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Notes on   2-Dimensional Spaces

 

R

 

2

 

  versus  Euclidean  2-space

 

What's the difference?  Why distinguish the vector space  R

 

2

 

  of pairs of real numbers from the 
familiar  Euclidean plane?  Or the  Euclidean  plane from the complex plane?

There really are differences.  To visualize some of them imagine a vertical pane of glass upon 
which are drawn many of the familiar figures --  circles,  squares,  triangles,  ...  --  that you have 
seen in the Euclidean  plane.  Then look at the shadows cast on the floor at night by one star’s 
light passing through the pane as through a window.  Choose a star that lies in neither of the 
planes of the glass nor floor lest all shadows collapse into a line.  What properties do shadows 

inherit from the figures that cast them?  The  

 

Affine

 

  geometry of  R

 

2

 

  addresses this question.

Evidently straight lines in the pane cast straight line shadows. And triangles cast triangular 
shadows and parallelograms cast parallelogram shadows.  But,  unless the star is situated in a 
very special direction,  certain figure’s shadows will be distorted like the shadows cast by the 
sun at dawn or dusk;  circles will cast elliptical shadows,  and most rectangles will cast non- 
rectangular parallelograms as shadows.

How do you know that circles are really circular,  not slightly elliptical?  If you suffer from 
astigmatism,  you cannot tell at a glance.  ( Astigmatism was alleged to have caused the  Spanish 
painter  

 

El Greco

 

  ( Domenico Theotocupuli,  1542? - 1614 )  to distort the faces of his subjects,  
but he probably did it for dramatic effect.)  Many a programmer has been annoyed by ellipses he 
got on his computer screen when he thought he was plotting circles but overlooked the screen's  
aspect ratio.  A TV set with vertical or horizontal sweep of improperly adjusted magnitude will 
either overflow the screen's boundaries or show a black margin;  either way,  it usually displays 
circles as ellipses. And,  during the beginning or ending of many a movie shown on  TV  though 
intended originally to be projected onto a wide screen,  horizontal compression of the picture 
causes characters to look as if  El Greco  had painted them.

The  Affine  geometry of  R

 

2

 

  concerns those shadows and screens.  Lacking a way to compare 

distance in different directions,  and lacking a measure of angle,  the  Affine  geometry of  R

 

2

 

  
concerns  

 

only

 

  those properties of figures that can be inferred from their shadows cast by the 
light of an unknown star.  How are figures and their shadows related?

 

Linear Operators upon  R

 

2

 

Casting a shadow by starlight is a  Linear Operator  in the sense studied in a  Linear Algebra  
course.  This is so because parallelograms cast parallelogram shadows,  so a family of line 
segments parallel to each other and all of the same length,  as might represent different pictures 
of the same vector in the pane,  casts a shadow that is a similar family on the floor.  In short,  
shadowing by starlight maps vectors in a plane to vectors in another plane.  And a linear 
combination of two vectors maps to the same linear combination of the two mapped vectors 
because,  by mapping  

 

every

 

  parallelogram to a parallelogram,  the shadow map preserves the 
ratios of lengths of parallel line segments.
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Why starlight?  Why not take shadows by the light of a street lamp?  The reason is that a star can be regarded as 
practically infinitely far away,  so rays of light from it are all parallel.  But rays of light from a street lamp diverge,  
causing a parallelogram on the window pane to cast a quadrilateral shadow that might not be a parallelogram.  A 
similar effect causes  “keystoning”  when a slide projector is aimed askew at the screen,  not perpendicular to it.  
Projection from a finite source through non-parallel planes,  like a perspective view,  maps lines to lines but does 
not necessarily preserve parallelism,  so it is not a  Linear Operator  in the sense of a  Linear Algebra  course.  
( That kind of projection is the subject of  

 

Projective Geometry

 

.)

 

Let  

 

L

 

  denote the linear operator that maps vectors in the pane to vectors on the floor;   “linear”  
means  

 

L

 

(ß

 

x

 

 + 

 

µ

 

y

 

) = ß

 

Lx

 

 + 

 

µ

 

Ly

 

 .  Given two arbitrary regions  

 

F

 

  and 

 

G

 

  in the pane,  what can 
we say about their shadows  

 

L

 

F

 

  and  

 

L

 

G

 

  on the floor without knowing exactly what  

 

L

 

  is?  
One thing we can say comes from cross-hatching the pane by two families of uniformly closely 
spaced parallel lines,  thus covering the pane by a tiling of tiny parallelograms.  If each of them 
is numbered,  then their shadows on the floor will be numbered the same way,  and the numbers 
of parallelograms intersected by  

 

F

 

  and 

 

G

 

  will be the same as for their respective shadows,  so

(Oriented Area of  

 

L

 

F

 

 )

 

/

 

(Oriented Area of  

 

F

 

 ) = (Oriented Area of  

 

L

 

G

 

 )

 

/

 

(Oriented Area of  

 

G

 

 ) .

