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Prof. W. Kahan, Math. Dept. Univ. of Calif. at Berkeley
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-l 1 and uncertain gri

i i T mplest schemes use  Interval Arithmetic, AN
ides based wupon the allocation to every variable of an interval
known to contain thes variable s values. Then a%étﬁm%%;ﬁ operations
upon variables are replaced by the same operations ﬁﬁﬁﬁ intervals
{ actually, only endpoints of intervals need be manipulated ),
whence results stated az intervals assuredly enclose the desired
results.  Used naively, Interval Arithmetic can deliver awfully
pessimistic { excessively wide ) fimal intervals: o obtain
betiter { narrower but sti1ll encompassing ) intervals requires
considerable skill., é&las, that is all entirely acadewmic for the
presant because hardly any Norith American computer systems offer
their users acoess to Interval Arithmetic. The idea 1is far mors
popular in Germany than in the USA despite having besen devissd
here In the garly 19605, It's & familiar storv: S5t, Matthew
L4:37  ends some parables with the guotation 7 4 prophet is not
without honor, save 1n his own country, and in his own houses.”

This note &%%tfi&%gﬁ for four simple compubtations, how to manage
atter a fashion without %m*@rVa} Srithmetic. Uncertaintiss in
final results are computed by tracking errors and uncertainties
through a computation, operation by operation, in a simplse but
tedious way. Let @ denote a typical operation + , —, %, / .

irst an sstimate of the arithmetic’' s rounding ervror threshold s
is needed: wWE assume every assignment w 1= y#z actually stores
a result  x® o= {y@z)/{(] —~ w) where ® 15 wunknown but g > [wmd 15
VDN . On correctly rounding machines, {over—iestimate &  ifhus:

£ L= I (0 4.0/2.0 rounded 3 - 1.03%3.0 —- 1.0 | .
Can vou see why this should work? Tey 1t with 2 calcoculator first,
Semoond, we assume that uncertaintiss in datas are known., I+ we
wish to :am@ut@ Xoi= Y8Z  but we know only v oand oz and error-
2Y > Y-yl /¢ nd el > {i-zl/¢ . then we shall derive
i

5 e
gr error—bound X > [ X-xl/¢ Ffrom x, ¥, z, ¥, €Z and g .
%h@ﬁ & is + then wo= {y+zy/{l-wd and wX = ¥ + 27 + {xwil .

i

Hut =X must be more complicated when & is % or /.

xow I

o= -
L

Consider first a sum S = 9B, for which we have approximate
data b, and error-bounds eBy > {Bi;-bal/s . We would compute

Se oF O antd  Sn 0 F Saes B but get Spy T (B T B SO oy
from which we 1nfer S 7 By T Seaes St T Bre T D 7 S s and
then 18— 8ml /s < 25, 1= 85 + 2B. v lanl . We add thi last
assignment to the program tes  S. Lo compute o2 too,
which 1s our Running i v : Roundofdf in 2%, 18 ignored
berause 1t cannot materially affect a sum of positive terms unless
Noois huges, comparable with 1/ . Here 1s the complete program:

5 o o= O 3 25 = O

for M= 1, 2, 3, ... in turn, do

Dy ¢ T Bpges T Dra 3
25 & e5n.s + 2hy v lsal .
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Roundoff in Polyvnomial Evaluation

ay;  of the polynomial Blxy = IR g xbd
z . we can computs both p = &{z) and
{(z} vy means of ...

Horner ' s recurrasnoe:s

L 2
for 3 o= 1 ko N odo 4 g oi= oz og o+ oo
oo o

.= 7

oA K] 7 =

To demnonstrate the validity of the recurrence, we need mesraely
subscripts to the successive computed values thus:
Teg o= O 3 Do 1T S 8 . and  p.g = O 3
for § =1 to N do { Quo 1= Z Quem * Py 3
P CE 2 Dyey b a3y .

