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Axioms  for  Fields  and  Vector Spaces

 

The subject matter of  Linear Algebra  can be deduced from a relatively small set of first 
principles called  “Axioms”  and then applied to an astonishingly wide range of situations in 
which those few axioms hold.  An alternative approach to the subject is to study several typical or 
archetypal situations and draw conclusions that generalize to other situations that seem at first 
unrelated.  An example of an archetypal situation is matrix multiplication.  Neither approach is 
fully satisfactory by itself.  The first can be too dry,  the second drowned in inessential details.  In 
this course both approaches are pursued,  thus combining the best with the worst of both worlds.

Linear Algebra  begins with a  

 

Field

 

  of  

 

Scalars

 

,  which are entities  

 

α

 

, ß, 

 

γ

 

, …  analogous to 
numbers that obey the following rules:

0  and  1  are scalars.
Any two scalars  

 

α

 

  and  ß  have a sum  

 

α

 

 + ß  which is also a scalar;  

 

α

 

 + 0 = 

 

α

 

 .
If  

 

α

 

  is a scalar so is  –

 

α

 

 ;  and  ß – 

 

α

 

 := ß + (–

 

α

 

) ;  and   

 

α

 

 – 

 

α

 

 = 

 

α

 

 + (–

 

α

 

) = 0 .
Addition is  commutative,   

 

α

 

 + ß = ß + 

 

α

 

 ,  and  associative,   (

 

α

 

 + ß) + 

 

γ

 

 = 

 

α

 

 + (ß + 

 

γ

 

) .
Any two scalars  

 

α

 

  and  ß  have a product  

 

α

 

·ß  which is also a scalar;  

 

α

 

·1 = 

 

α

 

 ;  

 

α

 

·0 = 0 .

If scalar  

 

α

 

 

 

≠

 

 0  so is  

 

α

 

–1

 

 ;  and  ß/

 

α

 

 := ß·(

 

α

 

–1

 

) ;    

 

α

 

/

 

α

 

 = 

 

α

 

·(

 

α

 

–1

 

) = 1 .  But there is no  0

 

–1

 

 .
Multiplication is  commutative,   

 

α

 

·ß = ß·

 

α

 

 ,  and  associative,   (

 

α

 

·ß)·

 

γ

 

 = 

 

α

 

·(ß·

 

γ

 

) .
Multiplication distributes over addition;   

 

α

 

·(ß + 

 

γ

 

) = 

 

α

 

·ß + 

 

α

 

·

 

γ

 

 .

 

( We often omit the dot  ·  from multiplications.)

 

A few examples of fields are …
The  Rational  numbers,  ratios of  Integers.   ( The  Integers  do  

 

not

 

  constitute a field.)
The  Algebraic  numbers,  roots of polynomial equations with integer coefficients.
The  Real  numbers,  limits of bounded monotonic sequences of rational numbers.
The  Complex  numbers,  roots of polynomial equations with real coefficients.
Rational functions,  ratios of polynomials with coefficients from one of the previous fields.
The integers modulo a prime;  this field has just finitely many members.

There are many other fields,  but this course will use the first four almost exclusively.

 

( That the algebraic numbers form a field can be inferred from unobvious properties of  

 

symmetric functions

 

.)

 

A  

 

Vector Space

 

  over a field of scalars  

 

α

 

, ß, 

 

µ

 

, …  is a set of entities  

 

x

 

, 

 

y

 

, 

 

z

 

, …  called  “vectors” 
that obey the following rules:

If  

 

x

 

  is a vector so is  ß

 

·

 

x

 

 = 

 

x

 

·

 

ß  for any scalar  ß ,  and  1

 

·

 

x

 

 = 

 

x

 

 ,  and  (ß

 

µ

 

)

 

·

 

x

 

 = ß

 

·

 

(

 

µ

 

·

 

x

 

) .
If  

 

x

 

  and  

 

y

 

  are vectors so is  

 

x

 

 

 

+

 

 

 

y

 

 .
Addition is commutative,  

 

x

 

 

 

+

 

 

 

y

 

 = 

 

y

 

 

 

+

 

 

 

x

 

 ,  and associative,  (

 

x

 

 

 

+

 

 

 

y

 

) 

 

+

 

 

 

z

 

 = 

 

x

 

 

 

+

 

 (

 

y

 

 

 

+

 

 

 

z

 

) .
There is a zero vector  

 

o

 

  that satisfies  

 

x

 

 + o = x  and  0·x = o  for every vector  x .
If  x  is a vector so is  –x = (–1)·x ;  and  y – x := y + (–x) ;    x – x = x + (–x) = o .
Multiplication distributes over addition:  ß·(x + y) = ß·x + ß·y ;  (ß + µ)·x = ß·x + µ·x .