We have to say  “Oriented Area”  here instead of just  “Area”  to account for the possibility that 
an area is assigned a sign that depends upon the direction,  clockwise or counter-clockwise,  in 
which its boundary is traversed.  The orientation of an area  

 

F

 

  reverses when you change your 
point of view from one side of the pane to the other.

The ratio of oriented areas in the last equation depends upon  

 

L

 

 ,  not the regions.  To compute it 
we must first choose a  

 

Basis

 

  in each of the two  vector spaces,  then compute a matrix  L  for  

 

L

 

 ,  and then compute the determinant  det(L) .  Provided the basis vectors in each space span 
parallelograms of equal oriented area this computation defines  “Determinant”  for operators  

 

L

 

 :
det(

 

L

 

) := (Oriented Area of  

 

L

 

F

 

 )

 

/

 

(Oriented Area of  

 

F

 

 ) = det(L) .

For example,  if the sides of the parallelograms in the cross-hatched pane serve as basis vectors,  
and their shadows serve as basis vectors for the floor,  then the matrix of  

 

L

 

  will be the identity 
matrix I  and  det(

 

L

 

) = det(I) = 1 .  But if the basis on the floor is chosen independently of the 
basis in the pane then  det(

 

L

 

)  will have some other nonzero value,  namely the ratio of area of a 
parallelogram's shadow on the floor over the area of that same parallelogram in the pane.  Like 

bases,  units of area can be chosen so arbitrarily in  R

 

2

 

  that,  without knowing them in advance,  
we can predict only that  det(

 

L

 

) 

 

≠

 

 0 .  To define  det(

 

L

 

)  independently of different bases and 
different units of area,  we must confine  det(…)  to linear operators that map a space to itself.

 

( Some authors take for granted that both spaces are  Euclidean  with orthonormal bases,  thus defining  det(

 

L

 

)  for 
what appears to be a map  

 

L

 

  from one space to another;  but since two  Euclidean  planes are as indistinguishable 
as are identical twins,  little is lost by thinking of the two as the same plane.  The  English  language is ill-equipped 
for discourse about different yet identical things.  Try to find  “a distinction without a difference”  in a dictionary.)

 

Suppose another star,  of a different color to avoid confusion,  casts shadows from the pane to 
the floor.  The mapping  

 

C

 

  that takes shadows of one color to those of the other is a linear map 

from an instance of  R

 

2

 

  to itself.  As it did for  

 

L

 

 ,  the ratio of oriented areas defines  det(

 

C

 

) ,  
but now it is independent of the basis chosen for the floor.  This determinant turns out to be the 
same as the determinant of  

 

every

 

  matrix that represents  

 

C

 

  regardless of basis.  ( Exercise:  
The sign of  det(

 

C

 

)  tells whether the stars are on the same side of the pane or not.  How? )
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Euclidean  2-space  versus  R

 

2

 

 

 

What does  Euclidean 2-space —  we call it  E

 

2

 

 —  have that R

 

2

 

  hasn’t?  Every vector  

 

z

 

  in  E

 

2

 

  
has a  

 

Length

 

  ||

 

z

 

||  that behaves as follows:

 

Four properties of  Euclidean Length:

 

Positivity: ||

 

z

 

|| > 0   except that   ||

 

o

 

|| = 0 .
Homogeneity: ||ß·

 

z

 

|| = |ß|·||

 

z

 

||   for every scalar  ß .
Triangle Inequality: ||

 

y

 

+

 

z

 

|| 

 

≤

 

 ||

 

y

 

|| + ||

 

z

 

|| .

Parallelogram law: ||

 

y

 

+

 

z

 

||

 

2

 

 + ||

 

y

 

-

 

z

 

||

 

2

 

 = 2·||

 

y

 

||

 

2

 

 + 2·||

 

z

 

||

 

2

 

 .

The  

 

Distance

 

  between two points is the length of the vector that moves one to the other.  
Euclidean geometry concerns just those properties that figures retain after any transformation 
that preserves the distances between their points;  such transformations turn out to include only

translations,  rotations  and  reflections.