Then, by substituting for a; . we find for all x that

G {x) = @ b K=z ey v (2 ) IPEF g DEed

Tt osoon follows that the final values of p  and o are
f=

D = Az and G = A (2 res 3@ct§VQE§. But no account has

vet been taken of roundoffd, to which this note is devoted.
We presums that, in oany arithmetic opesration o I= oyBz U, the
value actually pute (yBzy (148 where the breek lett

=1
¥ stands for error about which we know only that

B
relative uncertainty due to

roundodf in the g—-point arithmetic. We must
introduce gémiiﬁr t to stand for every rounding srror
committed during r scurrence, aftter which we find that
the compuited values p and g actually satisfy the following
perturbed recurrences

Dy & Oy = O 3 Do & #c i « s« and il =
;

for = 1 ta M {4 gs.q T 02 Ouesiithi o) + Dy
{

At B

ARG B PP B
Z Py { i?"i 41 y o+ E= y /01 +I 3 3 5
s e . and Bpgmey & Lpyp = 0 B

At this point we may either compute an upper bound for the effect
of the perturbations upon the recurrencs, or we may treat thoss
perturbations as 1if they were sguivalent to perturbations in the
copfficients instesad. The first approach is technically more
intricate but ohilosophically simpler: let’'s try 1t first.

s
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Computed Bounds upon Roundotft' s Effect:
From the perturbesd recurrence, substitute for a8, in the
o ition of A to get, +for all W,

= Pt ROl gz p e N T
J—, 3 e SD e § A PP R N T B
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+ @
ffter the iteration has terminated and 2z has been accepted as an
approximate zero, running the previous augmented recurrence once
provides an  esiimate {(ipitesgy/ (lgl—dsg} of a bound upon the
eryor in 7 . That esstimate 1s nol 2 rigorous bounds i* wWan
based upon an estimate —~RA{z)/4&7 (2} that could wunc mate the
eryror in zZ0 . How badlivy? At worst by a factor 1/M ﬁcaarwing Lo

Laguerre' s Theorem: The polynomial &30 ot degres M must have
a zevro ¥ satisfyving W—z+8{z3 /8" (z) | £ (N~13ialzy/a (201,

Froof: We know that Aix) = aoix-x) (X-xed { o0 ) (e} I—x) o
where Xy, Koy wesp Hpaers e &0 tﬁ% (unknown? zeros, real and
complex, o f a . et v he whichever of them is closest t z .
Since Y o~ z+A{z /6 (2 & {1 - Uil lz-ny) ) Az A {2z,
cancel ol and taks magnitudes to deduce

simplest thoughts arise when 2z app s a real zero of a
olynomial ARG N The sign of Az is the same as that of
nd p-es when they have the same 310ns: otherwise the sign
{z} is obscured by roundoff, as 1%t usually would be when z

best available approximation fto a zero of Alx)y . Mow let
any . approximate bound for the esrror in 2 3 for instance,
try B I= (lpi+ee) /ol e can check whethsr E truly bounds

} o
the error in 2 by running the short form of the augmented
recurrence twice Lo ses whether the signs of Alz-E) and fiz+E)
are opposite, taking vroundofd into acco . dsually *hﬁgg s51igns
and then wes know for sure that A vanishes betwesn
therwise accept what La 2's tugargm tells us.

computed, =hal i st
= theorem reguire a
e bevond the syllabus
e thoughts will be
difference

it ow #E oy,

“ﬁd% é%ti@ﬁ t
of thought.

this course,
sketoched here.
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Lemmas et 2z ne fixed at fhe center of some reglon fx—zi < B
throughout which  F (%) is continuously differentiable and
suppose also that PhfF(dx, 233 1 > iz 1 /8 at every =
therein. Then (%3 must vanish at leas? once inside that
reglon. It may be an interval on the real axis or a disk
in the complex plane. And 1f also  [AF({x, v231 > ¢ at all
®» and v in the region, (%} vanishes just oncse theresin.)
Construct the map Pl 1= x — £F{xY/DF L, 230 . This
mepivred by Newton's and the Secant iterations. Since the
cannot vanish, O wmust be continuous throughout the
Moreover , Gixl-z = ~f{z)/HF0{x, 237 , which implies
< 5 throughout thes region, which means that © is a
continuous map of this closed bounded convex reglon into ltself.
By Brouwer's fixed-point thecorem, O must have at least one
fived point = o= §0x) in the regiong that is where +i{x) = O .

