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The  Exercises  after  Ch. 3.2  in our textbook,  

 

Discrete Mathematics and Its Applications

 

  4th. 
ed. by  K. Rosen (1999),  provide students good opportunities to prove things by  Mathematical 
Induction.  Some of these things are inequalities about which one might ask

How did someone think up that inequality?
After all,  if  “ A > B ”  is true so is  “ A > B+ß ”  for all sufficiently tiny  ß > 0 ;  of these infinitely 
many inequalities how did the one actually proved get chosen?  In some instances the choice 
seems artificial,  as if the proof had been devised first and then the result presented as a puzzle:

 

Find the proof

 

.
In some instances the artificiality becomes obvious when an inequality  I(n) > 0  proved for 
positive integers  n  turns out to be true also for positive non-integers  n .

In what follows,  which is not for everybody,  some of the inequalities whose proofs by induction 
seem artificial or laborious will be proved quickly and/or improved by using the  Calculus.

 

Harmonic Numbers

 

The  k

 

th

 

  Harmonic Number is  H

 

k

 

 := 1/1 + 1/2 + 1/3 + … + 1/(k–1) + 1/k  for integers  k > 0 ;  
see text  p. 193  and  p. 201 #51-52.  Many estimates of  H

 

k

 

  are best obtained from estimates of 

the integral     for  

 

x

 

 > 0 .  For instance,  1/

 

x

 

 > 1/

 

t

 

 > 1/(

 

x

 

+1)  

inside the integral,  so  1/

 

x

 

 > ln(

 

x

 

+1) – ln(

 

x

 

) > 1/(

 

x

 

+1) ;  and then  ln(k+1) < H

 

k

 

 < 1 + ln(k)  

follows by summing appropriate inequalities.  In particular,  when  k = 2

 

n

 

  for  n 

 

≥

 

 0  we find that 
H

 

k

 

 < 1+n·ln(2) < 1+n  since  ln(2) = 0.6931… ;  

 

cf

 

. p. 201 #51.  Better estimates come from the 

observation that the graph of  

 

y

 

 = 1/

 

t

 

   is  

 

convex

 

  ( curved like     because  d

 

2

 

y

 

/d

 

t

 

2

 

 = 2/

 

t

 

3

 

 > 0 )  
and thus lies below its secants but above its tangents.  Consequently areas under the curve satisfy

  =  ( 1/

 

x

 

 + 1/(

 

x

 

+1) )/2  >  ln(

 

x

 

+1) - ln(

 

x

 

)  >  1/(

 

x

 

 + 1/2)  =     .
Summing appropriate inequalities  ( can you see which? )  now establishes for  k 

 

≥

 

 m > 0  that
ln(k + 1/2) – ln(m + 1/2)  

 

≥

 

  H

 

k

 

 – H

 

m

 

  

 

≥

 

  ln(k) + 1/(2k) – ln(m) – 1/(2m) .

When  m = 2  these two inequalities bracket  H

 

k

 

  within  1%  for all  k 

 

≥

 

 2 .  In particular,  when  

k = 2

 

n

 

 

 

≥

 

 2  we find that  H

 

k

 

 

 

≥

 

 H

 

2

 

 – 1/4 + (n–1)·ln(2) + 2

 

–1–n

 

 

 

≥

 

 1 + n/2 ,  as claimed on  p. 193,  
though the last inequality here is unobvious.

This illustrates a nasty aspect of inequalities.  If you are asked to prove that  A > B  but not told 
how,  you can end up proving an inequality  A > B  that is  

 

stronger

 

  ( better ),  because  B 

 

≥

 

 B ,  
and yet remain unaware of your achievement so long as you cannot prove  B 

 

≥

 

 B .  For proving 
inequalities there are tricks but no routine procedures analogous to  “simplification”  procedures 
that so often prove the equality of algebraically equivalent expressions.  This is why computerized 
algebra systems like  

 

Mathematica

 

  and  

 

Maple

 

  still handle inequalities ineptly.

 

Many people,  not just students,  find inequalities too troublesome,  and avoid them,
  leaving rewarding careers open to students willing to rise to the challenge.