( We usually omit the dot  · ,  and drop the distinction between  +  and  + ,  and between  –  and  – .)

( Multiplying two vectors yields another in the same space only if the space is an  Algebra  too.)
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The axioms for an abstract vector space are intentionally  not categorical ;  they tell us something 
about a vector space without saying exactly what it is.  Consequently they tell us what is common 
to a vast variety of vector spaces some of them very peculiar.  For instance,  the axioms do not say 
how the vector operations  { + , – , · }  are to be implemented so long as they follow the rules.  An 
implementation can appear perverse at first,  as does the following example:

Start with a space  V  of column vectors  x,  y,  z,  …  over the  Real  field with vector operations defined elementwise 
in the usual way:  vector  x = µ·y + ß·z  just when  xj = µ·yj + ß·zj  for the corresponding components  xj  of  x ,  yj  of  
y  and  zj  of  z .  Here there is no need to distinguish  { + , – , · }  from  { + , – , · } ;  we might as well write  
x = µ·y + ß·z .  Next choose any function  ƒ  that maps the  Real  field  one-to-one  upon itself,  so  ƒ  has an inverse  
Ω  that satisfies   ƒ(Ω(ß)) = ß = Ω(ƒ(ß))   for every real  ß .  One possibility is  ƒ(ß) := ß + 7 ,  and then  Ω(ß) = ß – 7 .  

A second possibility is  ƒ(ß) := ß3 ,  and then  Ω(ß) = 3√ß .  Reject trivial cases for which function  ƒ(ß)/ß  is constant.  
Next map  V  one-to-one onto a space  V  of column vectors  x,  y,  z,  …  and  vice-versa  thus:

with every  x  in  V  associate   x := ( Ω(x) elementwise )   in  V ;
with every  x  in  V  associate   x := ( ƒ(x) elementwise )    in  V .

Now write  “ x = µ·y + ß·z ”  to mean  “ x = Ω( µ·ƒ(y) + ß·ƒ(z) ) elementwise ”.  Implemented perversely this way,  
the operations  { + , – , · }  in  V  must be distinguished from the  Real  field’s operations  { + , – , · } .  The spaces  V  
and  V  are really the same vector space in which the elements of every vector  x  are its components relative to an 
obvious basis for  V ,  but  V  has no basis for which the elements of every column vector  x  are its components.

The axioms for a vector space bigger than  { o }  imply that it must have a  basis,  a set of  linearly 
independent  vectors that  span  the space.  The meanings of  “basis”,  “linearly independent”  and  
“span”  are quite clear if the space has finite dimension —  this is the number of vectors in a basis.  
Every linearly independent set of vectors from a given space can be augmented by choosing more 
vectors,  if necessary,  to fill out a basis that spans this space,  and every basis for this space turns 
out to have the same number of vectors in it.  ( You should know how to prove this.)

Infinite-dimensional spaces pose interesting challenges.  The first concerns the sum of infinitely 
many basis vectors;  it makes sense only if accompanied by an apt notion of  convergence.  This 
challenge can be postponed by insisting at first upon finite sums;  then every vector in the space 
must be obtainable as a linear combination of finitely many basis vectors.  Such a basis may exist 
only as a result of infinitely many choices of new vectors to augment previously chosen linearly 
independent vectors that do not yet span the space.  Perhaps the word  “exist”  is too strong here.

For example,  the field of  Real  numbers  ( including  Algebraic  and  Transcendental )  can be regarded as a vector 
space over the  Rational  field;  for this purpose a basis consists of a proper subset  { rj }  of  Reals  which permits the 
expression of every other  Real  r = ∑j ßj·rj  as a sum of finitely many terms in which each coefficient  ßj  is a rational 
number determined uniquely by  r .  Such a basis,  named after an early  20th century  German  mathematician  G. 
Hamel,  must contain uncountably many members;  i.e.,  the subscript  j  must range over a set more infinite than the 
integers or  Rationals.  There is no way to exhibit a  Hamel  basis because there is no way to decide for every set of  
Reals  whether it is linearly independent.  Like  Spiritualism  and  Physics,  Mathematics  has its invisible presences.

With a few exceptions,  every vector space considered in this course is finite dimensional.  Its 
vectors and linear operators map to numerical column vectors and matrices via bases.  Thus the 
course really concerns matrix multiplication.  The point of the course is to learn how to tell which 
multiplications deserve doing and then do on a computer those that cannot be avoided.  To keep 
the work from becoming unmanageable,  Applied Mathematicians  devote much of their time to 
choosing bases well.  Their choices are guided by deductions from axioms but motivated partly by 
experience with archetypal examples and partly by geometric insights.  We’ll look at them all.


