what follows the formulas above will be first derived and then applied to several examples.

0 p3– p2

p3 0 p– 1

p2– p1 0
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§4:  A Derivation of  Cross-Products  in  Euclidean 3-Space
What operators in  Euclidean  3-space are analogous to the quarter-turn  J  in  2-space?  Every 
rotation of  3-space is characterized by its  axis,  a line left unchanged by the rotation,  and by its 
angle of rotation about that axis.  Let  v  be a nonzero vector parallel to such an axis.  Analogous 

to  –I  in  2-space  is the operator  v·vT/vTv – I ,  which projects arbitrary vectors into the plane 
through  o  perpendicular to  v  and then reverses the projection through  o .  That operator’s skew-
symmetric square root,  determined  (as we’ll see)  uniquely but for its sign by  v ,  is  analogous to  
J ,  but different for every different axis  v .  Consequently that square root is a discontinuous 
function of  v  at  v = o .  Multiplying that square root by  ||v||  renders it continuous everywhere.

Hence we define the operator  v¢  to be one of the two solutions  v¢ := ±S  of the equations

S2 = v·vT – vTv·I    and    S = –ST .
To see why these equations determine  S  uniquely but for sign,  choose an orthonormal basis with  
v/||v||  as its first basis vector and find a matrix representing  S  in that coordinate system.  Every 

such matrix  S  must satisfy  Sv = o ;  here is why:  Evidently  S2v = o ,  so  det(S)2 = det(S2) = 0 ,  

and so  Sz = o  for some  z ≠ o ;  but then  S2z = o ,  and this implies that  z  is a scalar multiple of  
v ,  whence follows  Sv = o  as claimed.  Consequently,  in the foregoing orthonormal coordinate 
system,  every skew-symmetric solution  S  is represented by a matrix whose first row and column 
contain only zeros,  whereupon the remaining  2-by-2  principal submatrix must be  ±J·||v||  as is 
explained in the second sentence of  §1.  Thus,  S  is determined uniquely but for sign.

Given  v = ,  consider the solution  S :=   of the equations  Sv = o  and  S = –ST ;  this

S2 = vvT – vTv·I  too,  which combines with the previous paragraph to imply  v¢ = ±S .  Its sign 

could be chosen arbitrarily but we set  v¢ := +S ,  thereby classifying the coordinate system as  

“right-handed”.  Note now that  v¢  is a continuous function of  v .  In summary,  …

     For every vector  v  in  Euclidean  3-space,  the linear operator  v¢  is a continuous linear

      function of  v  determined but for sign by the equations  (v¢)2 = v·vT
 – vTv·I  and  (v¢)T = –v¢

 .
      Its sign is determined for every  v  by its sign for any one  v ≠ o  and by continuity.

The notation for  v¢ ,  pronounced  “vee-cross”,  is inspired by the relation  v¢·w = v×w ;  the latter 
cross-product coincides with that defined in texts on vector analysis.  Six of its properties are …

v¢·w = o    just when  ±v  and  w  are parallel;  this was proved using  z  above.

v¢·w ⊥  v    because  vT·v¢·w = –(v¢·v)T·w = oT·w = 0 .

v¢·w ⊥  w    because  wT·v¢·w = (wT·v¢·w)T = wT·(v¢)T·w = –wT·v¢·w ,  = 0 .

||v¢·w||2 = ||v||2 ||w||2 – (vTw)2    because it is  –wT(v¢)2w ,  etc.

Combining the formula  vTw = ||v||·||w||·cos∠ (v, w)  with the last equation proves that

||v¢·w|| = ±||v||·||w||·sin∠ (v, w)
with a sign that depends upon the orientation,  if any,  assigned to the angle  ∠ (v, w)  when it has 
to be distinguished from  ∠ (w, v) = –∠ (v, w) .  Anyway,

||v¢·w|| = | the area of a parallelogram with adjacent sides  v  and  w | .

ξ
η
ζ

0 ζ– η
ζ 0 ξ–

η– ξ 0
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From the foregoing properties we infer by symmetry that  w¢·v  must be one of  ±v¢·w  whenever 
they are nonzero because they are vectors with the same length and perpendicular to the same two 
nonparallel vectors  v  and  w .  Trials with basis vectors for  v  and  w  imply a seventh property:

w¢·v  = – v¢·w ,
and this equation must persist for all  v  and  w  since both sides are continuous bilinear functions.  

This  anti-commutative  identity is a good reason to prefer the notation  v¢·w  over  v×w ;  and 
later the preference will intensify when we find the triple cross-product  non-associative.  Besides,  

we shall need  v¢  in isolation later to describe rotations succinctly.

§5:  Triple Products
The scalar expression  uTv¢w  is linear in each vector separately,  and reverses sign when any two 
vectors are swapped;  this follows from anti-commutativity when  v  and  w  are swapped,  from 

skew-symmetry of  v¢  when  u  and  w  are swapped;  and when  u  and  v  are swapped it follows 

from  uTv¢w = –wTv¢u = wTu¢v = –vTu¢w .  Compare this with the characterization of the 
determinant  det([u  v  w])  as a functional,  linear in each column of  [u  v  w]  separately,  that 

reverses sign when any two columns are swapped.  It follows that  uTv¢w/det([u  v  w])  must be a 
constant provided the denominator does not vanish.  Setting matrix  [u  v  w] := I  determines that 
constant to be  1 ,  whereupon continuity implies an important identity for all  u,  v  and  w :

 uTv¢w = det([u  v  w]) .
This  Determinantal Identity  can be confirmed by direct but tedious algebraic manipulation,  and 
also by the following geometric argument:

Let parallelogram  P  have adjacent sides  v  and  w  so that its area  |P| = ||v¢w|| ≠ 0 .  Next let  Q  
be a parallelepiped whose sides emanating from a vertex are  u,  v  and  w ;  then its volume is 

     |Q| =  |det([u  v  w])|     and also
     |Q| =  |P| · || projection of  u  onto the unit-normal to  P ||

=  ||v¢w|| · || projection of  u  onto  v¢w/||v¢w|| ||  =  |uTv¢w| .

Now to confirm that  uTv¢w = +det([u  v  w])  try any three vectors  u,  v  and  w,  say the basis 
vectors,  and then invoke continuity to cope with the case when  v  and  w  are  (anti)parallel.

Almost as important as that determinantal identity is  Grassmann’s  triple cross-product formula 

 u×(v×w) = u¢v¢w  =  v·uTw – w·uTv  =  (vwT – wvT)·u .

To prove this,  note that it must be perpendicular to a vector  v¢w  perpendicular to both  v  and  

w ,  and hence must lie in the plane of  v  and  w .  Therefore  u¢v¢w = v·ß – w·µ  for some scalars  

ß  and  µ .  Premultiplication by  uT  reveals that  0 = uTv·ß – uTw·µ  and therefore some scalar 

functional  ƒ = uTv/µ = uTw/ß  exists satisfying  u¢v¢w = ( v·uTw – w·uTv )/ƒ .  Since both sides 
of this equation are linear in each of  u,  v  and  w  separately,  ƒ  can vary with none of them;  it 
must be a constant.  Its value  ƒ = 1  can be found by substituting one basis vector for  u  and  w  
and a second basis vector for  v .  Alternatively,  brute-force manipulation by a computerized 
algebra system like  Derive,  Maple,  Mathematica  or  Macsyma  can be used to confirm the triple 

cross-product formula.  It is easier to remember in  §3’s  form:   (v¢·w)¢ = w·vT – v·wT
 .
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That formula shows that  (u×v)×w = (u¢v)¢w = –w¢u¢v = (vuT – uvT)w ≠ u×(v×w) ;  the cross-

product is  not  associative,  though matrix multiplication  is  associative:  (u¢·v¢)·w = u¢·(v¢·w) .  
That formula also confirms  Jacobi’s Identity:

 u¢v¢w + v¢w¢u + w¢u¢v  = o ,    or    (u¢·v)¢ = u¢·v¢ – v¢·u¢ ,
and helps to confirm  Lagrange’s Identity:

 (t¢·u)T(v¢·w)  =  tTv·uTw – uTv·tTw  = det([t   u]T[v   w]) .

Since they are not long,  you should work out the confirmations of these identities,  which figure in both classical and  
Quantum mechanics.

§6:  Rotations  R  about an  Axis  v  in  Euclidean 3-Space
If skew-symmetric matrix  S = –ST  is constant,  the unique solution of the initial-value problem

R(0) = I   and    dR/dτ = S·R  for all  τ 

is a matrix  R(τ)  that must be orthogonal;  RT = R–1  because  d(RTR)/dτ = RTSTR+RTSR = O  

and therefore  RTR = I  for all  τ .  This implies  det(R)2 = 1  and then  det(R) = +1  because it is 
continuous for all  τ .  Thus,  R(τ)  is a proper rotation —  no reflection.  It has a power series too:

R(τ) = exp(τ·S) = ∑k≥0 τk·Sk/k! .

Now,  every  3-by-3  skew-symmetric matrix  S  determines a vector  v  such that  S = v¢ ;  then  

Sv = o ,  S2 = vvT – ||v||2·I ,  S3 = –||v||2·S ,  S4 = –||v||2·S2
 ,  …,  Sm+2k = (–||v||2)k·Sm  for  m > 0 .  

By taking odd and even terms separately in the series for  exp(τ·v¢)  we condense it to

R(τ) = exp(τ·v¢)  =  I + (1 – cos(τ·||v||))·(v¢/||v||)2 + sin(τ·||v||)·v¢/||v||

    =  I + 2·sin(τ·||v||/2)·( sin(τ·||v||/2)·v¢/||v|| + cos(τ·||v||/2)·I )·v¢/||v|| ,
thus providing a relatively simple and verifiable formula for the operator that rotates  Euclidean 3-
space through an angle  τ·||v||  about a given axis  v ≠ o .  Its  τ-derivative  is extremely simple:

        R'(τ) = d exp(τ·v¢)/dτ = v¢·exp(τ·v¢) = exp(τ·v¢)·v¢ = R(τ)·v¢ = v¢·R(τ) .
( The  v-derivative  would require a long expression too complicated to serve the didactic purposes of these notes.)

The converse task is this:  Given an orthogonal matrix  R = RT–1 ≠ I  that effects a proper rotation 
because  det(R) = +1 ,  how can its axis  v  be determined?  What seems the simplest way at first 

extracts  v  from  R – RT = 2·sin(τ·||v||)·v¢/||v|| ;  this works well unless  τ·||v||  is so near  ±π  that 
roundoff in  R  obscures the desired result.  A generally more reliable procedure applies  Gaussian  
elimination to solve the equation  (R – I)·v ≈ o  for a  v ≠ o ;  this procedure can work well because  
R – I  must be singular  (to within roundoff)  with rank  2 ,  whence  Adj(R – I)  must be some 

nonzero scalar multiple of  vvT
 .  Here is how we know all this to be so:

Consider any eigenvalue  µ  of  R ;  this  µ  may be complex,  in which case its eigenvector  z ≠ o 
is complex too,  and we shall write  z*  for its complex-conjugate transpose.  Next we find that  

|µ|2·z*z = (Rz)*(Rz) = z*RTRz = z*z > 0 ,  whereupon  |µ| = 1 .  Now,  R  has three eigenvalues  
µ ,  the roots of the characteristic equation  det(µI – R) = 0 .  Because its coefficients are real,  any 
of the three eigenvalues that are not real must come in complex-conjugate pairs whose product,  
their squared magnitude,  must equal  1 .  The product of all three eigenvalues is  det(R) = +1  too.