1
t
--- td

x

x 1+( )
∫ x 1+( )ln x( )ln–=
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Bernoulli’s Inequality:

 

If real  

 

x

 

 > –1 ,  and if real  

 

p

 

 

 

≤

 

 0  or  

 

p

 

 

 

≥

 

 1 ,  then  (1 + 

 

px

 

) 

 

≤

 

 (1 + 

 

x

 

)

 

p

 

 .
This ancient inequality dates from the early years of the  Calculus  though the text solicits a proof 
without  Calculus  and restricted to nonnegative integers  

 

p

 

  on  p. 200 #11.  Geometrically this 

inequality says that the graph of  (1 + 

 

x

 

)

 

p

 

  is  convex  ( U - shaped )  and therefore lies above its 
every tangent,  particularly the tangent drawn through the point on the curve where  

 

x

 

 = 0 .  Our 

proof will start from the derivative   d (1 + 

 

x

 

)

 

p 

 

/d

 

x

 

 = 

 

p

 

(1 + 

 

x

 

)

 

p

 

–1

 

 .  Consequently the integral

 .

For all  

 

x

 

  between  0  and  

 

X

 

  the integrand   

 

p

 

((1+

 

x

 

)

 

p

 

–1

 

 – 1)  has the same sign as  

 

X

 

  because

•  if  

 

X

 

 > 0  and  

 

p

 

 > 1  then  

 

p

 

((1+

 

x

 

)

 

p

 

–1

 

 – 1) > 0 ;

•  if  

 

X

 

 > 0  and  

 

p

 

 < 0  then  

 

p

 

((1+

 

x)p–1 – 1) > 0 ;

•  if  –1 < X < 0  and  p > 1  then  p((1+x)p–1 – 1) < 0 ;

•  if  –1 < X < 0  and  p < 0  then  p((1+x)p–1 – 1) < 0 .
Therefore the integral is nonnegative,  which confirms  Bernoulli’s Inequality.  This inequality 
gets reversed if  0 ≤ p ≤ 1 ;  can you see why? ( DRAW GRAPHS ! )

Sums of Reciprocal Squares
For any integer  k > 0  we seek close estimates for  Sk := 1/1 + 1/4 + 1/9 +1/16 + … + 1/k2 .  Two 
good ways to find estimates both start from known formulas.  One way uses the formula

1/(m(m+1)) + 1/((m+1)(m+2)) + … + 1/((k–1)k)  =  1/m – 1/k
obtained from the text’s  p. 200 #6  or by  Telescoping  as in  p. 79 #20.  This way provides

Sk – 1 <  1/(1·2) + 1/(2·3) + 1/(3·4) + … + 1/((k–1)k)  =  1 – 1/k  for  k > 1 ,
which is what the text asks you to prove on  p. 200 #18.  A second way to estimate  Sk  uses the 

integral     for  x > 0 .  Since the graph of  1/t2  is convex it lies below its 

secants but above its tangents  ( see  Harmonic Numbers  above );  consequently

( 1/x2 + 1/(x+1)2 )/2  >  1/x – 1/(x+1)  >  1/(x + 1/2)2 .
( These two inequalities can be proved by algebraic means alone with no appeal to  Calculus;  can you see how?)

Summing appropriate inequalities now establishes for  k > m > 0  that

      1/m – 1/(2m2) – 1/k + 1/(2k2)  <  Sk – Sm  <  1/(m + 1/2) – 1/(k + 1/2) .
When  m = 2  these two inequalities bracket  Sk  well within  2%  for all  k ≥ 2 .  In particular,

Sk ≤  1.65 – 1/(k + 1/2)  <  2 – 1/k     for  k ≥ 2 .

Sums of Reciprocals of Square Roots
For any integer  k > 0  we seek close estimates for  Rk := 1/√1 + 1/√2 + 1/√3 + … + 1/√k .  Two 
good ways to find estimates both start from known formulas.  One way uses a formula

1/(√m + √(m+1)) + 1/(√(m+1) + √(m+2)) + … + 1/(√(k–1) + √k)  =  √k – √m
obtained by telescoping.  This way provides

p 1 x+( ) p 1–
1–( ) xd

0
X∫ 1 X+( ) p

1– pX–=

t
2–

td
x

x 1+( )
∫ 1

x
--- 1

x 1+
------------–=
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Rk >  2/(√1 + √2) + 2/(√2 + √3) + 2/(√3 + √4) + … + 2/(√k + √(k+1))  = 2√(k+1) – 2
as reqested in the text on  p. 201 #53.  A second way to estimate  Rk  uses the integral   

 =  2√(x+1) – 2√x   for  x > 0 .  Since the graph of  1/√t   is convex it lies below its 

secants but above its tangents  ( see above );  consequently
(1/√x + 1/√(x+1))/2  >  2√(x+1) – 2√x  >  1/√(x + 1/2) .