The derivative and the divided difference of our oolynomial Alx)
share anciher properiv: they can be computed without any division
from a revised version of Horner's recurrence as follows:
g I= O g 0D IF Aag 3
o g = 1 tao N do {4 0 I= v 0O + o o3
oDol=ozoo ot oay; b
The final valuss of p = Az} and G = ALy, z3) would be
correct but for rounding srrors which shall be ignored here to
simplity the exposition. How does & wvary as vy  runs about me
tiny region containing a zero of  Aix} close to =z 7 I v =z
o= g = iz as computed by Horner's recurrence. Otherwise,
using the subscripted values p, we introduced to explain that
recurrence, we can infter that
& @ L= Ov—z) IH5% 055mes— where
= 2= (zh—y®) / (z—y) . PR AV
I+ we can 1 = i 1801 € k gt and
wher R (: i s  that
imilar to the one
hoose any known
o assums that
nted
28 G
=
iast
the
A number of detasils have been omitted from the foregoing coount
because they lie beyond the scope of this course. Thé imporfant
conclusions to be drawn from what has bezen Pf@%eﬁégd so far are
that pute
like
FEsy




g
I8
o
o
Y
5
a3
or
bJ
0
I
i
m
[
(!
e
a
<
Eﬂu
~
0
o

srbations in Data:s

Interpreting Roundoff as Pertu
Let us return to the perturbed recurrence  and express o, in
terms of the rounding ervors {the Greek letters) and thse given
copfficisents a2, . Instead of computing Hlzy = FE s gzl we
can prove by induction that actually pa = Az 1= B s where
EOEE - AR O S R T 4 I X QU I R I ST G O I 5 s P I I 5 LGPl G RS R
= gy (ltg)Ro=h—aisae if i# 0, otherwise aclits)a= |

In other words, the computed valus p , obtained instead of the
desired value 6#f{z) , is esxactly what would have been computed
without roundoffd 1§ sach cosfficient &, had first been perturbed
tooa nearly indistinguishable number &, . This is the sense in
which roundofs commitied during the computation of A(z) is Nno
WOrse ihaﬁ a few rounding errors per cosfficient committed betore
that computation. 1§ the given cosfficients are uncorrelatedly
uncertain by as much as 2N units in thelr last significant
digits, then that uncertainty in  Alz) will dominate whatever
uncertainty subseguently acocrues to p  because of roundoff. This
view of the rounding srrors is called a TBackwmard Error—Analysis”.
et
bl

to

lie

i

NZater: =
e o - ite
1ol g a are so

hope thelir zeros are almost
v neighboring polynomials A
P

-
zeros. For example, let
~ F973® 4+ 49590 - 220%% 4 bLbe® - 1 ¥

perturbed

and let Al
(] L R t}\;

polyrnomial P

G2E.999979x & the mal. Then,
slthough a1l + A ot the zeros
of A are at 2788 (Thess
are the zeros /7

m
o

ot
]
o

divisaor o

two @%é%@i%% may give the talse impre
ivnomial can bhe hypersensitive to fTiny Q@V{@W ations
3 35

ki
£ ients only 1 the zeros are repeated. t&%
5 =lig 1y but crucially different from that. be

hyvpersensitive to tiny perturbations in cosfficients ueh
tiny perturbations could cause the zeros 1n gusstion ha
their multiplicities. %m %%QEéﬁaﬁiﬁﬁ and proct of this assertion
would be too complicated fto include in this note; instead, the
assertion will be illusitrated by an example. This sxample is
similar to one discoveresed in the late (990’ by James H.
Wilkinson and used for the same purpose. Let

o



Foly Math., 1284, sesc. 3 Nov. 14, 1986
Fixd 1= x2F o~ TExtt v 27170~ 3E770x% + T49463x%F -~ &?Eéé?ﬂ”? +
+ 4499023 - 2C0H070150x% + &5V 1ZAx% — 14140148887 +
+ é*iégﬁwﬁiﬁx% — 148&£442880x + 475007 O
= (=1 ) {xw—2Y (x-33 ( ... 3} {x—10}« ; 127
= M) M ix—12) = (—13 8/ (x—13
Its zeros, the consegutive intsgers fro Z ., do not seem
saspecially close togsther, but i fact nely tiny changes
to its coefficients can change the zeros make two of
thaem coalesce. Specifically, Alx) = BoA{w) has a
double zero at Z 8.4833138  when » = OQZ278 010 . Al though
the ze ensitive to f@u&d@%% these numbsrs 2