The geometry of  R

 

2

 

 ,  on the other hand,  concerns a smaller set of properties retained after a far 
richer set of transformations that can map any parallelogram,  even a square,  onto any other 
parallelogram.  Therefore,  Euclidean  notions of  

 

Angle

 

  and of  

 

Congruent Triangles

 

  ( those 

whose respective sides have the same lengths )  have no counterparts in  R

 

2 .  Two triangles are   

Similar  in  R2  only if their respective sides are parallel,  whereas similar triangles in  E2  need 
only have respective angles equal  ( and therefore respective sides proportional )  regardless of 

orientation.  Another difference between the geometries of  R2  and  E2  will be mentioned later.

Different Definitions of  Length
The formula for computing distance in  E2  is usually derived from the  Pythagorean Formula :

column vector  z =   in  E2  has    length   ||z||2 := √(zTz) = √(ξ2 + η2) .

This is not the only reasonable way to define length.  Another way is   ||z||1 := |ξ| + |η| ;  this is 
the  “Taxi-cab”  distance because ||z–w||1  is proportional to the mileage for a trip from  w  to  z 
when streets are all laid out parallel to coordinate axes.  Another way is   ||z||∞ = max{|ξ|, |η|} ;  
this length could be the one that matters to a courier service that wishes to put all envelopes 
destined for the same city into the same square box.

Each of the three length functions  ||…||2,  ||…||1,  ||…||∞  has the first three properties listed 
above,  but only  ||…||2  has the fourth.  ( Confirm this yourself! )  Geometry in a space with one 
of those lengths must vaguely resemble geometry with any other in so far as a vector  “big”  in 
one length is  “big”  in all three,  and similarly for  “tiny”,  since,  for every column 2-vector  z ,

        ||z||2/√2  ≤  ||z||∞  ≤  ||z||2  ≤  ||z||1  ≤  ||z||2√2 .
( Can you prove this? )  But,  lacking the parallelogram law,  ||…||1  and  ||…||∞  are preserved by 

a small group of rotations and reflections,  so their geometry is less interesting than  E2 ’s.

The parallelogram law distinguishes  E2  from every other  2-dimensional  Normed Space,  but it 
does not determine uniquely the formula for length.  Other formulas exist that work as well;  in 

general   ||z|| := √((L–1z)T(L–1z))   for any invertible  2-by-2 matrix  L .  ( You should confirm 

ξ
η
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that this  ||z||  has all four properties of  Euclidean  length.)  Must  L  be  invertible?  No;  but if  

L–1 were replaced by a matrix  S  with a nonzero nullspace,  the possibility that  Sz = o  for a 
nonzero  z  would violate the  Positivity  of the last formula for  ||z|| .

What does the last formula for  ||z||  mean geometrically?  Recall again the linear operator  L  
that mapped figures drawn in a pane of glass to their shadows cast upon the floor by starlight. 
Draw  Cartesian  axes on the pane to determine coordinates there,  and independently draw axes 
on the floor to determine coordinates there too.  ( It is convenient,  but not necessary,  to place 
the origin  o  on the floor at the shadow of the pane's origin  o .)  Every vector  x  in the pane has 
for coordinates a column  2-vector  x ,  and its shadow  z = Lx  on the floor has coordinates  
z = Lx where  L  is the  2-by-2 matrix  that represents  L  in the chosen coordinate systems.  

Conversely,  if  z  represents a vector on the floor,  it is the shadow of  L–1z  in the pane.  Once 

we know  L  we can determine the length  ||x|| = √(xTx)  of a vector  x  in the pane by measuring 

the components  z = Lx  of that vector's shadow on the floor;  then  ||x|| = √((L–1z)T(L–1z)) .  
When we use this formula to define  ||z|| ,  we assign to  z  the  Euclidean length of the vector  x  
of which  z  is merely the shadow,  just as we assign to lines on a road map the lengths of the 
roads the lines represent.

But we live in a world where shadow can be hard to distinguish from substance.  How do we 
know which space,  the pane or the floor,  deserves to be treated as the original?  How can we 
tell when a picture of a painting distorts the painting?  How can someone who suffers seriously 
from astigmatism tell which ellipses are really circles,  which parallelograms really squares?  
Without a sample of a circle or square to use as a reference,  the only way to tell is to perform 
appropriate experiments with rigid bodies.  In a  Euclidean  space these experiments determine 

the elements of a real symmetric matrix  A  such that  ||z|| = √(zTA–1z)  and from which  L  can 

be computed to satisfy  LLT = A ,  as we shall see later.  Then  x := L–1z  is a transformation to 

orthonormal coordinates from which  ||z|| = √(xTx)  may be computed.  Thus the  Pythagorean 

Formula  can be taken for granted as the definition of length in  E2  or its shadows since we can 
always find  ( infinitely many )  orthonormal coordinate systems for that purpose.