( These two inequalities can be proved by algebraic means alone with no appeal to  Calculus;  can you see how?)

Summing appropriate inequalities now establishes for  k > m > 0  that
2√k + 1/(2√k) – 2√m – 1/(2√m)  <  Rk – Rm  <  2√(k + 1/2) – 2√(m + 1/2) .

When  m = 2  these two inequalities bracket  Rk  well within  1%  for all  k ≥ 2 .  In particular,
Rk ≥  2√k + 1/(2√k) + 1 – 7/√8  >  2√(k+1) – 2 ,

though the last inequality is unobvious.

A pattern is emerging for these sums of series.  To see how far this pattern can go look up the  
Euler-Maclaurin Sum Formula  in  Advanced Calculus  texts or old  Numerical Analysis  texts.  In 
these texts repose several centuries’ lore about rapid approximate computations of functions 
whose exact computation would be intolerably onerous.  One more example follows:

Stirling’s  Approximation  to  n! 
Example 10  on  p. 195  of our textbook proves an estimate  n! > 2n  for  n ≥ 4  by induction.  This 
is too crude an estimate for the needs of this class.  What follows proves an old  ( published in 
1730 )  formula,

James Stirling’s  Approximation     n!  ≈  √2π·n ·(n/e)n ,
whose  relative  ( not  absolute )  error approaches zero as  n  approaches  +∞ .  For example …

A much better approximation can be obtained from the  ( nonconvergent! )  Asymptotic Series

      n! ≈  √2π·n·(n/e)n·exp( 1/(12·n) – 1/(360·n3) + 1/(1260·n5) – 1/(1680·n7) + … )   for large  n ,
but it lies far beyond the scope of this course.  Instead the integral   ∫ ln(x)·dx = x·ln(x) – x   will 
be exploited to estimate upper and lower bounds for the finite series

ln(n!) =  ∑k>1 ln(k)  =  ln(2) + ln(3) + ln(4) + … + ln(n–1) + ln(n)     for  n > 1 

as was done before except that the graph of  ln(x)  is  concave  ( curved like    )  now because 

ln(x)" = –1/x2 < 0 ,  so the graph lies  above  its secants but  below  its tangents.  Consequently

Table 1:   Stirling’s Approximation

n n! √2π·n ·(n/e)n Rel. error

10 3,628,800 3.60·106 0.8 %

20 2.433·1018 2.423·1018 0.4 %

40 8.159·1047 8.142·1047 0.2 %

80 7.157·10118 7.149·10118 0.1 %

160 4.715·10284 4.712·10284 0.05 %

t
1 2⁄–

td
x

x 1+( )
∫
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   (ln(x) + ln(x+1))/2  <   <  ln(x + 1/2) .

As before,  summing appropriate inequalities implies
(n+1/2)·ln(n+1/2) – n – (3/2)·ln(3/2) + 1  < ln(n!) <  (n+1/2)·ln(n) – n + 2 – (3/2)·ln(2)  .

The upper bound exceeds the lower by
1 – (3/2)·ln(4/3) – (n+1/2)·ln((n+1/2)/n)  =  (1/2)·ln(1–z)/z + 0.568477…  <  0.0685 ,

where  z := 1/(2n+1)  and  ln(1–z)/z = –1 – z/2 – z2/3 – z3/4 – z4/5 – … .  Consequently
        0.89 < 0.962… – 0.0685 <  Ç(n) := ln(n!) – (n+1/2)·ln(n) + n  <  2 – (3/2)·ln(2) = 0.962… .

This  Ç(n)  is a decreasing function of  n  because,  after some algebra,

Ç(n+1) – Ç(n) =  1 + (1/2)·ln((1–z)/(1+z))/z  =  –z2/3 – z4/5 – z6/7 – …  < 0 .
Therefore,  as  n  increases towards infinity,  Ç(n)  decreases towards a limit  Ç > 0.89 .  Although  
Stirling did not know it at first,  this constant  Ç  turns out to be  ln(√2π) = 0.919… ,  as shall be 
proved in a moment.  For now we conclude,  for some constant  Ç  between  0.962  and  0.89 ,   

that  ln(n!) – (n+1/2)·ln(n) + n – Ç  approaches zero or,  equivalently,  that  n!/( eÇ·√n·(n/e)n )  
approaches  1 ,  descending as  n  increases towards infinity.