Two cases can arise:



File: Cross                   §7: Constructing Rotations out of Reflections in a Euclidean Space of any Dimension ≥ 2

Prof. W. Kahan                             Version dated  February 25, 2016 12:44 pm                                               Page 7/26

•  If  R  has a non-real eigenvalue  µ  then  µ*  is another and the third is  1/(µ*·µ) = 1 .
•  Otherwise all three eigenvalues are real,  namely  ±1 ,  and then  +1  appears among them

an odd number of times  (but not thrice)  because their product is  +1  too.
Thus  R–I  must be singular;  axis  v  is an eigenvector of  R  belonging to its eigenvalue  +1 .

Problem (hard):  Show that  Adj(R – I) = ( 3 – Trace(R) )·vvT/||v||2  provided proper orthogonal  R ≠ I .

Must each proper orthogonal  R = exp(τ·û¢)  for some real  τ  and unit vector  û  (with  ||û|| = 1 ) ?  
Yes,  and  û = v/||v||  where  v  is the axis found above.  To see why,  change to a new orthonormal 
coordinate system with  û  as its first basis vector.  The matrix representing  R  in this new basis 
has  [1  0  0]  and its transpose as first row and column.  (Why?)  The matrix’s last principal  2-by-
2  submatrix must be  exp(τ·J)  because it is proper orthogonal too;  thus  τ  is determined.  After 

changing back to the original basis we find  R = exp(±τ·û¢) .  ( We’ll explain the  ±  sign later.)

§7:  Constructing Rotations out of Reflections in a  Euclidean  Space of any  Dimension ≥ 2
For any  w ≠ o  in  any  Euclidean  space,  W := I – 2wwT/||w||2  is an orthogonal reflection.
Problem:  Verify that  W = WT = W–1 ,  that  w = –Ww  is reversed by the reflection,  and that it preserves the  

(hyper)plane  of vectors  x  orthogonal to  w .  Thus the reflection’s mirror-plane satisfies the equation  wTx = 0 .  

Verify too that  det(W) = –1  by applying the formula  det(I – uvT) = 1 – vTu .  Can you prove this last formula?

Suppose distinct nonzero vectors  x, y, s  and  t  are given with  ||x|| = ||y||  and  ||s|| = ||t||  and  

sTx = tTy .  (This last equation says that  |∠ (s, x) | = |∠ (t, y) | .)  We wish to construct a proper 
orthogonal  R  that rotates  x  to  Rx = y  and  s  to  Rs = t .  We shall construct this  R := HW  as a 

product of two orthogonal reflections:  W := I – 2wwT/||w||2  and  H := I – 2hhT/||h||2  in which  
w := x–y  and  h := Ws–t ,  except that if  Ws = t  then  h  may be any nonzero vector orthogonal 
to both  y  and  t  provided such a vector exists.  ( R  might not exist in  2-space;  why not?)

Problem:  Verify that  W  swaps  x  and  y ,  and that  H  swaps  Ws  and  t  while preserving  y ,  so that  R  moves the 
pair  (s, x)  to the pair  (t, y)  while preserving their lengths and angle.  Verify too that  R  is proper orthogonal.

Problem (harder):  Prove that every rotation in  Euclidean  2-  or  3-space  is a product of two orthogonal reflections.  
(The proof must ensure that both reflections exist.)  How few reflections always suffice in  Euclidean  N-space?

§8:  Changing to an Orthonormal Basis with Opposite Orientation
The vector  v×w = v¢w  is sometimes called a  pseudo-vector  because of how an arbitrary change 

of orthonormal basis may affect it.  For any orthogonal  Q = (QT)–1  we shall find that

(Qv)¢(Qw) = Qv¢w·det(Q) ,   or equivalently   (Qv)¢ = Qv¢QT·det(Q) .
Of course  det(Q) = ±1 ;  its appearance in the formula above is what deserves an explanation.

If  det(Q) = +1  then  Q  is a proper rotation and our geometrical intuition may well persuade us that rotating  v  and  

w  together as a rigid body must rotate  v¢w  the same way,  which is what  the formula in question says.  Otherwise  
det(Q) = –1 ,  in which case  Q  combines rotation and reflection;  in this case the formula in question,  in the form  

(Qv)¢Q = Qv¢·det(Q) ,  will take some work to be confirmed.  A comparatively simple proof is provided by …
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David Meredith’s Identity:   Adj(LT)·v¢ = (Lv)¢·L  for any  3-by-3  matrix  L  and vector  v  in  Euclidean  3-space.

Into this identity substitute  L := Q  and use  QT = Q–1  and  Adj(QT) = (QT)–1·det(QT) = Q·det(Q)  to get the formula   

(Qv)¢·Q = Qv¢·det(Q)  in question.  What remains to be done is to prove  Meredith’s  identity:

Proof:  For  all  3-vectors  u,  v  and  w  regarded as columns of a matrix  [v, w, u] ,  we find that

       det(L)·uTv¢w = det(L)·det([v, w, u]) = det(L·[v, w, u]) = det([Lv, Lw, Lu]) = (Lu)T(Lv)¢Lw = uTLT(Lv)¢Lw .

Consequently  det(L)·v¢ = LT(Lv)¢L .  Into this equation substitute  det(L)·I = det(LT)·I = LT·Adj(LT)  when  LT  is 

nonsingular to get first  LT·Adj(LT)·v¢ = LT(Lv)¢L ,  and then the desired identity.  It is a polynomial equation in the 
elements of  L  and therefore valid also when  L  is singular.   Q.E.D.

When  det(Q) = –1  the formulas just proved remind us that reflections reverse sense,  changing right-handed triad  

[v,  w,  v¢w]  into left-handed triad  [Qv,  Qw,  Qv¢w] ,  whereas  [Qv,  Qw,  (Qv)¢(Qw)]  is right-handed.  (Look in a 
mirror to see why.)  Consequently the last two triads’ last elements must be oppositely directed.

Question: Why,  when you look in a mirror,  do you see  left  and  right  
reversed there but not  up  and  down ?

Answer: That’s not what you see.  (What you do see is described on the next page.)

§9:  Applications of Cross-Products to Geometrical Problems
Cross-products  p×q ,  or  p¢·q  in our matrix notation,  figure prominently instead of determinants 
in neat textbook solutions of many commonplace geometrical problems.  Our first example is …

#0.  Given the equations   pT·x = π ,  bT·x = ß ,  qT·x = θ   of three planes,  they intersect at point

z =  ( b¢·q·π + q¢·p·ß + p¢·b·θ )/(pT·b¢·q)  .              (This is  Cramer’s Rule.)

Since neat formulas are more memorable they are more likely to appear in textbooks to be copied 
by programmers than are ugly numerical algorithms like  Gaussian Elimination  even if the latter 
are numerically more stable.  Gaussian Elimination  is also faster than  Cramer’s Rule  but not the 

rewritten formula   z = ( (b¢·q)·π + p¢·(b·θ – q·ß) )/(pT·(b¢·q))   if  b¢·q  is reused.  Still,  this 
formula is less robust numerically than  Gaussian Elimination  with pivotal exchanges after row- 
and column-scaling have curbed any extravagant disparities among magnitudes of coefficients.

Like  Beauty,  the neatness and speed of a formula lie in the eye of the beholding programmer 
sooner than does numerical stability.  Roundoff doesn’t figure in textbooks’ formulas.  The reader 
will not easily determine which are numerically unstable among the neat textbook formulas that 
solve the following eight commonplace geometrical problems each of the  Nearest-Point  kind:

  Given a point  y  and the definition of a line or plane  G , we seek a point  z  in  G  nearest  y .

We expect the line segment joining  y  and  z   to stick out of  G  perpendicularly.

y

z
G

•

•
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  Answer to the Question on the previous page:  What you actually see reversed in a mirror are  forward  and  back .
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If two formulas for  z  are offered below they suffer differently from rounding errors;  the first 
formula suffers less than the second whenever  ||z–y|| << ||y||  and the second less than the first 
whenever   ||z|| << ||y|| .  Unless parentheses indicate otherwise,  associative products  A·B·C  
should be evaluated in whichever order,   (A·B)·C   or   A·(B·C) ,  requires fewer arithmetic 
operations;  doing so below tends to diminish roundoff too.  An exercise for the diligent reader is 
to confirm the mathematical correctness of these formulas,  even if roundoff may vitiate their 
direct application;  casual readers will find their confirmations in  §12.

“Numerically stable”  solutions for these eight  “linearly constrained least-squares”  problems may be found in some 
works on numerical linear algebra;  but no known stable solution is simply a rational formula like all those below.

#1.  Given the equation  pT·x = π  of a plane  ∏ ,  the point  z  in  ∏  nearest  y  is

z :=  y – p·(pT·y – π)/||p||2   =   ( p·π – p¢·p¢·y )/||p||2 .

#2.  Given three points  u–v,  u  and  u+w  through which one plane  ∏  passes,  the point  z  in  ∏  

nearest  y  is    z :=  y – p·pT·(y – u)/||p||2   =   u – p¢·p¢·(y – u)/||p||2   wherein   p := v¢·w .

#3.  Given three points  u,  v  and  w  through which one plane  ∏  passes,  the point  z  in  ∏  
nearest  y  is

z :=  y – p·pT·(y – u)/||p||2  =  u – p¢·p¢·(y – u)/||p||2   wherein   p := (v – u)¢·(w – u) .
The order of  u,  v  and  w  is permutable in each formula separately.  To attenuate roundoff in  p  
choose  u  to maximize  ||v – w||  roughly.  (Why?  See  §11.)  For  z  choose  u  to minimize  
||y – u||  in the first formula,  ||u||  in the second.

#4.  Given two points  u  and  u+v  through which one line  £  passes,  the point  z  in  £  nearest  y  

is    z :=  y + v¢·v¢·(y – u)/||v||2   =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2 .

#5.   Given two points  u  and  u+v  through which one line  £  passes,  and two points  y  and  y+w  

through which another line  ¥  passes,  the point nearest  £  in  ¥  is   x :=  y + w·vT·p¢·(y – u)/||p||2   

wherein  p = v¢·w .  Nearest  ¥  in  £  is    z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .

#6.  Given two points  u  and  w  through which a line  £  passes,  the point  z  in  £  nearest  y  is

z :=  y + v¢·v¢·(y – u)/||v||2  =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  wherein  
v := w – u .  Since  u  and  w  are permutable,  choose  u  to minimize  ||y – u||  in the first and last 
formulas,  and to minimize  ||u||  in the middle formula,  which is best if  ||z|| << ||u||  too.