A crucial experiment that distinguishes  E2  from other normed spaces or from  R2  is to find for  each  line  £   a 
family of length-preserving reflections  W  that merely reverse  £ ;  any line left unchanged by such a  W  is called  
perpendicular  or  orthogonal  to  £ .  ( Analogous length-preserving reflections preserve  planes  perpendicular to a 

line in  E3 .)  R2  has no notion of perpendicularity because length is undefined so reflections cannot preserve it,  
though they do preserve magnitudes of areas while reversing orientation.  In other normed spaces there are lines 
that no length-preserving reflection can reverse.

Exercises:
Reflections  W  in  Rn  are transformations of the form   x  —›  W(x) :=  µc  +  ( I – (2/rTc)crT )(x–µc)   where  µ  is 

any scalar constant,  and  c  is any constant column  n-vector  and  rT  any constant  n-row  such that  rTc ≠ 0 .  
Which  line  ( if  n = 2 )  or  plane  ( if  n = 3 )  or  hyperplane  ( if  n > 3 )  does  W(x)  preserve?  Which family of 
lines  £  does it reverse?  What is  W(W(x)) ?

Reflections in  En  have the same form but,  if length  ||z|| = √(zTz) ,  how must  c  and  rT  be correlated to ensure 
that  ||W(x) –W(y)|| = ||x–y||  for every  x  and  y ?
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A  “Rigid Body Motion”  of  E2  maps it to itself in such a way as preserves distances between points;  such 
motions can be proved to consist of translations,  rotations and reflections.  Show how each translation can be 
composed out of two reflections,  and so can each rotation.

The  Spaces  Dual  to  R2  and  E2 
The space dual to  R2  is the space of linear functionals that map vectors in  R2  to scalars and do 

so linearly.  If vectors in  R2 are represented as column 2-vectors  x ,  all linear functionals are 

represented by row 2-vectors  wT .  Geometrically each nonzero row vector  wT  defines a 

family of parallel lines drawn in  R2 ;  each such line has   " wTx = constant "   as its equation.  

In  R2 there is no geometrical relationship between a row  wT  and a column  w  that happens to 

have the same components;  a change of basis can change   w  to  Cw  and  wT  to  wTC–1  

without keeping  Cw  and wTC–1  transposes of each other.  Geometrically this means that,  

since a linear map of  R2  to itself can map any two non-parallel straight lines to any other two,   
pairs of straight lines can have no special relationship other than parallelism.

E2  is its own dual space because the connection between column vectors  x  and row vectors  

xT  with the same components is preserved by changes of coordinates that preserve length as 
determined by the  Pythagorean  formula;  such coordinate systems are called  “ orthonormal.”  

These coordinate changes are linear maps of  E2  to itself that also preserve the angles at which 
lines intersect.  Angle and perpendicularity  ( the relation between two lines confirmed when a 
length-preserving reflection preserves one line while reversing the other )  are not relationships 
unique to  Euclidean  geometry but relatively few maps of a  non-Euclidean  normed space to 
itself preserves them.

E2  versus the  Complex Plane  C 
They certainly look alike to casual observers,  but they differ because certain operations natural 

for  C  make little sense in  E2 .  Complex numbers can be multiplied or divided to produce other 

complex numbers;  when reinterpreted as operations upon vectors in  E2  these operations lose 
their significance.  The significant maps of  C  to itself,  called  conformal maps,  preserve the 
angles at which curves intersect;  such a map can wrap  C  by  stereographic projection  1-to-1  
onto a sphere,  called the  Riemann  sphere,  with a single point at  ∞ .  Identifying  C  with this 
sphere makes conformal maps,  each an  Analytic  function of a complex variable,  easier to 
understand.  For instance the conformal map that takes  z  to  2 + 1/(z–3)  maps the sphere  C  to 

itself so smoothly that it is infinitely differentiable despite that it takes  3  to  ∞ .  Maps of E2  to 
itself that preserve distances between points cannot map a finite point to  ∞ ;  this plane cannot 
have a single point at  ∞  but must instead be bounded by a remote  “circle at infinity”  or  “line 
at infinity”  on which each  “point”  represents a different direction of departure to infinity.  In 

short,  there is no continuous  1-to-1  map between the plane  E2  and the sphere  C .

Just as a balloon may be punctured,  opened out and spread flat onto a plane,  so the punctured 

sphere  C  may be spread onto  E2 ,  but doing so does not make them the same thing.


