Math. 55 Some Inequalities May 9, 1999 1:54 pm

The Exercises after Ch. 3.2 in our textbook, Discrete Mathematics and Its Applications 4th.
ed. by K. Rosen (1999), provide students good opportunities to prove things by Mathematical
Induction. Some of these things are inequalities about which one might ask

How did someone think up that inequality?
Afterall, if “A>B"” istruesois “ A>B+R” forall sufficiently tiny 3> 0; of theseinfinitely
many inequalities how did the one actually proved get chosen? In some instances the choice
seems artificial, asif the proof had been devised first and then the result presented as a puzzle:

Find the proof.

In some instances the artificiality becomes obvious when an inequality 1(n) >0 proved for
positive integers n turns out to be true also for positive non-integers n.

In what follows, which isnot for everybody, some of the inequalities whose proofs by induction
seem artificial or laborious will be proved quickly and/or improved by using the Calculus.

Harmonic Numbers
The k™ Harmonic Number is H=11+1/2+ 13+ ... +1/(k-1) + Ik forintegers k>0;
seetext p. 193 and p. 201 #51-52. Many estimatesof H, are best obtained from estimates of

theintegral J’ )ldt = In(x+1) —In(x) for x>0. Forinstance, 1/x> 1/t > 1/(x+1)
X

insidetheintegral, so /x> In(x+1) —In(x) > 1/(x+1) ; andthen In(k+1) <Hy <1+ In(k)

follows by summing appropriate inequalities. In particular, when k =2" for n>0 wefind that
Hy < 1+n:n(2) < 1+n since In(2) = 0.6931... ; cf. p. 201 #51. Better estimates come from the

observation that the graph of y =1/t is convex ( curved like \— because d?y/dt?=2/t3>0)
and thus lies below its secants but above its tangents. Consequently areas under the curve satisfy

& = (Ux+1(x+1))/12 > In(x+1) - In(xX) > LU(x+1/2) = &S
Summing appropriate inequalities ( can you seewhlch’?) now establishesfor k>m >0 that
In(k + 1/2) —In(m + 1/2) = Hy - > In(k) + 1/(2Kk) —In(m) — 1/(2m) .

When m =2 these two inequalities bracket H, within 1% for all k= 2. In particular, when

k=2">2 wefindthat Hy =H,—1/4+ (n-1)In(2) + 22" > 1+ n/2, asclaimed on p. 193,
though the last inequality here is unobvious.

Thisillustrates a nasty aspect of inequalities. If you are asked to prove that A > B but not told
how, you can end up proving aninequality A >B thatis stronger ( better ), because B>B,
and yet remain unaware of your achievement so long as you cannot prove B = B . For proving
inequalities there are tricks but no routine procedures analogousto “simplification” procedures
that so often prove the equality of algebraically equivalent expressions. Thisiswhy computerized
algebra systems like Mathematica and Maple still handle inequalities ineptly.

Many people, not just students, find inequalitiestoo troublesome, and avoid them,
leaving rewar ding career s open to studentswilling to rise to the challenge.
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Bernoulli’s Inequality:

Ifreal x>-1, andifreal p<0 or p>1, then (1+px)<(1+Xx)P.
Thisancient inequality dates from the early years of the Calculus though the text solicits a proof
without Calculus and restricted to nonnegative integers p on p. 200 #11. Geometrically this

inequality saysthat the graph of (1 + X)P is convex (U - shaped) and therefore lies above its
every tangent, particularly the tangent drawn through the point on the curve where x=0. Our

proof will start from the derivative d (1 + x)P/dx = p(1 + x)PL . Consequently the integral
J'g(p( 1+ o dx = (1+X)P—1-pX.

For all x between 0 and X theintegrand p((1+X)P1—1) hasthesamesignas X because
« if X>0 and p>1 then p((1+x)°1-1)>0;
« if X>0 and p<0 then p((1+x)°P1-1)>0;
« if -1<X<0 and p>1 then p((1+x)P1-1)<0;
« if -1<X<0 and p<O0 then p((1+x)P1-1)<0.
Therefore the integral is nonnegative, which confirms Bernoulli’s Inequality. Thisinequality
getsreversed if 0<p<1; canyouseewhy? ( DRAW GRAPHS!)