#7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

 z :=  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2   =   ( v·vT·y + v¢·(p·ß–b·π) )/||v||2 

wherein   v := p¢·b .  Of course we assume  v ≠ o  in order that  £  be determined uniquely.
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#8.  Given three non-collinear points  u–v,  u  and  u+w  in  Euclidean 2- and 3-space,  the point

    z := u + (v¢w)¢·(v·||w||2 + w·||v||2)/||v¢w||2  =  u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||v¢w||2 

is the center of the circle through the three given points,  and this circle’s radius is 

  ||z–u|| = ||v||·||w||·||v+w||/||v¢w|| .

When the given points are infinitesimally close neighbors on a smooth curve traced by  u = u(τ)  
with non-vanishing velocity  u'  = u'(τ) := du(τ)/dτ  and acceleration  u"  = u" (τ) := du'(τ)/dτ ,  
the  Osculating Circle  that matches the curve’s tangent and curvature at  u  is centered at the 

curve’s  Center of Curvature   c := u + ||u' ||2·(u'¢·u" )¢·u'/||u'¢·u" ||2 .   The circle’s radius is the 

curve’s  Radius of Curvature   ||c–u|| = ||u' ||3/||u'¢u" || .  These formulas are derived in  §12.

When  u,  v  and  w  lie in a  Euclidean  2-space,  some of the formulas above simplify:  The center  

z := u + J·(v·||w||2 + w·||v||2)/(wTJv) ;  the radius  ||z–u|| = ||v||·||w||·||v+w||/|wTJv| ;  the center of 

curvature  c := u + ||u' ||2Ju'/(u" TJ·u') ;  and the radius of curvature is   ||c–u|| = ||u' ||3/|u" TJ·u' | .  
Center  z  figures in  Delaunay Triangulations  used to construct well-shaped triangular meshes 
over plane regions for use in continuum computations of fluid flows and elastic deformations. 
Some of the formulas above work in  Euclidean n-space too after  ||v¢w||  is replaced by  √(||v||2·||w||2 – (vTw)2) .

§10:  An Unfortunate Numerical Example
It is not at all obvious that formula  #7,  say,  is numerically unstable.  In fact all figures carried 
can be lost if a few too few are carried.  Try these data all stored exactly as  4-byte  floats  :

 pT = [ 38006,  23489,  14517 ] ,   π = 8972 ,     bT = [ 23489,  14517,  8972 ] ,   ß = 5545 ,    and    yT = [ 1,  –1,  1 ] .

These data define  £  as the intersection of two nearly parallel planes,  so tiny changes in data can 
alter  £  and  z  drastically.  More troublesome numerically are the many correlated appearances of 
the data  p  and  b  in the formulas for  z  in problem  #7.  Though mathematically crucial,  these 
correlations can be ruined by roundoff.  Evaluating both formulas above for  z  naively in  float   

arithmetic carrying  24  sig. bits  (about as precise as  7  sig. dec.)  yields  z1
T = [ 1,  1,  –1 ]    and    

z2
T = [ 1,  1,  –1.5 ] ;   but  z1  lies farther from both planes than  0.8 ,  and  z2  lies farther from 

them than  0.6 .  These gaps cannot be attributed to end-figure  “errors”  in the  7th  sig. dec.  of the 
given data which could shift  £  and  z  appreciably but not separate them.

  This  naïve  arithmetic produces geometrically  impossible  results. 

The correct point   zT = [ 1/3,  2/3,  –4/3 ]   is computed correctly rounded when all intermediate 
results  ( sub-expressions and local variables )  are evaluated in  53 sig. bit  double   before  z  is 
rounded back to  float  .  Naively computed  z1  and  z2  are not so far from  z  as to be obviously 
wrong if  z  were unknown,  but they are too wrong to be acceptable for most purposes.

This unfortunate example exemplifies behavior that occurs surprisingly often:  Unless evaluated 
extra-precisely,  too many neat formulas can be intolerably more inaccurate than the data deserve.

WHY ?

1
2
--- 1

2
---

1
2
---

1
2
--- 1

2
---
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§11:  Bilinear forms vulnerable to  roundoff  followed by  cancellation  occur frequently:

Scalar products:           p•b  =  pT·b  =   .

Linear combinations:       p·ß – b·π  =   .

Cross products:           p×b  =  p¢·b  =   .

These entities are  geometrically redundant;  they are so correlated that   (p·ß – b·π)•(p×b) = 0   
for all  data  {p, π, b, ß} .  Even if data are  “accurate”  to few sig. digits and computed entities to 
fewer,  their geometrical redundancy must be conserved as accurately as possible.  We can tolerate 
slightly inaccurate results interpretable as realizable geometrical objects slightly different from 
our original intent,  but not geometrically impossible objects like a  p×b  too far from orthogonal 
to  p  and  b  because of roundoff.  Suppose  ε  is the roundoff threshold,  meaning that sums,  

differences and products are computed accurately within a factor  1±ε .  For instance,  ε = 5/1010  
for arithmetic rounded to  10  sig. dec.  Then the angle between the desired cross product  p×b  
and its computed version will be typically about  ±ε/sin(∠ (p, b))  and is proved never to get much 
bigger in  §13.  This shows how roundoff degrades  p×b  as  p  and  b  approach  (anti)parallelism 

and,  in view of the  Sine Law of Triangles,  justifies advice about  (v – u)¢·(w – u)  in problem #3.

Therefore these bilinear forms and other matrix products should be computed carrying somewhat 
more precision than in the data provided that this extra-precise arithmetic runs at some adequate 
speed.  Doing so preserves geometrical redundancy despite  “losses”  to cancellation of several 
digits.  At any precision,  prolonged chains of computation risk losing geometrical redundancy.  
The wider is the precision,  the longer is that loss postponed and the more often prevented.

And extra precision usually costs less than error-analysis.
This is not said to disparage error-analysis;  it is always the right thing to do if you know how and 
have the time.  But to know how you have to take advanced classes in numerical analysis since 
elementary classes hardly ever teach error-analysis well enough to be useful.  To spend enough 
time you have to believe that the results being (in)validated by error-analysis are worth the time.

For extensive discussions of these and similar computational issues see …
   “Marketing versus Mathematics”  <www.cs.berkeley.edu/~wkahan/MktgMath>

   “How Java’s Floating-Point Hurts Everybody Everywhere”  ibid. …/JAVAhurt.pdf>

   “Miscalculating Area and Angles of a Needle-like Triangle”  ibid. …/Triangle.pdf>

   “MATLAB ’s  Loss is Nobody’s Gain”  ibid. …/MxMulEps.pdf>

   “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation ?”  ibid. …/Mindless.pdf>

    Prof. Jonathan Shewchuk’s web page,  starting at  <www.cs.berkeley.edu/~jrs/meshpapers/robnotes.ps.gz>
• • • • •

A good book about  Error-Analysis  is  N.J. Higham’s  Accuracy and Stability of Numerical Algorithms 2d ed. (2002, 
Soc. Indust. & Appl. Math., Philadelphia),  though it is about  700  pages long.

p1 b1⋅ p2 b2⋅ p3 b3⋅+ +

p1 β⋅ b1– π⋅

p2 β⋅ b2– π⋅

p3 β⋅ b3– π⋅

p2 b3⋅ p3– b2⋅

p3 b1⋅ p1– b3⋅

p1 b2⋅ p2– b1⋅
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§12:  Confirmations of the  Eight Formulas  in  § 9 :

#1.  Given the equation  pT·x = π  of a plane  ∏ ,  the point  z  in  ∏  nearest  y  is

z :=  y – p·(pT·y – π)/||p||2   = s :=  ( p·π – p¢·p¢·y )/||p||2 .

To confirm these formulas we must verify that  pT·z = π  to put  z  in  ∏ ,  and that  z–y  is  
(anti)parallel to  p  so that it is perpendicular to  ∏ .  And then we must verify that  z = s .  Only 

this last equality is unobvious;  confirm it by substituting   (p¢)2 = p·pT – ||p||2·I .

#2.  Given three points  u–v,  u  and  u+w  through which one plane  ∏  passes,  the point  z  in  ∏  

nearest  y  is    z :=  y – p·pT·(y – u)/||p||2   = s :=  u – p¢·p¢·(y – u)/||p||2   wherein   p := v¢·w .  

These formulas follow from problem  1  because the plane’s equation is  pT·x = π := pT·u .

#3.  Given three points  u,  v  and  w  through which one plane  ∏  passes,  the point  z  in  ∏  
nearest  y  is

z :=  y – p·pT·(y – u)/||p||2  = s :=  u – p¢·p¢·(y – u)/||p||2   wherein   p := (v – u)¢·(w – u) .
These formulas follow from problem  #2  after its  v  and  w  are replaced by  u–v  and  w–u .

#4.  Given two points  u  and  u+v  through which one line  £  passes,  the point  z  in  £  nearest  y  

is    z :=  y + v¢·v¢·(y – u)/||v||2  = s :=  ( v·vT·y – v¢·v¢·u )/||v||2  = t :=  u + v·vT·(y – u)/||v||2 .  To 
confirm these formulas we must verify that  z–u  is a scalar multiple of  v ,  which places  z  on  £ ,  

and that  vT(z–y) = 0  so that  z–y  is perpendicular to  £ .  Since  (v¢)2 = v·vT – ||v||2·I ,  we find 

that  z–u = v·vT·(y – u)/||v||2 = t–u  is a scalar multiple of  v  and,  incidentally,  z = t .  And  

vT(z–y) = 0  follows from  vTv¢ = oT
 .  Finally  s = t  follows from the expansion of  (v¢)2 .

#5.  Given two points  u  and  u+v  through which one line  £  passes,  and two points  y  and  y+w  

through which another line  ¥  passes,  the point nearest  £  in  ¥  is   x :=  y + w·vT·p¢·(y – u)/||p||2   

wherein  p = v¢·w .  Nearest  ¥  in  £  is    z := x – p·pT·(y – u)/||p||2 = s := u + v·wT·p¢·(y – u)/||p||2 .  
To confirm these formulas,  we confirm first that  x  lies in  ¥  because  x–y = w·(scalar) ,  and that  
s  lies in  £  because  s–u = v·(scalar) .  Then  z = s  because

||p||2·(z–s) =  (||p||2·I – p·pT + w·vT·p¢ – v·wT·p¢)(y – u)    …  recall  (p¢)2 = p·pT – ||p||2·I

     =  (–p¢ + w·vT – v·wT)·p¢·(y – u)  =  O·p¢·(y – u) = o
in view of the triple cross-product formula  p¢ = (v¢w)¢ = w·vT – v·wT   in  §3  and  §5.  Finally,  
z–x = p·(scalar)  is perpendicular to both lines  ¥  and  £ ,  so  z  and  x  are nearest each other.

Lest binocular vision’s depth perception and range-finding falter when  £  and  ¥  almost intersect,  

(x+z)/2 = ( u+y + (w·vT + v·wT)·p¢·(y – u)/||p||2 )/2  is the point nearest their near-intersection.