5 1
d sasily DN a progran
v

and h Car 1 = mwable calculator by
means interesting enough to merit inclusion in this notse.
The double zero 2z of A must satisfy Alz) = Az} = 0 3
that means Alzy) — A Aal-z) = A {y) + 6B {~z) = 0 . Eliminating
»  produces an egualtion, B/ Al v A -z /Rl = 0y that
identifies 7 as one of the 22 nite zeros of

B wy/Aadxy + A (xR = CLEF O 1/ ey~ B g
Every such zero li=s between twoe consescutive nonzero integers
between ~12 and 12, =0 1t is easy to compute accurately by

Mewton's or Secant iteration. Fach such zero 7 determines a
rcfrmgaﬁmdiﬁ@ o= ALY/ A~z o= [Tlpd Digely /M ie—1
The z=mal lest b and 1its e ares the ones exhibilited above.
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g

gxamples warn us that some polynomials are so
3 heir cosfficients that their zeros
yii
=)

%if?

= to roundofd in th

~ermined without oa g exiravagant precision that

i the coeffi ig are intrinsically uncertain

rounding errors. In such cases, we should

here the pﬁ?“ omia mn; it may have come
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?h@ m@gt common way to sclve an esguation fixy = O 18 via an
pteration Mg T P (Mgl intended
¥omg e e oa o f itterates ¥y COnvergss
ite tion const the =0u X t
L 3 t in le eqguivalent u 3
£ dust whe av s
of + 5, where $(z) = 0 , should
E of noy, and vice-versa. Morsover,
h should be a contraciion map in the sense that hi{x} and h{y)
are closer t - than are » and v  whenever x and v  are
both not ftoo i a desired fixed point oz o this 1s ihw
gist of the by condition My —hdyit 7 iu—-vyvl < n < 1 hat
o oshouwld sat h the faster 1s convergence

amaller is K

ol
because then, M -3 w0,

[pper—z] = hixed~hizil < 2wzl < ... < aMix,~-z] - O

Given an sxpression for the esguation $(¢) = O ,  an sguivalent
equation of the form v o= P} is easy to construct i many
waga, Mot so sasy 1s to get an b that satisfies a Lipschitz

ondition with a small »  or, in cther words, that has a small
ﬁ%?xvﬁt‘\é ih a3 < x HFor all x near the desired fixed point.
And then there 1s the problem of finding an initial iterate xo
50 close to the desired fixed point that the Lipschitz condition
will ensure the iteration's convergence. And whether iteration
converges or not, 1t has to be stopped zomehow: and then comess
the problem of discovering how close the last 1&@?@%@ is to the
desired fixed point. These are some of the problems considersed in
this course.
Overview of the Theory:

The archetypal sxample of a rapidly convergent iteration is
Newton's, for which the itersting funcitiom is constructed thus:

H E L

ciniear =

2 inoremn
Can matrix
fferential f%i"timﬁamgﬁ £ ix+dx)
finitesimal vector displacements
i a ftiwed point 2z o= KBz} of the i
ree., the desired =z 18 not guarantsed to exist.

One way 1o recognize whelther fizxed point exists is the
Y
Hrouwer /Schauder fix

= A
d-—point theorem:
o e
i
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i

ion h should ideally sats

. bhat Pyl
in which the L1
advantags of Mew
that normally » 18 vary tzﬁy
how h may be constructed, it
of the following

ta%@m to msan
Ry

I+ h maps a closed region
in a Lipschitz condition with
ins Jjust one fixed point of h

L ofrom any  Xo

w‘“
S X
0

region contains i wn boundary. )
3 theory for discovering when and
toar is also valuable in practice for
her oblem of locating wene +ixed point of
i owith adeguate accurac ovably solved when an adeguately
i T it which both  hixdi—-x  and R G0
ction mapping principle to apply.

The ideas 1 ohs belong to the syllabus
ot Math., 128 2 does deal with two
special cases: wations in  many unknowns,
and  one nonl only  one  scalar unknown,
usually a real o feth. 128 &6 include

=R of

¥ =
Fixad- Qa&ﬁﬁ theorem and the
(%) :

e a@i«

(%) vanlished more than once betwesn vy—-5 and v then

Froof s I+ £ f B

Folle' s theorsmnm would force £ {x) = O at least once Detwesn
the i /5 .