Sums of Reciprocal Squares
For any integer k>0 we seek close estimatesfor S, := 1/1+ 1/4+ 1/9+1/16+ ... + 1/k? . Two

good ways to find estimates both start from known formulas. One way uses the formula
V(m(m+1)) + Y((m+1)(m+2)) + ... + V/((k-1)k) = IYm—-21k
obtained from the text's p. 200 #6 or by Telescoping asin p. 79 #20. Thisway provides
S—1< 1(12)+1(23)+1U(34)+... + U((k-1)k) = 1-1/k for k>1,
which is what the text asks you to prove on p. 200 #18. A second way to estimate S, usesthe
1) _
integral J’(X+ ) dt = )—1(— lel for x> 0. Sincethegraph of 1/t? isconvex it lies below its
X
secants but above its tangents ( see Harmonic Numbers above); consequently
(UX2 + 1U(x+1)2)/2 > Ux—1(x+1) > L(x+ 1/2)2.
( These two inequalities can be proved by algebraic means alone with no appeal to Calculus; can you see how?)
Summing appropriate inequalities now establishesfor k>m> 0 that
1/m—-1/(2m?) — 1k + 1(2k?) < S-Sy < U(m+1/2) - U(k + 1/2) .

When m =2 thesetwo inequalities bracket S, well within 2% for all k= 2. In particular,
S <165-Uk+12) <2-1k for k=2.

Sums of Reciprocals of Square Roots
For any integer k >0 we seek close estimatesfor R, := 11+ UV2+ 1N3+ ... + IVk. Two

good ways to find estimates both start from known formulas. One way uses aformula
UEm+V(m+1)) + YV (m+1) + V(m+2)) + ... + Y(V(k=1) + Vk) = vk—vVm
obtained by telescoping. Thisway provides
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Ry > 2/(V1+V2) + 2/(V2+V3) + 2/(V3 +V4) + ... + 2/(VKk + V(k+1)) =2V(k+1) -2
asregested in the text on p. 201 #53. A second way to estimate R usesthe integral

1) _
J’(X+ )t Y24t = 2V(x+1) —2Vx for x>0. Sincethegraphof 1/Vt isconvex it liesbelow its
X

secants but above its tangents ( see above); consequently
(IVx+ N (x+1))/12 > 2V(x+1) —2Vx > IN(x+ 1/2).

( These two inequalities can be proved by algebraic means alone with no appeal to Calculus; can you see how?)

Summing appropriate inequalities now establishesfor k> m> 0 that
2Vk + 1/(2Vk) —2Vm —=1/(2Vm) < Ry — Ry, < 2V(k +1/2) —2V(m + 1/2) .
When m =2 thesetwo inequalities bracket R, well within 1% for al k=2. In particular,
Ry = 2vk + 1/(2Vk) + 1-7V8 > 2V(k+1) -2,
though the last inequality is unobvious.

A pattern is emerging for these sums of series. To see how far this pattern can go look up the
Euler-Maclaurin Sum Formula in Advanced Calculus textsor old Numerical Analysis texts. In
these texts repose several centuries' lore about rapid approximate computations of functions
whose exact computation would be intolerably onerous. One more example follows:

Stirling’'s Approximation to n!

Example 10 on p. 195 of our textbook proves an estimate n! > 2" for n>4 by induction. This
iStoo crude an estimate for the needs of thisclass. What follows proves an old ( publishedin
1730) formula,

James Stirling’s Approximation n! = v2mtn-(n/e)",
whose relative ( not absolute) error approaches zero as n approaches +co . For example ...
Table1l: Stirling’'sApproximation

n n! v2min -(n/e)" | Rel. error
10 | 3,628,800 3.60-10° 0.8 %

20 | 2433108 | 2423108 0.4 %
40 | 8159-10%7 | 8.142:10% 0.2%
80 | 7.157.1018 | 7.149.1018 | 01%
160 | 471510284 | 4.712.10%8* | 0.05%

A much better approximation can be obtained from the ( nhonconvergent! ) Asymptotic Series
nl = v2ren-(n/e)™exp( 1/(12:n) — 1/(360-n°) + 1/(1260-n°) — 1/(1680:n°) + ... ) forlarge n,
but it lies far beyond the scope of this course. Instead theintegral [ In(x)-dx = x-In(x) —x  will
be exploited to estimate upper and lower bounds for the finite series
In(n!) = Y1 In(k) = In(2) +In(3) +In(4) + ... +In(n-1) +In(n) for n>1
as was done before except that the graph of In(x) is concave (curvedlike /) now because
In(x)" =—1/x>< 0, sothegraph lies above its secantsbut below itstangents. Consequently
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(In(x) + In(x+1))/2 < IX(X”) In(t)dt = (x+1) On(x+1) —1-x0n(x) < In(x+1/2).