#6.  Given two points  u  and  w  through which a line  £  passes,  the point  z  in  £  nearest  y  is

z =  y + v¢·v¢·(y – u)/||v||2  =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  wherein  
v = w – u .  These formulas follow from problem  #4.
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#7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

 z :=  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2   =  s :=  ( v·vT·y + v¢·(p·ß–b·π) )/||v||2 

wherein   v := p¢·b ≠ o .  This  v  is parallel to  £  because it is perpendicular to the normals of both 
planes that intersect in  £ .  To confirm that  z  is the point in  £  nearest  y  we must verify that  z  
lies in both those planes and that  v  is perpendicular to  z–y .  In other words,  we must verify that  

pT·z = π ,  bT·z = ß ,  vT·(z–y) = 0  and  s = z .  This was done with  DERIVE™,  a computerized 
algebra system,  faster than the following dozen lines of a manual verification can be written out:

vT·(z–y) = vT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  = 0  because  vT·v¢ = oT .

pT·z – π =  pT·y – π + pT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  

   =  pT·y – π – pT·v¢·b·(π–pT·y)/||v||2     because  pT·v¢·p = 0 ,

   =  pT·y – π + vT·p¢·b·(π–pT·y)/||v||2     because  pT·v¢·b = –vT·p¢·b ,

   =  pT·y – π + vT·v·(π–pT·y)/||v||2  = 0 .

bT·z – ß =  bT·y – ß + bT·v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  

   =  bT·y – ß + bT·v¢·p·(ß–bT·y)/||v||2      because   bT·v¢·b = 0 ,

   =  bT·y – ß – vT·b¢·p·(ß–bT·y)/||v||2      because   bT·v¢·p = –vT·b¢·p ,

   =  bT·y – ß + vT·v·(ß–bT·y)/||v||2  = 0 .

(z–s)·||v||2 =  (vT·v·I – v·vT)·y + v¢·( p·(ß–bT·y) – b·(π–pT·y) ) – v¢·(p·ß–b·π)

      =  –(v¢)2·y + v¢·( p·(ß–bT·y) – b·(π–pT·y) – (p·ß–b·π) )

      =  v¢·( –v¢ – p·bT + b·pT )·y  =  v¢·( –v¢ + (p¢·b)¢ )·y  = o .

#8.    Given three non-collinear points  u–v,  u  and  u+w  in  Euclidean 3-space,  the center  z  of 

the circle through the given points is   z := u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||v¢w||2 ,  and the 

circle’s radius is   ||z–u|| = ||v||·||w||·||v+w||/||v¢w|| .  To prove these formulas this problem will be 

reduced to a problem solved previously.

Among points equidistant from the three given points,  center  z  is nearest them.  To simplify its 

derivation shift the origin to  u  temporarily.  Now  “equidistant”  implies  ||v+z||2 = ||z||2 = ||w–z||2  

which boils down to two linear equations  vTz = –||v||2/2  and  wTz = ||w||2/2 ,  restricting  z  to a 
straight line.  This reduces problem  #8  to an instance of problem  #7  whose solution becomes  

z = u + (v¢w)¢·(v·||w||2 + w·||v||2)/||v¢w||2 = u + (||v||2·wwT – ||w||2·vvT)·(v + w)/||v¢w||2  after 

some simplification and restoration of the origin.  Note that this formula makes  z  coplanar with 
the three given points,  as must be expected.  Now,  z  is the center of a circle whose radius is

   ||z–u|| = ||(||v||2·wwT – ||w||2·vvT)·(v + w)||/||v¢w||2 

 = || w·||v||2·(||w||2 + vTw) – v·||w||2·(||v||2 + vTw) ||/||v¢w||2 = …

 = ||v||·||w||·||v+w||·√(||v||2·||w||2 – (vTw)2)/||v¢w||2 = ||v||·||w||·||v+w||/||v¢w|| 

as claimed.
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Next let  u := u(τ)  trace a smooth curve with non-vanishing velocity  u'  := u'(τ) := du(τ)/dτ  and 

acceleration  u"  := u" (τ) := du'(τ)/dτ .  The  Taylor  series   u(τ+θ) = u + θ·u'  + θ2·u" /2 + …  

determines   v := u(τ) – u(τ–φ) = φ·u'  – φ2·u" /2 + …  and   w := u(τ+θ) – u(τ)  in the foregoing 
first formula for   z  whose limit,  as  θ → 0  and  φ → 0 ,  turns into the  Center of Curvature 

c = u – ||u' ||2·u'¢·(u'¢·u" )/||u'¢·u" ||2 .

And then because  u'T·(u'¢·u" ) = 0 ,  the  Radius of Curvature   ||c–u|| = ||u' ||3/||u'¢u" || .

§13:  Rounding Error-Bounds  for  Angles
The angle between the desired cross product  p×b  and its computed version is alleged in  §11  to 
never exceed  ε·|csc(∠ (p, b))|  much.  Here  ε  is the roundoff threshold for individual arithmetic 
operations.  This means that executing an assignment statement  “ x := y·z ”  actually computes 
and stores some rounded value  x := (1±ε)·y·z ,  which is how an unknown number between  
(1–ε)·y·z  and  (1+ε)·y·z  shall be described.  Similarly  “ x := y–z ”  actually stores a number  
x = (y–z)/(1±ε) .  In special circumstances more than this can be said about  x ;  for instance,  if  
1/2 ≤ y/z ≤ 2  then  “ x := y–z ”  actually stores  x = y–z  exactly on almost all today’s computers.

Problem:  Perhaps aided by a calculator,  explore and then confirm the last assertion for arithmetics performed as you 
might reasonably expect,  and then find examples that would violate it if  “ 1/2 ”  were diminished or  “ 2 ”  increased.

In any event,  ε  is very tiny.  ε = 1/224 ≈ 5.96/108  for  4-byte  wide  floats .  For the  8-byte  

wide floating-point arithmetic used by  MATLAB ,  ε = 1/253 = eps / 2 ≈ 1.11/1016
 .  Thus,  ε  is so 

tiny that usually terms of order  ε2  can be disregarded.  They have been and will be.

A strict version of  §11’s  allegation is this:  Let  w  be the column vector computed for  p×b ≠ o  
from  p  and  b  using floating-point arithmetic whose roundoff threshold is  ε ;  then    
|sin(∠ (w, p×b))| ≤ ε + (2/√3)·ε·|csc(∠ (p, b))| .   A proof follows:                                 ( csc = 1/sin .) 

To reduce the strain on aged eyes,  subscripts and superscripts will be avoided wherever possible.

Set column-vectors  p := [x, y, z]T  and  b := [e, f, g]T ,  so   p×b = [y·g–z·f,   z·e–x·g,   x·f–y·e]T
 .  

The first element of the computed cross-product  w  is  ((1±ε)·y·g – (1±ε)·z·f)/(1±ε) ;  it’s typical.  

Therefore  | w – p×b | ≤ ε·|w| + ε·|p¢|·|b|  elementwise;  here  p¢  is the skew matrix that produces  

p¢·b = p×b .  Consequently the  Euclidean  norm  || w – p×b || ≤ ε·||w|| + ε·|| |p¢|·|b| || .  Now,  

|| |p¢|·|b| |||2 = |b|T·|p¢|2·|b| ≤ ||b||2·( the biggest eigenvalue of  |p¢| )2   since  |p¢|  is a real symmetric 
matrix.  Its  Characteristic Polynomial  turns out to be

Φ(λ) := det( λI – |p¢| ) =  λ3 – ||p||2λ – 2|x·y·z|    wherein  ||p||2 = x2 + y2 + z2 > 0 .

To locate its zeros,  the eigenvalues of  |p¢| ,  we shall repeatedly use the  Arithmetic-Geometric 

Means Inequality,  which says that  (x2 + y2 + z2)/3 ≥ 3√(x2·y2·z2) ;  it will be invoked in the 

equivalent form   |x·y·z| ≤ ||p||3/√27 .  Then substitution of trial arguments reveals that
Φ(–2||p||/√3) < 0 ≤ Φ(–||p||/√3) ,   and   Φ(0) ≤ 0 ≤ Φ(2||p||/√3) ,

so all three zeros of  Φ  (the eigenvalues of  |p¢| )  lie between  ±2||p||/√3 .  From this follows that  
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|| w – p×b || ≤ ε·||w|| + (2/√3)·ε·||p||·||b|| .  Therefore  || w – p×b || ≤ ε·||p×b|| + (2/√3)·ε·||p||·||b||  after 

terms of order  ε2  are ignored.  A diagram consisting of a triangle establishes that  
|| w – p×b || ≥ |sin(∠ (w, p×b))|·||p×b|| ;  and we know that  ||p×b|| = ||p||·||b||·|sin(∠ (p, b))| .  
Assemble the last three relations to deduce the desired conclusion,  namely that   
|sin(∠ (w, p×b))| ≤ || w – p×b ||/||p×b|| ≤ ε + (2/√3)·ε·||p||·||b||/||p×b|| = ε + (2/√3)·ε·|csc(∠ (p, b))| .

Actually  “ ε + ”  can be deleted whenever  sin(∠ (p, b))  is very tiny since then all elements of  p×b  are tiny because 
of cancellations during subtractions,  which must then be exact,  removing the divisors  (1±ε)  from elements of  w .

Attempts to apply the last inequality can fail when the unoriented angle  |∠ (p, b)|  differs from  0  
or  π  by so little more than  √ε  that its best-known textbook formulas are vitiated by roundoff:

The familiar formula   0 ≤ |∠ (p, b)| := arccos( pTb/(||p||·||b||) ) ≤ π   can err by as much as  √ε  

when  |pTb|/(||p||·||b||)  differs from  1  by less than several rounding errors,  thus obliterating  
∠ (p, b)  when it is tiny.  This happens because  arccos  skips so quickly at such arguments:
     arccos(1) = 0 ;   arccos(1–ε) ≈ √2ε ;   arccos(1–2ε) ≈ 2√ε ;  … ;   arccos(ε–1) ≈ π – √2ε .
Consequently the  arccos  formula should be avoided when  |∠ (p, b)|  is near  0  or  π .

Another formula almost as familiar is

     If  pTb ≥ 0  then  |∠ (p, b)| = arcsin( ||p×b||/(||p||·||b||) ) 
else  |∠ (p, b)| = π – arcsin( ||p×b||/(||p||·||b||) ) .

It can lose to roundoff as many as half the significant digits carried by the arithmetic when  
1 – ||p×b||/(||p||·||b||)   is not much bigger than  ε ;  at such arguments  arcsin  skips by steps of 
order  √ε  through angles near  π/2 .  Avoid  arcsin(…)  for such angles.

More uniformly accurate than both familiar formulas is the following unfamiliar formula:
     |∠ (p, b)| = 2·arctan( || p/||p|| – b/||b|| || / || p/||p|| + b/||b|| || ) .

Valid for  Euclidean  spaces of any dimension,   it never errs by more than a modest multiple of  ε .

( If the data’s magnitudes are not so extreme that exponent over/underflow can invalidate the algebraically equivalent
   formula   |∠ (p, b)| = 2·arctan( || p·||b|| – b·||p|| || / || p·||b|| + b·||p|| || ) ,   use it because it runs slightly faster.)