+ oy ox

=

- £
z 71 - - oy P £z o w1 N S~ H
i ily, and deduce thatl 5 < fimally. {Braw pictures?)

o
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More Theory for {ne Eguation in One Heal Variable:

The theory of sguations and iterations involvi ; Foone real
des several facts worth knowing in practice though
ay be so intricate as to lis ie rond the syllabus of
ate class. Here follow some of those facts:

Let us say that B swaps two points  x and v Just when
Hixd = v # w = hiy) .

An astonishing relation exists betwsen swapplng and convergence.
The no-swap condition: Suppose the real function h  maps a
closed interval continuously into itseld, and so has at least
one fixzed point thersin. Then the i1teration R o= 1 Ostpgd
converges to a fixed point from every initial ®e 1n that
interval if and only 1f no two Qﬂiﬂéi of it are swappesd by h .
This striking relation between swapping and convergence first

turned up in the mid 1940's in the work of a Russian mathematician

£. M. Sharkovsky. To 1llustrate its power, use 1t to produce a

short proof of the contraction mapping principle on an interval.

Orcther implication, discovered in 1977, is the weakest known

condition suff t {but not necesary) for T

iy = ox o F AR
convexity and mon
"ronvex " if its second derivative
called "monotone non—decreasing”
never nsgative.

Newton's it The
condition
a real fun
g x) 15
if ite fir

!
2 we
1= ﬁQﬁv@FQQQC% of
7/ ®
¢

The Convexity condition: Suppose that §  can be sxpressed
throughout some interval as a differsnoe Fix) = oulxd — wix)
betwesn two convex functions u  and v o, one monotone non-
decreasing and the other monolonse Non-increasing. Then
Newton s 1teration Mpped o= Hea — T Axpgd 7 Oy} must, from
every Xe i fthat interval, zither converge within 1t or
sacape from 1t but not meandesr about the interval forsver.

: ich merely reguires '  not to fluctuste too
encountersed often in practice. For ce, sSuppose
} r wo non—oconstant polynomia in  t with all
-ive and with p(0) > g - Then certain
£ n i

concerning rates of re nvestments
ution of oneg of the eguations
o (1) - gi{x) = 0 for x> O o1
iogipie~®) — logig(e®)) = 0 for any real z
Aided by the convexity condition, vou should veritfy fﬁai Newton's
iteration will converge, from any positive initial iterate, o
t

1te il i
the root of whichever of these two sguations it 1s applied to.

Although the convexity condition’s validity is hard to prove in
the full generality stated above, you should be able sasily to
prove a simpler version in which esither u or v is presumed to be
constant. {That simpler version can be found in some older texis,
gapecially French, assonciated with the namss “Fourier’” and
"Dandelin. ™) Arnd you should be able to apply it to the following
example, which 35 ﬂativgt@é by a problem that arose in the desig
of a transistor ciroult For every = > | the eguation
v o~ Indly) = % 1A% tw& rocts vy of which we wish to compute the

=~

J



When the graph of A 1e too undulatory, Newton's iteration
may meandsr indefinitely unless it is started close enough to a
zero of f ., For example, try to solve £iz) = O when

Fix} = 3Ix® — 110%™ + 23x iFlot a graph!!
s iteration starting from any e Detwsen about
069 . For another example, detsrmine how close to
Ko must be to ensure that Newton's iteration
from there to the zero of fFi{x) = arctan{x-n} .

I+ NMewton's iteration converges at all, it wusually doss so

gquadratically, which 1s very %a%g A typical example is
Finy = w/ll-x})

for which vou should obtain formulas in closed forn for the
successive MNewtr iterates xn in terms of  xe . o example of
abnormally slow convergence is provided by fi{x) = x?1° | Tor
which vyvou should do the same again. But no matter how slowly the
iterates  xwy may converge to a zero of an analvyvitic function  § (¢
the successive function valuss F{x.J ~2 0 Ffaster than some
constant multiplie of e™ as N - ® . Consequently, unless the
starting iterate iz most unfortunate., MNewton's iteration cannot
take very long, if 1t will conwverpes at all, to produce function
values  F {2 that are tinier than their own rounding errors or
else small enough to underfliow, at which point we should stop.
For example, choose any integer m > O and any positive initial
iterate xeo < m*"™ to solve the eguation 2xp (—x™™m) = 0 using
Newton’'s iteration K T e T HedTTEmog then obssrve how slowly
e —F O, the more so when m is big, and yet how guickly
exp (~x,y™ —% 0 repgardless of @ .