Asbefore, summing appropriate inequalitiesimplies
(M+1/2)In(n+1/2) —n—(3/2)-In(3/2) + 1 <In(n!) < (n+1/2)-In(n) —n+ 2 —(3/2)-In(2) .
The upper bound exceeds the lower by
1 —(3/2)In(4/3) — (n+1/2)In((n+1/2)/n) = (1/2)-In(1-z)/z + 0.568477... < 0.0685,
where z:= 1/(2n+1) and In(1-2)/z=-1-22 - 7213 -Z314—Z*5— ... . Consequently
0.89<0.962... —0.0685 < C(n) :=In(n!) — (n+1/2)-In(n) +n < 2-(3/2)-In(2) = 0.962... .

This C(n) isadecreasing function of n because, after some algebra,
C(n+1) —C(n) = 1+ (1/2)In((1-2)/(1+2))/z = -?I3-2*5-2817— ... <0.
Therefore, as n increasestowardsinfinity, C(n) decreasestowardsalimit C > 0.89. Although

Stirling did not know it at first, thisconstant C turns out to be In(v2m) = 0.919... , asshall be
proved in amoment. For now we conclude, for some constant C between 0.962 and 0.89,

that In(n!) — (n+1/2)-In(n) + n—C approaches zero or, equivalently, that n!/( eSVn-(n/e)")
approaches 1, descending as n increases towards infinity.

To determine C we obtain an estimate for 1t found first by John Wallis (who diedin 1730)
but derived nowadays more rigorously by using Integration by Parts asfollows. For m=> 2 set

3= Ig” (sinx) "dx = —(72 (sinx) " "dcosx = J’g” (cosx) d(sinx) ™' (using I-by-P)

- (m—1)Ig/2(cosx)2(sinx)m dx = (m—l)Ig/z(l—(sinx)Z) (sinx) " dx
from which followsthat  J,= (M-1)-(Jyo — Jp) = (1 —2/m)-J,,» provided we also set
J1:=Ig/2(sinx) 'dx = 1 and Jo::J’g/z(sinx)de =12 .
Now inductionon k=0, 1, 2, 3, ... inturn provides confirmation for the formulas
e = (kDA (2k+1)! and Iy = (2K)!-(TP2)/(24K1)2.
Moreover, because 0< sinx <1 insidetherange of integration, 0 < J, < J,,; . Consequently
1> 3 /3= 1 -1Um)-dyoldg>(@1-2/m) - 1 andtherefore J/Jhq — 1 asm - +o,
and so does (T72)-doys1/di = (2KDY((2k+1)!-(2k)!) — TU2 as k — +oo . That quotient of
factorias etc. is Wallis' estimate for 2.

Replace each factorial in that quotient by its Stirling approximation n! = e%v/n-(n/e)" and let
k —» +co . Wefindthat Stirling’s approximation to (2k-k!)4/((2k+1)!-(2k)!) simplifies, after alot
of algebra, to €26+1.272.(1 + 1/(2k)) %32 _, &2/4 as k - +w since (1+ (2K  e.
Thisimpliesthat €?%/4 =112, whence €% =v2mt , completing the vindication of

Stirling’s Approximation n! = v2ren-(n/e)".

Prof. W. Kahan Page 4



Math. 55 Some Inequalities May 9, 1999 1:54 pm

Arithmetic vs. Geometric Means
Given collections of positive variables x; and positive weights w; , wherewerestrict subscript j
to some finite set solely to avoid the technicalities associated with convergence if j were alowed
to range over aninfinite set, let
. . = O, wovv
wWi=3w, A= (3 wx)/w and G:= Dl_ljxi 0
Here A isthe Weighted Arithmean Mean (Average) of the numbers x; , and G istheir

Weighted Geometric Mean. To some extent these definitions are redundant because In(G) isthe
weighted arithmetic mean of the numbers In(x;) , but thisis no time to quibble about terms that

have been in use for millennia. Our objective isto prove that
A=G
with equality just when al the x; ’s have the same positive value. Thisinequality isthe same as

onthetext's p. 201 #55 except that the text considers only the special case when all weights
w; =1, and supplies along unobvious proof by induction of which only Gauss could be proud
(and was). Our proof will be very short. First we simplify the notation by defining fractional
weights f; :=w;/w>0 sothat ‘
Z]szl’ A=ijjxj and G:= JXJ .
Next observeforany x>0 that 0< J’G %% - égdt = In(G) —In(x) —1 + x/G because, solong
X

astheintegrand’'s t liesstrictly between x and G, thesignsof G—x and of 1/t —1/G must be
the same. Of course “ O<..." becomes “ 0=..." justwhen x=G. Now replace x by X,

multiply by f;, and sumover | todeducethat 0< 0—-1+ A/G aswasclamed.
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