§14:  Preconditioning a  Cross-Product
Preconditioning  is a process that speeds up a computation or enhances its result’s accuracy by 
altering a problem’s data without changing the problem nor its solution.  The process may be 
worth applying to enhance the accuracies of the cross-products that figure in the solutions to the 
geometrical problems of  §9.  The geometrical impossibility of  §10’s  solution for problem  #7  

comes mostly from the cross-product  v := p¢·b  evaluated without the extra-precise arithmetic 
recommended in  §11  to alleviate inaccuracy when  p  and  b  are too nearly  (anti)parallel.

Understand that the preconditioning process described hereunder is an  Act of  
Desperation  justified only when extra-precise arithmetic is impracticable and 

the computed  ||p¢·b||  is at least an order of magnitude smaller than  ||p||·||b|| .
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The process is motivated by the identity  p¢·b = p¢·(b – p·ρ)   valid for  all  values of the scalar  ρ .  

When  p  and  b  are nearly  (anti)parallel  the choice  ρ := bTp/||p||2  greatly reduces  (minimizes)  
||b – p·ρ||  below  ||b||  and thus greatly reduces  |csc(∠ (p, b – p·ρ))| .  According to the error-

analysis in  §13,  this would enhance greatly the accuracy of the computed  p¢·(b – p·ρ)  except for 
the extra rounding errors inherited from the computation of  ρ  and  b – p·ρ .  These extra rounding 
errors have to be avoided if the preconditioning process of norm reduction is to work properly.

The process chooses  ρ  to approximate  bTp/||p||2  rounded to as many sig. digits  (at least one)  as 
allow  p·ρ  to be computed exactly,  after which almost as many sig. digits of a new  b := b – p·ρ  
should cancel during subtraction.  Thus  b  is replaced by a new  b  of smaller norm without any 

change to  p¢·b  unless the subtraction incurs a rounding error.  If so the process stops.  Otherwise 
the process of norm reduction may be repeated upon the new  b  and  p ,  perhaps after swapping 

them,  until either  ||p¢·b||  will no longer be too much tinier than  ||p||·||b|| ,  or else it has been 
reduced so much that the given data deserve to be deemed  Geometrically Degenerate  (parallel).

A preconditioning process like this above will be illustrated by the data for problem #7  from  §10:

The planes whose coefficients are the two rows of  L := =    intersect 

in the same line  £  as is determined in the same way by the two rows of  R·L  no matter what  2-
by-2  invertible matrix  R  is chosen so long as the matrix multiplication incurs no rounding error.  
So long as all elements of  R  and  L  are integers,  binary  float   arithmetic commits no rounding 

error provided no intermediate product’s nor sum’s magnitude exceeds  1/ε = 224 = 16777216 .  
This proviso is violated during the naive computation of  p¢·b  in  float   arithmetic,  which then 

produces  [16,  0,  0]T  instead of the correct  p¢·b = [19,  -19,  -19]T .  The proviso will be satisfied if 
no element of  R  exceeds  272  in magnitude.  The first row of  L  is so nearly  1.61803  times the 
second that consecutive convergents of the continued fraction  1.61803 = 1 + 1/(1 + 1/(1 + …)) ,   
namely  144/89 ≈ 1.61798  and  233/144 ≈ 1.61806 ,  supply suitable choices for the elements of  

R := .  Replacing  L  by  L1 := R·L =    replaces  exactly  the data    

for problem  #7  by reduced data two or three digits smaller without changing its solution nor   

p1
¢·b1 = [19   -19   -19]T = p¢·b  (since  det(R) = 1 ).   Now the evaluations of  §9’s  formulas solving 

problem  #7  lose far less to roundoff since  csc(∠ (p1, b1)) ≈ 4.01·102  is so much smaller than  

csc(∠ (p, b)) ≈ 4.14·107 .  A further reduction by  R1 :=   to  L2 := R1·L1 =   has  

csc(∠ (p2, b2)) ≈ 1.55 ;  now nothing substantial can be lost to roundoff and the process stops.

Of course the foregoing example is artificial.  Its small integer data make the preconditioning 
process easier to justify and to apply than if the data were nonintegers even though,  in principle,  
multiplication by an appropriate power of the arithmetic’s  Radix  ( 10  for decimal,  2  for binary)  
can convert each floating-point datum to an integer no bigger than  Radix/(2ε) .

p
T π

b
T β

38006 23489 14517 8972

23489 14517 8972 5545

89 144–

144– 233

118 73 45 28

73 45 28 17
p

T π

b
T β

5 8–

8– 13

6 5 1 4

5 1 4 3–
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§15:  Reminiscences and Recommendations
At  Cambridge University  in  1959  Dr. J.C.P. Miller  taught me preconditioning similar to what is exemplified above.  
For most of his life he had used mechanical desktop calculators which display every digit of every intermediate result,  
some to be copied to paper for subsequent reuse.  He had preconditioned linear equations,  polynomial equations,  
discriminants and recurrences to extract better results than might have been expected from the calculators’ eight- or 
ten-digit keyboard capacities used less deftly.  Because of two trends in numerical computations on electronic 
computers still novel then,  Miller  had come to doubt whether they could be programmed to perform his tricks.  One 
trend was the emergence of  Backward Error-Analysis  and a tendency to misunderstand and misapply it.  A second 
trend was towards ever more diverse and mysterious floating-point arithmetics being built into the hardware of 
computers sprouting from a widening field of manufacturers.

A program admits a backward error-analysis just when the program’s results are not much worse than if it had 
performed its computation exactly  (with no rounding errors)  upon data perturbed only in end-figures.  Though such 
programs can produce grossly inaccurate results from what are deemed  Ill-Conditioned  data,  the programs are 
deemed  Numerically Stable  because their data are usually uncertain in more than their last digits,  so such programs’ 
rounding errors usually add relatively little to their results’ inherited uncertainties no matter how big these may be.  
Or so it is widely believed.  Preconditioning such programs’ data seems pointless if it merely reduces their results’ 
uncertainties a little.  In so far as this inference rests upon backward error-analyses it attempts to excuse gross 
inaccuracy by invoking phenomena that can at best explain it.

Actually,  many a program admits no backward error-analysis;  an instance is problem  #7’s  solution in  §9,  as  §10’s  
data shows.  And some of what a program may treat as data subject to roundoff are actually constants determined 
exactly by a problem’s structure;  an example is the coefficient matrix for a boundary-value problem discretized by 
finite differences.  Moreover,  data’s uncertainties can correlate in ways roundoff cannot conserve.  For instance,  a 
structural engineering problem’s matrix may have thousands of nonzero coefficients determined by only hundreds of 
physical and geometrical parameters whose uncertainties propagate into the matrix coefficients but not independently.  
Another instance is problem  #7  whose data consist of eleven scalar parameters most of which appear at least three 
times in  §9’s  formulas for the solution,  but rounding errors in  §10  destroy geometric integrity by disrupting these 
correlations.  Structured Matrices  provide further instances but they are a story for another day.

In the absence of an assessment of inherited uncertainties adequate to take account of their correlations,  extra-precise 
arithmetic,  when available,  is the simplest way for a numerical program to produce computed results at least about 
as accurate as data deserve despite roundoff.  A not-so-simple way to the same end,  when extra-precise arithmetic is 
unavailable or intolerably slow,  is preconditioning,  if it is feasible.

To carry out preconditioning on a computer its programmer must know which arithmetic operations it can perform 
exactly,  without roundoff.  Few programmers possess this knowledge now,  and fewer could depend upon it before 
about  1985.  For example,  from  1964  to  1967  IBM’s  8-byte-wide  floating-point arithmetic did not multiply 
exactly by  1.0  nor by any other power of  16  (its radix),  did not get the same results from  0.5·x  as from  x/2.0 ,  and 
did not get an exact result from subtraction when it mostly cancelled.  This anomalous subtraction and some other 
aberrations afflicted several other manufacturers’ floating-point arithmetics for decades.  Each radix  2,  3,  4,  8,  10,  
16,  100  and  256  had been used by at least one of the computer arithmetics built during those early years.

Since before  1990   the floating-point arithmetic hardware of almost all computers on and under desks has mostly 
conformed to  IEEE Standard 754 (1985) for Binary Floating-Point Arithmetic.  They round every rational arithmetic 
operation and square root in an optimal and therefore predictable way,  and with no substantial degradation of speed  
(that’s the tricky bit).  Consequently small integer data can be preconditioned relatively easily,  as exemplified above.

Noninteger data is harder to precondition.  To ease that task  IEEE 754  prescribes an  Inexact  flag to be raised 
whenever a conforming arithmetic operation commits a rounding error.  This flag would allow programs to either 
cease preconditioning after a rounding error is detected or else narrow the preconditioning multipliers for another 
attempt.  Every program on a conforming computer is supposed to be able to sense,  save,  clear and restore this flag.  
However,  the flag and some other requirements of  IEEE  754  have gone unsupported by programming languages 
other than  C99,  and are threatened by atrophy now.  Those other languages’ designers and implementors,  ignorant 
of the uses for requirements they chose not to support,  have behaved too much like  Shakespeare’s Othello:
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“Perplex’d in the extreme … threw a pearl away
Richer than all his tribe.”

The biggest difference between  1959’s  computers and today’s is not their millions-fold increases in speed and 
storage capacity and communications bandwidth;  it is their decline in size and price.  Now almost anyone can own a 
computer and many of us own several,  most of them idle most of the time.  Back then anyone who could afford a 
computer could afford also to attach to it at least one numerical expert somewhat like a trained  Asian  elephant kept 
in place at night by a feeble anklet chain.  Numerical experts are not so numerous now,  perhaps because floating-
point computation has become so cheap as to be hardly ever worth hiring an expert to ascertain its validity.  If anyone 
observes a transient numerical anomaly while playing a computer game or listening to rock  “music”,  who cares?

Still,  we hope some computations do get proved valid;  they may figure in medical diagnosis via computerized 
tomography,  or the configurations of pharmaceutical molecules,  or financial risk management,  or robot(ic)ized 
manufacture,  or the control of speeding vehicles,  or the deflections of loaded structures,  or predictions of volcanic 
eruptions or vulnerability to earthquakes,  or the propagation and focussing of shock-waves and flame-fronts,  or 
tornado forecasts,  etc.  Not every programmer expert in one of those areas can be expected also to have achieved 
competency in the error-analysis of roundoff’s effect upon numerical computation.  Since (re)educating innumerable 
roundoff-innumerate programmers is impractical,  the burden of accommodating programmers’ predilections falls 
upon those of us in the computer industry who (re)design computer hardware and programming environments.

Ideally every program that invokes floating-point arithmetic should benefit  by default  (without having to request 
them explicitly)  from extravagantly more precise intermediate variables and arithmetic than might at first be thought 
necessitated by the precision of data and the accuracy desired in results.  And this extra precision should slow the 
program by little more than the extra time taken to move extra-precise variables through memory.  Only when this 
extra time looms large need it compel applications programmers to consider how much narrower they can afford to 
declare the precisions of some large arrays of intermediate variables.  Otherwise,  a programming language that 
adopts the foregoing ideal policy —  extra precision by default —  tends to protect the program’s users from the 
programmer’s naïveté about roundoff.

