Assignment Due Fri. 22 March 2002

Suppose the triangular factorization $\mathrm{P} \cdot \mathrm{B}=\mathrm{L} \cdot \mathrm{U}$ of a square matrix B has been computed; here P is a Permutation matrix, L is Unit-lower-triangular, and U is Upper-triangular. Desired is a way to compute the Adjugate $\operatorname{Adj}(\mathrm{B})$ from only the given factors P, L and U under three different circumstances:
(i) U is invertible.
(ii) Only the last row of U is a row of zeros.
(iii) The last two rows of U are rows of zeros.

Explain how to compute $\operatorname{Adj}(B)$ in each case. (Recall that $\operatorname{Adj}(B)$ is a polynomial function of B satisfying $\operatorname{Adj}(B)=\operatorname{det}(B) \cdot B^{-1}$ when $\operatorname{det}(B) \neq 0$. You may experiment with Matlab.)

Solution:

Case (i): $\operatorname{det}(\mathrm{B})=\operatorname{det}(\mathrm{L}) \cdot \operatorname{det}(\mathrm{U}) / \operatorname{det}(\mathrm{P})= \pm \operatorname{det}(\mathrm{U})= \pm$ (the product of all U's diagonal elements) where $\operatorname{det}(\mathrm{P})= \pm 1$ according as P is an even or odd permutation. And $\mathrm{B}^{-1}=\mathrm{U}^{-1} \cdot \mathrm{~L}^{-1} \cdot \mathrm{P}$ is computable too. Thus $\operatorname{Adj}(B)=\operatorname{det}(B) \cdot B^{-1}= \pm \operatorname{Adj}(U) \cdot L^{-1} \cdot P$, wherein $\operatorname{Adj}(U)=\operatorname{det}(U) \cdot U^{-1}$ and $\operatorname{det}(\mathrm{P})= \pm 1$ respectively, is computable from just P, L and U .

Case (ii): Conformally partition $U=\left[\begin{array}{cc}\overline{\mathrm{U}} & \mathrm{u} \\ \mathrm{o} & 0\end{array}\right]$ and $\mathrm{L}=\left[\begin{array}{ll}\overline{\mathrm{L}} & \mathrm{o} \\ \mathrm{T} & 1\end{array}\right]$, noting that $\overline{\mathrm{U}}$ is invertible though U is not. For any $\mu \neq 0$ let $U(\mu):=\left[\begin{array}{cc}\bar{U} & u \\ 0^{T} & \mu\end{array}\right]$ and $B(\mu):=P^{T} \cdot L \cdot U(\mu)$. Then $B(\mu)$ is a continuous function of μ with $\mathrm{B}(0)=\mathrm{B}$, $\operatorname{so} \operatorname{Adj}(\mathrm{B}(\mu))$ must be continuous too with $\operatorname{Adj}(B(0))=\operatorname{Adj}(B) ;$ consequently

$$
\operatorname{Adj}(\mathrm{B})=\lim _{\mu \rightarrow 0} \operatorname{Adj}(\mathrm{~B}(\mu))= \pm\left(\lim _{\mu \rightarrow 0} \operatorname{Adj}(\mathrm{U}(\mu))\right) \cdot \mathrm{L}^{-1} \cdot \mathrm{P}= \pm \operatorname{Adj}(\mathrm{U}) \cdot \mathrm{L}^{-1} \cdot \mathrm{P}
$$

in which $\operatorname{det}(P)= \pm 1$ respectively is independent of μ. To compute $\operatorname{Adj}(U)$ we find first

$$
\operatorname{Adj}(\mathrm{U}(\mu))=\operatorname{det}(\mathrm{U}(\mu)) \cdot \mathrm{U}(\mu)^{-1}=\operatorname{det}(\overline{\mathrm{U}}) \cdot \mu \cdot\left[\begin{array}{cc}
\overline{\mathrm{U}}^{-1} & -\overline{\mathrm{U}}^{-1} \mathrm{u} / \mu \\
\mathrm{o}^{\mathrm{T}} & 1 / \mu
\end{array}\right]=\operatorname{det}(\overline{\mathrm{U}}) \cdot\left[\begin{array}{cc}
\mu \overline{\mathrm{U}}^{-1} & -\overline{\mathrm{U}}^{-1} \mathrm{u} \\
\mathrm{o}^{\mathrm{T}} & 1
\end{array}\right] .
$$

Then we let $\mu \rightarrow 0$ to get $\operatorname{Adj}(\mathrm{U})$. After finding that the last row of L^{-1} is $\left[-\overline{\mathrm{L}}^{-1} \mathrm{r}^{\mathrm{T}} 1\right]$, we get
$\operatorname{Adj}(B)= \pm \operatorname{Adj}(\mathrm{U}) \cdot \mathrm{L}^{-1} \cdot \mathrm{P}= \pm \operatorname{det}(\overline{\mathrm{U}}) \cdot\left[\begin{array}{c}-\overline{\mathrm{U}}^{-1} \mathrm{u} \\ 1\end{array}\right] \cdot\left[\begin{array}{ll}-\overline{\mathrm{L}}^{-1} \mathrm{r}^{\mathrm{T}} & 1\end{array}\right] \cdot \mathrm{P}= \pm\left[\begin{array}{c}-\operatorname{Adj}(\overline{\mathrm{U}}) \mathrm{u} \\ 1\end{array}\right] \cdot\left[\begin{array}{ll}-\operatorname{Adj}(\overline{\mathrm{L}}) \mathrm{r}^{\mathrm{T}} & 1\end{array}\right] \cdot \mathrm{P}$, which is computable from just P, L and U.

Case (iii): Now $\operatorname{Adj}(B)=O$ because $\operatorname{rank}(B)=\operatorname{rank}(U) \leq(\operatorname{dimension}$ of $B)-2$.