Mewton's iteration may seam very ;
; rally, but there 13 2 perverse =snse in ost every
i ation on one scalar variables can be reg: iswton's .
i he i1teration Aot o PV Oy converges o point z
from every Xeo in a neighborhood of z with RS S 1B
continuous, 1 his iteration i1s actually applied to
a differential -t fixd that vanist Z . In
fact, £{x) iy boewpn O PP odit S {t-h (1 may have 3
singularity zero at oz .

= H
he Secant iters

a



- BV o s 4
feros? lath 128 &, =4 3 Sept. 24, 1

The Secant Iteration:
The GSecant iteration Hpgag o FlMpgy Hpgn 7, where
Hix, vi : ®om FAwy /S AF I Ay x-yd ),
works with pairs of successive approximations to a zero of £,
w0 Sharkovsky's no-swap condition camnnot be applied directlys
however techniguss similar to Sharkovsky's wers used in 1977 to
prove the following surprising relation betwesen MNewton's and the

Secant 1terations:

Mewton's iteration, when used to find a zero of
ss frow y starting point in some interval.
the iteration convergs from every pair of
nts interval, sxcespt possibly wh3< +
=i L its zero. {The exceptional cases
® ) with starting iterates R T B
noshould reinforce a predisposition to use Secant
iter Tl reference to Newton's except when the derivative
+ caloculate ently i1 o o
o on , . Secant 0o
are supplied below. g2y &l o 20
subroutine that replaces a display to be
programnsd in place of the ellipsi utine can
he invoked independently by pressi
EE5EIY 24 on the hp-33 and hp-
e an many other hp calcula hp—-28C0
a1 on the 71158 and 239 , so work too.
T run the itesration, choose initd ¥ g and kevy
IR/783 e : and hp—10C |
(Bl f ulators,
21 on b? .
he faxfuga% r g ms bhriefly and display
te % dec. . then its £ (x)
ess LH iteration when f{(x}
SUCCESS] i differ negligibly;s
st iterate 1 #1  on  hp machines,
= The iteration programns uss
o othe hp-33 and hp-10C
and Label [01 on other hp calculators,
atal 1 [Paused on the TI-38 and 5% .

labels [A1 to [E]
+ vouw wish to use the

0
-0
P
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Ly Math 128 &, sect. 3

107 SECANT ITERATION demonstration program.

C O Use DISP, !, @ instesd of PRINT, " , ¢ resp. on
FOODEF FNF(A) = EXPX-2 — X272 2 7 ... or some other
&G e initial iterates »0 o xi , o to
= s NEXT I ¢ ... pauses,

&3 ?Q?NT Toa.. press [03, D13 o D33 27y @ INPUT KE

FCIF KE=U0" THEN GOTO 110

20 IF
i

Hiow fast

%{E—ani £
ngiiq it

HO=¥X 2

THEN GOTO 170
OR W=

IF =" THEN STOP BELS
INFLIT "XO Py X

FNE(¥0) 2 F=F0

GOTO 150

SRS TS I
F1 o aﬁgm 160

X

A

is Secant iteration?
1

o7

1BM

T I
S

i

?ﬂwm 1 Y t Secant iteration converges superlinearly  with
arder +Y = 1.&18 . To ses whalt this means, aobhtain
@xpl mit ?&?mu}aa for the Secant iterates g in terms of
amnd x4,  when applied to a typilcal sguation /=) = O Thozse
formulas will involwve the thonacai numbers
Fo = Fe = 1 Feo = 2, ?4 = 3 Feg = 5 Fe = 8B 4, Fu = 13 -