The ideal policy above influenced the design in the late  1970s  of  Intel’s  floating-point destined to be installed in  
IBM’s  microprocessor-powered  PCs  in the early  1980s.  At that time most of the world’s data fit into the  24  sig. 
bits of  4-byte-wide float   formats supported on almost all micro- and minicomputers;  and almost all the rest of the 
world’s data fit into  32  sig. bits and was supported well by the  48 - 56  sig. bits of the mainframes’ and large minis’  
8-byte-wide floating-point called  “double ”  on all those machines except  CDC Cybers  and  CRAYs.  The ideal 
policy had been tested serendipitously in the early  1970s  by the language  C  running on  Bell Labs’  DEC PDP-11  
minicomputer.  A quirk in its floating-point board had induced  B.W. Kernighan  and  D.M. Ritchie  to make their  C  
language evaluate all floating-point expressions in  double   regardless of the width,  float   or  double ,  of operands.  
Consequently matrix and geometrical computations and solutions of differential equations,  all starting from  float   
data to produce  float   results,  lost significantly less accuracy when programmed in  C  than when programmed,  
with the same floating-point expressions,  in  FORTRAN,  the language predominant at the time.  But,  at the time,  
almost nobody noticed the difference in accuracy.  It was like the dog that did not bark in the night,  noticed only by  
Sherlock Holmes  in  Sir Arthur Conan-Doyle’s  story  Silver Blaze.

In  1980,  with an eye to the future,  Intel  introduced a third  10-byte-wide  64  sig. bit  floating-point format not much 
slower than the  53  sig. bits of the  8-byte-wide  double   and intended to grow to  16-bytes-wide  if and when the 
market demanded it.  Intel’s  design was promptly imitated and improved by  Motorola  whose  µ680x0  powered  
Apple’s  early  Macintoshes  on which  SANE  (Standard Apple Numeric Environment)  implemented the ideal policy 
and supported all the requirements of  IEEE 754  before it had become an official standard.  Floating-point arithmetic 
seemed safer now for use by the masses.

But then  Othello’s  mistake was repeated.  Repeatedly.

In  1982  Bill Gates Jr.  predicted that almost no  IBM PC’s  socket for  Intel’s 8087 Numeric Coprocessor  would ever 
be filled,  so no good reason existed to change  Microsoft’s  compilers to support all three of the  8087’s  floating-
point formats.  He was quite wrong on both counts,  but  Microsoft’s  compilers still eschew its widest format.  In the  
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mid-1980s  the  ANSI X3J11  committee responsible for standardizing  C  acquiesced to demands from  CDC  and  
Cray Research  to let  C  compiler writers choose  FORTRANnish  expression evaluation instead of  Kernighan-
Ritchie’s.  That undid their serendipity and accelerated the migration of scientific and engineering computations from  
float s  to  double s  on all computers but now defunct  CDC’s  and  Cray Research’s.  Early in the  1990s,  just as 
programmers were beginning to appreciate  SANE  and praise it,  John Sculley  tried to put  Apple  into bed with  IBM  
and switched  Macintoshes  to  IBM’s Power PC  microprocessor although it could not support  SANE  on  Power 
Macs.  That liaison’s  Taligent Inc.  lived only briefly;  and recently  Apple  switched  Macintoshes  to  Intel’s  
microprocessors.  These could support  SANE  but  Macs  don’t yet;  Apple’s  efforts focus now upon a far bigger 
market.  In the mid  1990s  James Gosling  and  Bill Joy  at  Sun Microsystems  invented the programming language  
Java  partly to cure  C  of pointer abuse but mostly to break  Microsoft’s  stranglehold upon the computing industry.  
They pointedly avoided consultation with  Sun’s  numerical experts when they adopted  FORTRANnish  expression 
evaluation instead of  Kernighan-Ritchie’s,  and banned extra-precise arithmetic and any requirement of  IEEE 754  
they didn’t like.  Java’s  floating-point is dangerous;  see  “How Java’s Floating-Point Hurts Everyone Everywhere”  
posted on my web page at  <www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf>.  Meanwhile  Microsoft’s  hegemony 
persists despite judicial intervention in several jurisdictions worldwide.  The bigger battalions of lawyers win.

Bereft of support by programming languages,  several requirements of  IEEE 754  face atrophy.  And,  on newer 
microprocessors from both  Intel  and its clonemaker  AMD,  the underused extra-precise format is getting slower 
relative to  float   and  double ,  though not yet so slow as the  16-byte-wide  hexadecimal,  binary and decimal 
formats in the latest  IBM  mainframe hardware.  On the other hand,  processors optimized for computerized games 
and entertainment have fast vectorized  float   arithmetic and rather slower  double ,  neither conforming fully to  
IEEE 754  but produced in such high volume that they are too cheap to be overlooked by the builders of inexpensive 
supercomputers designed for massively parallel scientific and engineering computations.  Moreover,  programmers 
attempting aggressively to exploit parallelism will succumb to the temptation to use numerical algorithms whose 
reliability in the face of roundoff on those processors has not been ascertained fully.  The users of these programs will 
be testing them unwittingly,  much like the consumers of newly marketed drugs and unregulated herbal remedies..

What can be done to render floating-point computation less hazardous?  The people who decide about programming 
languages,  compilers,  debuggers and hardware care little for numerical mathematics and will almost surely not read 
these notes.  If you have read this far,  you can influence them as a customer more knowledgeable than most who use 
their products.  Your obligations are similar to those of consumers who must demand that cars come with some safety 
features like tempered glass,  seatbelts,  airbags,  ABS  and  ESC;  that foods and drugs be protected from adulteration 
and contamination;   and so on.  Don’t wait for some calamity to spur needed action,  albeit  The American Way;  it 
drowns in attempts to cast and shed blame and punishment.  Besides,  punishment for  Sin  befalls too much more the 
innocent concomitants than the deserving sinner,  as when drunks drive.  The more potent incentive to incorporate 
safeguards into a product is the belief that sufficiently many customers will know enough to choose safer products.

Think not of your  Duty  owed to  Truth in Computation.
Think about  Self-Defense.

§16:  How Nearby Singularities Magnify Roundoff
A numerical program’s roundoff-induced instability can be cured only after it has been diagnosed.  
Diagnosis requires scrutiny of every site in the program where a rounding error is committed that 
subsequent arithmetic operations may amplify intolerably,  at least for some data.  Since almost 
every rounding error looks insignificant when committed,  identifying one that isn’t resembles 
identifying a pickpocket in the crowd at a carnival;  look for characteristic misbehavior.

What characterizes the amplification of rounding errors,  ostensibly negligible when committed,  
into gross departures from the intended result of a computation?
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We shall see below that such amplification is caused by  Singularities  too near the computation’s 
data.  A function’s singularity is a discontinuity or a place where a derivative of the function 
becomes infinite.  We have seen two examples in  §13:

     d arcsin(x)/dx = 1/√(1–x)(1+x)   and   d arccos(x)/dx = –1/√(1–x)(1+x)   on  –1 ≤ x ≤ 1 .

These derivatives become infinite at  x = ±1  where  arcsin(x) = ±π/2  or  arccos(x) = 0  or  π ,  
thus amplifying enormously any error  x  inherits from roundoff.  Those singularities degrade the 
accuracies of  §13’s  formulas  |∠ (p, b)| = arcsin(…)   and  |∠ (p, b)| := arccos(…)  as if these 
disliked innocuous data  p  and  b  for which  ∠ (p, b)  is too near  ±π/2  or  0  or  π .  No such 

prejudice blights the formula  |∠ (p, b)| = 2·arctan(…)  because  0 < d arctan(x)/dx = 1/(1+x2) ≤ 1  
throughout  –∞ < x < +∞ ,  so inherited uncertainties of the order of  ε·||p||  in  p  and  ε·||b||  in  b  
propagate through the  arctan(…)  into an inherited uncertainty of the order of  ε  in  |∠ (p, b)|  
exacerbated at most moderately by augmentations of order  ε  from roundoff during the evaluation 
of the  arctan  formula.  Consequently this  arctan  formula deserves to be called  “Numerically 
Stable”.  On the other hand,  unless evaluated in arithmetic at least twice as precise as the data,  
the  arccos  and  arcsin  formulas are numerically unstable,  or at least hypersensitive to roundoff,  
for an extremely narrow range of otherwise unexceptionable data  p  and  b .

Let’s generalize the foregoing examples:  Let  F(X)  represent a program intended to compute a 
function  ƒ(x)  in floating-point.  Here  ƒ  and  x  may be vectors,  likewise  F  and  X ;  but the data  
X  stored in the computer may differ from the intended  x  because of errors inherited from prior 
computations.  And the text of program  F  has no names for the rounding errors committed by 
almost every one of its floating-point arithmetic operations.  Let each of these rounding errors be 
named,  and assemble all these names into an array  r  and rewrite  F(X) = f(X, r)  to take account 

of them;  then  f(x, o) = ƒ(x) .  For example,  take quadratic function  ƒ(x) := 2x2 – 5x + 3  and 
program  F(X) := (2·X – 5)·X + 3 ,   so  f(x, r) = (((2·x·(1+ρ1) – 5)/(1+ρ2))·x·(1+ρ3) + 3)/(1+ρ4) ;  

r := [ρ1, ρ2, ρ3, ρ4]
T .  About each rounding error  ρj  no more may be known than that  ε ≥ |ρj| .  

More may be known in some cases;  here  ρ1 = 0  if the arithmetic is binary floating-point.  And  

ρ4 = 0  in binary or decimal whenever  (5 – √17)/4 ≈ 0.2192236 < X < 2.280776 ≈ (5 + √17)/4  
because then the last addition  “… + 3 ”  happens to cancel enough to incur no rounding error.

Normally,  in general,  the error in  X  and the rounding errors  ρj  collected in array  r  are so tiny 
that their squares may be neglected,  and then the error inherited in  F(X)  from the error in  X  
plus the error due to roundoff is   F(X) – ƒ(x) = f(X, r) – f(x, o) ≈ fx(X, o)·(X–x) + fr(X, o)·r  

roughly wherein derivatives  fr(x, r) = ∂f(x, r)/∂r  and  fx(x, r) := ∂f(x, r)/∂x  so  fx(X, o) = ƒ'(X) .  

This  F(X) – ƒ(x)  is the  Absolute Error;  define the  Relative Error := ||F(X) – ƒ(x)||/||ƒ(X)||  or 
else the array of  Relative Errors := (F(X) – ƒ(x))./ƒ(X) elementwise,  roughly.