To determine  Ç  we obtain an estimate for  π  found first by  John Wallis  ( who died in  1730 )  
but derived nowadays more rigorously by using  Integration by Parts  as follows.  For  m ≥ 2  set

  Jm :=   ( using I-by-P )

        =   ,

from which follows that   Jm = (m–1)·(Jm–2 – Jm) = (1 – 1/m)·Jm–2   provided we also set

J1 :=    and    J0 :=   .

Now induction on  k = 0, 1, 2, 3, …  in turn provides confirmation for the formulas

J2k+1 = (2k·k!)2/(2k+1)!      and     J2k =  (2k)!·(π/2)/(2k·k!)2 .
Moreover,  because  0 <  sin x  < 1  inside the range of integration,  0 < Jm < Jm–1 .  Consequently  

1 > Jm/Jm–1 = (1 – 1/m)·Jm–2/Jm–1 > (1 – 1/m)  → 1  and therefore   Jm/Jm–1 → 1   as  m → +∞ ,  

and so does   (π/2)·J2k+1/J2k  =  (2k·k!)4/((2k+1)!·(2k)!)  →  π/2  as  k → +∞ .  That quotient of 
factorials  etc.  is  Wallis’  estimate for  π/2 .

Replace each factorial in that quotient by its  Stirling  approximation   n! ≈ eÇ·√n·(n/e)n   and let  

k → +∞ .  We find that  Stirling’s approximation to  (2k·k!)4/((2k+1)!·(2k)!)  simplifies,  after a lot 

of algebra,  to  e2Ç+1·2–2·(1 + 1/(2k))–2k–3/2 → e2Ç/4   as  k → +∞  since  (1 + 1/(2k))2k → e .  

This implies that  e2Ç/4 = π/2 ,  whence  eÇ = √2π  ,  completing the vindication of

Stirling’s  Approximation     n!  ≈  √2π·n ·(n/e)n .

t( )ln td
x

x 1+( )∫ x 1+( ) x 1+( )ln⋅ 1– x x( )ln⋅–=

xsin( ) m
xd

0
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0
π 2⁄∫– xcos( ) xsin( ) m 1–

d
0
π 2⁄∫= =

m 1–( ) xcos( ) 2
xsin( )

m 2–
xd

0
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–( ) xsin( )
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xd
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Arithmetic vs. Geometric Means
Given collections of positive variables  xj  and positive  weights  wj ,  where we restrict subscript  j  
to some finite set solely to avoid the technicalities associated with convergence if  j  were allowed 
to range over an infinite set,  let

w := ∑j wj , A := (∑j wj·xj)/w   and G :=  .

Here  A  is the  Weighted Arithmean Mean  ( Average )  of the numbers  xj ,  and  G  is their  
Weighted Geometric Mean.  To some extent these definitions are redundant because  ln(G)  is the 
weighted arithmetic mean of the numbers  ln(xj) ,  but this is no time to quibble about terms that 
have been in use for millennia.  Our objective is to prove that

A ≥ G
with equality just when all the  xj ’s  have the same positive value.  This inequality is the same as 
on the text’s  p. 201 #55  except that the text considers only the special case when all weights  
wj = 1 ,  and supplies a long unobvious proof by induction of which only  Gauss  could be proud  
(and was).  Our proof will be very short.  First we simplify the notation by defining  fractional
weights   fj := wj/w > 0  so that

∑j fj = 1 , A := ∑j fj·xj   and G :=  .

Next observe for any  x > 0  that   0 ≤    =  ln(G) – ln(x) – 1 + x/G   because,  so long 

as the integrand’s  t  lies strictly between  x  and  G ,  the signs of  G–x  and of  1/t – 1/G  must be 
the same.  Of course  “ 0 ≤ … ”  becomes  “ 0 = … ”  just when  x = G .  Now replace  x  by  xj ,  
multiply by  fj ,  and sum over  j  to deduce that  0 ≤  0 – 1 + A/G   as was claimed.

x j

w j

j∏ 
  1 w⁄

x j

f j

j∏
1
t
--- 1

G
----– 

  td
x

G

∫