Foa = Frps + Frgew & §+g5}f 3P (=2 YR IN ) SYS

Compared witi Mewton's it@r&tzbv, which norsally converges with
order 2 i ation takes more iterations o achieve
Compa t pach Secant iterstion costs less time.
How s

fiim? and £ 3 / A{ftime to compute f alonas!
be to wltimately slowsr than Newton's 7
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Let &, b, ©. .. £y ixd be a vecltor—
valusd function of - Now certain averages
of gixy =shall be

g iia,by) = §L gla+ 8ib-al) de

= the unifgrmiy weighted average of gix) on the
Tine segment 3Qiﬁimg a to b
= MWgilb,ar) .
W all{a,b,ck) = —a) + ¢ {c— i3 do
= ted avera £ogix) on the
;f:} v

aa

21 led naectively first and Ry divided « rences of g .
The terminclogy is justified by the observations that
Aoi{lia,blry {b—a) =  f& g {a+rsb—al) de (bh—a) = gibh) —gi{al
and similarly
o lia,b,o)) (c-by (c—aj = (g ({a,c?) —Agilabl) ) c-3)
= gilc) ~ glal) — Adgilfa,bry (c-ad ,
whence follows
Mewton's Divided-Difference Interpolation Formula:s
(ix = gla) + Agll{a,bl) x—a) + MFgila.b,.x>) (b} (x—a) .
When b = a , HNewt ormula reduces to Tayvior's formulsa
£ in} = gial) + ¢ a) + LFgila,a,xd) (x—a)%
1 owhich the third term remaIinder Lterm, 15 here expressed
in terms of a welghited e 0%y of halfd the second derivative
g’ instead of a sampl somewhere between . Hoth
are Interpolation form in the sense that t two terms
Frp{n, {a,bl) CEoglad a,bry (x—a) = gl 3y (x-bh)
provide a polynomial of est degree in x  that olates
{matches) gix} at  x nd at  x = b when o
matches gix) and g (=) ¥ = a when b = a zasiest
to interprel when a, are all scalars, as assumea
hencetorth, in which e graph of Pg plo against
15 tangent to the grap if b o= a3 , secant herwise.
Tavior's formula wi ised to explain how fast Newton's
iteration Mopged o T Hpg PAE ey normally converg arycl
then lewton's formula be used to sxplain how fast the Secant
iteration Hopprt ¢ T iy pad AEF U8 g % pgy 3 normally o©
Both iterations will be assumed to start from inside soms i
z—6 £ ox Lzt surrounding the desired zero 2z of F

B



narrow that 1t satisfies the following
Hypothesis: {mas ! fyd 1y /7 dminme (F (w31 2/ where the
max imun and minimum are taken over v oand x in that interval.

A

i Newton's
Buadratically to z  +rom every

oy
-t
g
o+
T
i
o
W,::
o
in
fas
F
i}
i
0
ot
i
e
W
s

. 3 4 fﬁ‘?ﬁi { {x [T

Z ) § Z
ZXY/F {nmd nowhich  A%F is

Lomax. (U210 0 mi
therefore Xaes lies deeper
13 =3

was assumed to

The
same for all subsequs iterates;
1 the last inecuality

he logarithm of
411y

The second conclusion is that the Secant iteration converges
to oz from svery starting points ®e and x. inside that intesrval,
and the order of convergence 1s at least (I+y33 /72 = 1.619 3

logUixw—z 758} < Fmlogiiivy-zi /8 v Fuey loglixe—z /82 it B>

-3 — faster than some multiple of —1.4618M
{(Here Fn 185 the N Fibonaecci number introduced esariier. )
Proot: iz} = O and Mewton's formula savs that
{ Y0z muesd O DFF 0 s X e FAZ %) (2 =Hppmy } 4

Mow

cannot

{ ~
e{\’eﬁ{ (4w [T I A g Yy / f{}‘ﬁ: {
de an interval in

P AL
-t A

onclusion to be drawn from the hypothessis above is

that the ratios (Rpges ™23/ {2z 0% in Newton's iteration, and
R =2 P/ 02 ) Oy —2 ) ) in the SBecant iteration, both approasch
the sams 1imit Uz /25 (z) as N -2 00 provided 7 is
continuous at  z , as 18 normally the case. Thiz coincidenc

£ i the t from ©

Practical Considerations:

Other ifterative methods sxist besides the bBecant and Newton's
iterations. For sxample, instead of drawing a secant through two
points of the graph of  Fi{x) | as the SBecant iteration doess, =]
parabela could be drawn throug three points. This iz what
Muller's method doss, and it rewards that effort with a higher
order of convergencs, about 1.8 instead of | In gensral,
the more information about £ {x) that can bes incorporated 1into an