How can  ||F(X) – ƒ(x)||  become huge when  ||X–x||  and  ||r||  are tiny?  This can happen only 
when  ||ƒ'(X)||  or  ||fr(X, o)||  is enormous,  which can happen only when  X  is near an argument  
x∞  at which  ||ƒ'(x∞)|| = ∞  or  ||fr(x∞, o)|| = ∞ .  ( x∞  may be complex.)  Such arguments  x∞  are 

singularities of  ƒ  or of  f .  If relative error  ||F(X) – ƒ(x)||/||ƒ(X)||  matters it may become huge 
also when  X  is very near a zero of  ƒ ,  thus adding its zeros to the list of singularities.
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Quadratic example  F  has  ƒ'(X) = 4·X – 5  and   fr(X, o) = [2·X2,  3 – ƒ(X),  ƒ(X) – 3,  ƒ(X)]   so 
its absolute error has no finite singularity  x∞ .  However the relative error has singularities at the 

zeros  xo = 1.5  and  xo = 1  of  ƒ  because  fr(xο, o) = [2·xo
2,  3,  –3,  0] ≠ oT  and therefore  

|F(X) – ƒ(X)|/|ƒ(X)|  can become far bigger than  ε  (but not arbitrarily big)  when  X  is very near 
either  xo ,  though no roundoff perturbs  F(xo) = ƒ(xo) = 0 .  A far better program to compute  ƒ(X)  
with fairly high relative accuracy for  all  X  is  F(X) := 2·(X – 1.5)·(X – 1) ;  can you see why?

In general,  the severity of an error in  F(X)  depends not only upon its numerical value but also 
upon how it is weighed or measured:  By what norm  ||…|| ?    Absolute or Relative?

Different norms can differ in the weights they assign to the elements of a vector;  they can differ 
by many orders of magnitude.  These weights may be buried in the physical units associated with 
different elements.  For instance,  a simulation of a system to control the distribution of electricity  
may involve several different voltage levels at different places in the system:

generators driven by water or steam or gas turbines 1000 - 100000 V.
high-voltage transmission lines astride the countryside  100000 - 1000000 V.
municipal distribution sites  (often disguised to look like homes)  10000 - 30000 V.
transformers on each block of a street  2000 - 10000 V.
wall-sockets in homes  110 - 240 V.
power inside computers controlling the system  2 - 12 V.
voltage fluctuations at transistors in the computers  0.001 - 0.01 V.
microwave antennas receiving signals from the system  0.000001 - 0.0001 V.

A one volt error is inconsequential in the first five places,  severe in the sixth,  and overwhelming 
in the last two.  Consequently the voltages should not be measured in volts everywhere but instead 
in megavolts,  kilovolts,  millivolts and microvolts at appropriate places.  Choices of appropriate 
units ensure that an error amounting to  0.01  units will signify the same severity,  within an order 
of magnitude or two,  regardless of which variable is afflicted.  The choice of appropriate units is 
an important step towards the choice of a vector norm appropriate to measure a result’s error.

The choice of norm affects the meanings of weasel-words like  “near”  though not the locations of 
singularities that can amplify roundoff intolerably if data lies too near them.  These singularities 
are determined first by the desired function  ƒ ,  and perhaps by its zeros too if relative error is in 
question,  and second by the program  F(X) = f(X, r)  chosen to compute  ƒ(X) .  The program is 
usually deemed  “Numerically Stable”  if every singularity of the second kind is also of the first.  
But if a singularity  x∞  of the second kind  (where  fr(x∞, o)  is infinite)  is not also of the first,  the 
program is usually deemed  “Numerically Unstable”  at least for some data  X  too near  x∞ .

Weasel-words  “near”,  “some”  and  “usually”  persist because first appearances can deceive.  A 
program’s singularities can easily evade casual inspection.  For striking examples see my web 
page’s postings  “Why is Floating-Point Computation so Hard to Debug  when it  Goes Wrong ?”  
<www.cs.berkeley.edu/~wkahan/WrongR.pdf> ,  pp. 36-41  of  “Marketing vs. Mathematics”  
<…/MktgMath.pdf>   and then  pp. 14 - 17  of  “How Futile are Mindless Assessments of Roundoff 
in Floating-Point Computation?”  <…/Mindless.pdf> ;  in each program’s data lurks at least one 
datum masquerading as a constant,  perhaps a loop-count too near a singularity at  ∞ .  Though a 
few singularities are harmless exhibitionists,  some hide in plain sight.  Let’s look at instances:
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§17: Spurious Singularities Plain and Not so Simple
Problem #0  in  §9  concerned the intersection  z  of three planes whose equations  pT·x = π ,  

bT·x = ß  and  qT·x = θ  are given;   z  satisfies  M·z = m  wherein matrices  M := [p,  b,  q]T  and  

m := [π,  ß,  θ]T .  The formula   z = M–1·m  defines a function  z = ƒ(M, m)  we wish to compute 

without saying how to compute it;  §9’s  formula for   z = ( b¢·q·π + q¢·p·ß + p¢·b·θ )/(pT·b¢·q)   

defines a program equivalent to writing   M–1 = [b¢·q,  q¢·p,  p¢·b]/(pT·b¢·q)   in which just one 

scalar divisor   pT·b¢·q = det(M)  appears.  It reveals a singularity of the desired  ƒ ,  as does its 

derivative:  dz = M–1·(dm – dM·z) .  At this singularity,  det(M) = 0  and  M–1  is nonexistent or 
infinite,  corresponding to a  degenerate,  collapsed  or  confluent  (choose whichever pejorative 
adjective you dislike least)  geometrical configuration of three planes whose normals are coplanar.

Often,  nearness to the singularity and its amplification of roundoff and infinitesimal perturbations  

dm  and  dM  in data are captured by one number,  the  Condition Number   κ(M) := ||M–1||·||M|| .  
Classroom note  <www.cs.berkeley.edu/~wkahan/MathH110/NORMlite.pdf>   explains norms
||…|| ,  and  <.../GIlite.pdf>   explains more of what is summarized tersely hereunder:

  •1:  1/||M–1|| = min ||M – S||  over all  Singular  ( det(S) = 0 )  matrices  S  of  M ’s  dimensions.
  In the vector space of all matrices like  M  the singular matrices  S  fill out a complicated 
  self-intersecting cone with vertex at the origin  O ;  and  arcsin(1/κ(M))  is the angle 
  between the cone and the line segment joining  O  to  M .

  •2:  dz = M–1·(dm – dM·z)  implies  ||dz||/||z|| ≤ κ(M)·(||dm||/||m|| + ||dM||/||M||) ,  and for no
   constant smaller than  κ(M)  can the inequality hold for all  m,  dm  and  dM .

Were that all there is to singularity,  error-analysis would be far simpler than it is.  Placing blame 

for inaccuracy in a computed  M–1·m  upon amplification of roundoff by a huge condition number  
κ(M) ,  even if justified,  can oversimplify the situation unjustly.

It is unjust because the data  (M, m)  come from some observations or prior computation which 

can so correlate  M  and  m  that  z = M–1·m  and its derivatives stay bounded no matter how  
“near”  M  comes to singular.  This renders  κ(M)  in  •2  unrealistic for correlated perturbations in 
data though uncorrelated rounding errors can get amplified by as much as  κ(M) .  An extreme 
example is provided by the following familiar geometrical problem:

#9.  Find  Incenter  c  of the circle inscribed in a triangle whose vertices  u,  v  and  w  are given.

c  is determined by requiring that it lie in the plane containing the triangle,  and that a line segment 
from  c  to any vertex make equal angles with the sides adjacent to that vertex.  The requirements 
imply three independent equations to be solved for  c ;  they have been assembled into one linear 

system  M·c = m  whose  3-by-3  matrix  M := [p,  b,  q]T  and column   m := [π,  ß,  θ]T  have …

 p := (v–u)¢·(w–u) , π := pTu ,        … in the triangle’s plane

 b := ||u–v||·(w–v) – ||w–v||·(u–v) , β := bTv ,        … bisect angle at  v 

 q := ||v–w||·(u–w) – ||u–w||·(v–w) ,    and θ := qTw .        … bisect angle at  w 

Now  c = M–1·m .  Where are its singularities?  This linear system’s determinant turns out to be
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 det(M) = pT·b¢·q = ||v–w||·(||u–v|| – ||v–w|| + ||w–u||)·||(v–u)¢·(w–u)||2 ,
which vanishes just when the given triangle is  degenerate  (has area zero),  as might reasonably 
be expected.  But this expectation is misleading because the linear system is always  consistent;  
the degenerate case is the singularity of the linear system but not of the desired center  c .  In fact  
c  is everywhere a continuous function of the vertices,  lying always in their convex hull even if 
they are collinear,  in which degenerate case  c  falls upon whichever of the three vertices lies 
between the other two.  Explicitly,  except for a  Removable Singularity  when  c = u = v = w ,

 c = ( u·||v–w|| + v·||w–u|| + w·||u–v|| )/( ||v–w|| + ||w–u|| + ||u–v|| ) .
In this unobvious formula,  roundoff with threshold  ε  generates less uncertainty in  c  than about

  6·ε·( |u|·||v–w|| + |v|·||w–u|| + |w|·||u–v|| )/( ||v–w|| + ||w–u|| + ||u–v|| )  elementwise.
It is negligible unless  ||c||  is orders of magnitude smaller than at least two of  ||u||,  ||v||  and  ||w|| ,  

whereas the formula  c = M–1·m  further amplifies roundoff by a factor that can be roughly as big 
as  (triangle’s length)/(triangle’s width)  when the triangle is narrow.

The incenter of a triangle has been computed from  (the equations of)  its edges during navigation aided by signals 
from beacons,  and during attempts to locate the source of radio transmissions from hostile military units and spies.  
These edges were parts of three lines that would have been concurrent but for small errors in observations and in 
instruments.  Given those lines,  the triangle’s incenter was deemed the  “best”  approximation available to the single 
intended point of concurrence.  This incenter is equidistant from the three lines,  but so are three other points outside 
the triangle.  They were excluded by computing the desired incenter not directly from the coefficients of the lines’ 
equations but after computing the triangle’s vertices.  Nowadays a  “best”  approximation to one intersection point of  
(perhaps more than three)  lines can be computed directly from their coefficients as the solution of a weighted least-
squares problem.  The weights take signal strength,  interfering noise and other uncertainties into account.

Someone ignorant of the unobvious formula who computes  c = M–1·m  will wrongly blame its 
far worse inaccuracy due to roundoff upon the data’s huge  κ(M)  when the triangle is narrow.  In 

fact much of the lost accuracy gets lost during the computation of the rows of  M = [p, b, q]T .

Do not confuse  ignorance  with  stupidity:
  “With  Stupidity  even the  Gods  struggle in vain.”  J.C.F. von Schiller,  1759 - 1805

A programmer who derives a linear system like  M·c = m  to solve for  c  is far from stupid;  he is 
unlucky or too impatient or too beset by deadlines to pore through enough old texts on vectors and 
geometry.  How long would you take to find the foregoing accurate but unobvious formula for  c ?

Who pays the penalty for a programmer’s ignorance?  Him?
More likely his program’s users,  perhaps unwitting.

Suppose the user has a program for  c = incenter(u, v, w)  that must be treated as a  Black Box  
because it comes precompiled as a library module without readable source-text,  or because the 
source-text is legible but inscrutable  (as are too many programs).  How may the user of this black 
box test its accuracy for his data without enough access to the box’s design to tamper with it nor to 
perform an error-analysis?  Two ways come to mind:

The first way compares the results  c  obtained from  incenter(u, v, w)  when its arguments are 
permuted.  In the absence of roundoff  c  would not change.  Symmetries in every program for  
incenter(u, v, w)  almost surely keep roundoff from producing more than three different results  c  
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from the six permutations of the vertices.  A user lacking foreknowledge may have to try as many 
as five of them.  If any two computed results differ substantially,  all are suspect.  Alas,  substantial 
agreement among all six results  c  when all are substantially wrong is possible though unlikely.

The second way exploits a little-known and linguistically ill-supported capability mandated by  
IEEE Standard 754 for Binary Floating-Point Arithmetic:  Directed Roundings.  The default 
direction of rounding is  To Nearest,  which restricts each rounding error to at most half a unit in 
the last binary digit retained.  The three directed roundings are  To 0 ,  To +∞  and  To –∞ ;  each 
such  Rounding Mode  biases all rounding errors in the specified direction while keeping each 
error smaller than one unit in the last digit retained.  Program  incenter(u, v, w)  should inherit by 
default whatever rounding mode was in force before  incenter  was invoked,  so its user should be 
able to obtain four different values of  c = incenter(u, v, w) ,  one for each rounding mode.  If any 
one differs substantially from the others,  all are suspect.  Alas,  substantial agreement among all 
four results  c  when all are substantially wrong is possible though unlikely.  And few compilers 
and fewer debuggers support any way to redirect rounding for the effect desired here.  My web 
page’s  <…/Mindless.pdf>   contrasts redirected rounding with other techniques purporting to 
help debug malignant roundoff.

Versions 6 and later of MATLAB  offer ways to redirect roundoff and constrain precision adequate to explore programs 
like  incenter(u, v, w)  though their full scopes are difficult to ascertain;  see  <…/MxMulEps.pdf>   on my web page.

The time has come for a numerical example.  The data  u,  v,  w  and the result  c  as well as all 
intermediate variables are  4-byte-wide  float s  with  24 sig. bits  of precision,  the same as the 
arithmetic’s,  except that one  8-byte  double   value of  c  used for reference is computed from the 
unobvious but most accurate formula using  53 sig. bit  double   arithmetic.  Here is the data:

 u := [ 255429.53125,  -139725.125,  140508.53125 ]T,  

 v := [ 10487005.,  8066347.,  -11042884. ]T,  

 w := [ -5243521.,  -4033150.,  5521499. ]T .
These are the vertices of a narrow triangle  80  times as long as wide.  Its accurate incenter is

 c = [ 128615.61552…,  -69127.510715…,  69282.163604… ]T 

    ≈ [ 128615.6171785,     -69127.5078125,       69282.1640625 ]T   rounded to   24  sig. bits.

The naïve formula  c = M–1·m  was tested three ways:  One was  Gaussian  elimination with 
pivotal row-exchanges.  The other two were formulas mentioned for  §9’s  problem #0 ,  namely  

c = ( b¢·q·π + q¢·p·ß + p¢·b·θ )/(pT·b¢·q)  and  c = ( (b¢·q)·π + p¢·(b·θ – q·ß) )/(pT·(b¢·q))  with  

b¢·q  reused.  However,  for the data given here,  all three ways produced results so much closer to 
each other than to the correct reference value  c  that they are not distinguished hereunder.  The 
three incenters  c  computed naively carrying  24  sig. bits were in error by about  400.00  in each 
element.  This is over  100  times as big as the error of about  0.30  when  c  is computed from the 
unobvious formula;  its error is expected because  ||v||  and  ||w||  are over  50  times as big as  ||c|| .  
How does two extra sig. dec.  lost to  naïveté  accord with the condition number  κ(M) ≈ 100.66 ?  

The accuracy lost to  naïveté  depends upon the order in which the vertices are presented.  When  
[u, v, w]  is replaced by  [v, w, u]  the error in  c  drops from  400.00  to near  18.00 ;   for  [w, u, v]  
it drops to about  5.00 .  κ(M) ≈ 35.  in both latter orderings.  These three errors are of the worst 
kind,  too small to be obvious yet too big to ignore.  They are not correlated closely with  κ(M) .
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Why do the tested evaluations of the naïve formula  c = M–1·m  yield results so similar and yet so 
much worse than  κ(M)  might predict?  Evidently,  for the data given here,  roundoff damages the 

computed elements of array  [M, m]  more than it damages the subsequently computed  M–1·m .  
Where is the singularity that imperils  [M, m] ?  If the given triangle were degenerate its collinear 
vertices would cause one,  two or three of the rows of  [M, m]  to vanish,  depending upon the 
vertices’ order.  This singularity hiding in plain sight wreaks the worst upon naively computed  c .

When each of the foregoing computations is rerun three times with redirected roundings,  in every 
case the four computed results  c  vary among themselves at least roughly as much as their errors,  
revealing each computation’s (hyper)sensitivity to roundoff.  The same kind of revelation occurs 
when  z  in  §10  is recomputed with redirected roundings.  These are valuable diagnostic tools.

The examples above foreshadow much of what happens in general.  First,   some singularities are 
unobvious.  Second,  among singularities inherent in a computational problem whose solution we 
seek,  some may be malignant when approached by slightly uncertain data,  and others benign  
(removable).  Third,  roundoff’s effects may bloat intolerably when otherwise innocuous data 
approach spurious singularities concomitant in an ill-chosen numerical algorithm but not inherent 
in the problem to be solved.  Spurious singularities can lurk in  “canned”  software obtained from 
the internet or embedded in respectable computational environments like  MATLAB .  Perplexing 
examples are posted in my  “Do  MATLAB ’s  lu(…) ,  inv(…) ,  /   and  \   have  Failure Modes ?”    
<…/Math128/FailMode.pdf> .  Most such software cannot yet defend its users against perplexity.

How can the producer of numerical software avoid spurious singularities?  The simplest way,  
though neither foolproof nor always economical,  is to carry extravagantly more precision in all 
intermediate variables and arithmetic than the precision of the data and the accuracy desired for 
the result.  The greater the precision carried,  the smaller the incidence of embarrassment due to 
roundoff;  usually every extra decimal digit carried reduces that incidence by a factor of one tenth.

The best way to extirpate spurious singularities is to locate them by performing an error-analysis 
and then suitably revise the program’s numerical algorithm.  This  Counsel of Perfection,  “more 
honour’d in the breach”,  too often costs rather more human effort than the computation is worth.

Iterative Refinement
A good way to cope may be available when the desired result satisfies an equation,  say  M·c = m ,  
that the computation solves.  For any approximate solution  x ,  no matter how it was obtained,  the  
Residual  r  := m – M·x  is a computable indication of how far  x  dissatisfies that equation.  Now 
repeat the process that produced  x  to solve  M·∆x = r   for  ∆x  approximately;  often the repeated 
process reuses a large fraction of the intermediate results generated when  x  was computed,  so 
the cost of  ∆x  is relatively small.  Then  x + ∆x  is the  Refined  approximation to  c ;  and the 
whole process is called  “Iterative Refinement”  if repeated.  It is explored exhaustively in  “Error 
Bounds from Extra-Precise Iterative Refinement” by  J.W. Demmel et al., pp. 325 - 351 of ACM 
Transactions on Mathematical Software (TOMS) 32 (2006).  Here is a rough outline of the facts:

   •i If  r   is computed with the same arithmetic precision as was carried to compute  x  then
x + ∆x  will very likely have a residual smaller than  r   and possibly an error smaller than
x ’s.  But as  κ(M)  grows so does the likelihood that  x + ∆x  be less accurate than  x .
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   •ii If  r   is computed with arithmetic sufficiently more precise than was used to compute  x 
then  x + ∆x  will almost surely have a residual smaller than  r   and an error smaller than 
x ’s.  And if  “sufficiently more precise than”  is  “at least double the precision that”  then 
repeated refinement can produce a refined solution  x  correct in all but its last digit or two 
unless  M  differs from singular by less than several units in its last digits at the precision
carried to compute  x  initially.

   •iii Computing  r   extra-precisely usually costs a small fraction of the time spent to compute  x 
initially,  even if extra-precise arithmetic has to be simulated slowly in software.  And then
the refined solution’s accuracy is almost always improved,  sometimes spectacularly, 
without anyone having to know whether nor why the initial  x  was inaccurate.

At least one refinement should  always  be carried out  by default  whenever the residual can be 
computed extra-precisely for a tolerable price.  But it could not improve  c = incenter(u,v,w)  for 
data like the example’s above because  M  and  m  were already damaged too much by roundoff.

For similar reasons,  iterative refinement cannot help to solve a similar geometrical problem:

#10.  Find  Incenter  c  of the biggest sphere inscribed in a tetrahedron whose vertices  o,  u,  v  
and  w  are given.  c  must be equidistant from the tetrahedron’s four face-planes,  and on the same 
side of each face-plane as its opposite vertex.  This requirement translates via problem  #3  into a 

linear system that  c  must satisfy:  M·c = m  in which,  regardless of  sign( uTv¢w ) ,  

    p := (v–u)¢(w–u)/||(v–u)¢(w–u)|| ,   M := [v¢w/||v¢w|| + p,   w¢u/||w¢u|| + p,   u¢v/||u¢v|| + p]T  

and   m := [u, v, w]T·p = uT·p·[1, 1, 1]T .   The determinant of the matrix  M  turns out to be 

 det(M) = (uTv¢w)2·( ||v¢w||+||w¢u||+||u¢v||+||(v–u)¢(w–u)|| )/( ||v¢w||·||w¢u||·||u¢v||·||(v–u)¢(w–u)|| )
which vanishes just when the tetrahedron is degenerate  (has no volume).  Consequently we 
expect roundoff to corrupt the equation’s solution when the tetrahedron is nearly flat like an axe-
blade,  and to corrupt the equation’s construction when the tetrahedron is narrow like a needle.

Fortunately the linear equation  “ M·c = m ”  need never be constructed;  its solution is simply

 c = ( u·||v¢w|| + v·||w¢u|| + w·||u¢v|| )/( ||v¢w|| + ||w¢u|| + ||u¢v|| + ||(v–u)¢(w–u)|| )  
and is a positively weighted average of the vertices.  The weight of each vertex is proportional to 
the area of its opposite face.  Although roundoff corrupts the weights if the tetrahedron is too 
needle-shaped,  its convex hull always very nearly contains the computed  c .

Numerical Example:   [u, v, w] :=   has   uTv¢w = 36 ,  so  det(M) ≠ 0 .  However,  

replacing  u1  by  4181  makes   6u = 3v + 2w ,   collapsing the tetrahedron.  Before replacement,  

c ≈ [4789.4057,  5920.0275,  5488.1688]T;   afterwards  c = [4181.,  5168.,  4791.]T = replaced u .  All 
the data are fairly small integers,  so  float   computation rounded to  24  sig.bits produced a fair  
c ≈ [ 4789.4204,  5920.0454,  5488.1851 ]T  from the simple formula before replacement;  however   
“  M·¢ = m ”  produced  ¢ ≈ [ 342.52,  423.32,  392.48 ]T,  far from  c  and at least  0.03  outside the 
tetrahedron.  This  ¢  errs in the worst way:  too far to ignore but not far enough to be obvious.   
Arithmetic rounded to  53  sig.bits yielded  c  well from both formulas.

4182 5168 4791

5168 6388 5922

4791 5922 5490