1O
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i
3

v vet
= woh
ing a 1 ssly is

“ing the later stage, tion
£ w0} that its tiny are
ch time can be waste n the
less something 1is do o prevent that.
the intermediate stai implies that it
xtraordinarily high uracy is sought.
Most zero—-finding re includes some kind of bracketing tTo
discourage meanderis g the sarly stage. For instance, it

F{x) takes opposite z a2t any two iterates, then the software

will someshow forcs al beequent iterates to lie strictly bestwesen

those two. Bracketing also discourages dithering in tThe later
stage, bul doss not prevent 1t, and can slow convergence.
dithering caussd by roundoff, mﬁgt software demands

a IRDLT riterion from its user. That criterion should be

composed of two paritsg first, a ‘tolerance -%v@i for deciding

when consecutive itterates ey are too close ther to bes
regarded as distinguishable; cond, a thr 1d beneath which

P (et e regarded as 1 le. Both the zrance and ithe

threshold depend upon the le 5 roundof . The ftolerance must

not be ler than the diffsrence between adjacent representable
e . as avallable for = nor need reasonable
that. The ifhreshold wmnust at least exceed
contribute to the cowmputed valuse of F{ix)
much better than an informed gusss may be
Because sauation—solvers have to stop aftter only finitely many
iterations, they cannot be infalliible. Many kinds of failure are
possible, but some of them cannot fairly be blamed upon the root-
finding softwars. For example, a roaot could claim that
1032 2{x~0.3y + » + (1039 (x—0.35) + x 3}

has a zero very near x = /3 ., though ct it has a pols

there instead, imply because that e i takes the same

=3
valuss as 1OBel 2~ 0.5) 4+ % onomos omputers { unliess they
carry more than about 20 significant is 1. A ropt—finder
could similarly claim that

1072 Z{x~0.5) + » }#® — 1073

has no zero anywhere because 1t would never chanye

3 <. were carrvied. These +

because i?@ a&gwhgm ®x available to the compulter are too
=

reveal the intent concealed in those

0
e
m
K
i
s
n
?
i":I“
o
%M{w
S
L
w
0

BHPrES510NG. Other faillures can ococur becausg the

cgmpui@d ¢miz§5 of Fiw) are so contaminated by roundoftd that
Pl ' .
ks ks

hed B

hey vanish far from a zero of £ , or fail to vanish at all.
For example {admittedly ancther very artificial exampla)
(102 + ) — {107 + 13 (o not onit parentheses')
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1 an expression that roundofd forces to vanish for many valuss of
®x  Far from its true zero x = 1, uniess the computer carries
rather more thamn 30 sig. dec. Similarly, roundofd prevents

({oy= 3y -~ 1
from ever vanis nstead, 1ts computed value 1 -
wide range of pos d ne 1
onl i

reEverses sign

i
£} ve values of x , and it
ts smaller true zero near 10—%

Therefore, the findings of =2 I~purpose root-finder must
be treated as food for thought, interpreted in the light of
information about an sguation fix) = O ‘ﬁat cannot sasily be
fed to the softwares. in rare cases, particularly when £ {x} has
a simple expression whose amalvyviic aﬂé computational propertlies
are well undersiood, better results will be obtained from a
simple program implementing the Secant or Newton’s iteration than
from general —purpose software, Mores pften, whatever is dome to
transform the sguation fFix) = O , and to +ind starting i1terates
from which those ftwo iterations would converge guickly to the
desired root, will also help general-purpose root—finders work
ouickly and reliably.

Specialized root-finders exist for special kinds of eguations.

For example, polynomial sguations PR oasztd = C with given
numarical values for the cosfficients a, should be solved by
specialized software that finds all N zeros oz %é%i@? than any
iteration described above can. The best schemss 1 know are based
(Elululy Laguerre’s iteration. Polvyvnomial esguations of the form
detizl - B} = O with & gilven sguare matrix B are eigenproblems
{ a root =z is called an eigenvalue of B for which again
there exist faster and more accurate meithods than any bassd upon
expansion of the determinant as an explicit polynomial, unless B
is very sparse { slements ai%agﬁ all zeros J. The best methods
may be found in the LAPACK library distributed by the Society
for Industrial and Applisd Mathematics, among others.

Slso speci ions tﬁ@t tions
must solve =

to constra

e =

.t

an introductory class in
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