see Witp: g we. cs.berkeley. edy Jow kahay,/ Math 128/50{.\/2 key. pd £

Personal Calculator Has Key to Solve Any

Equation f(x) = 0

The HP-34Cis the first handheld calculator to have a built-in
numerical equation solver. That's why one of its keys is

labeled SOLVE.

by William M. Kahan

calculator, the HP-34C, is an automatic numerical

equation solver. It is invoked by pressing the
SOLVE key (see Fig. 1). For an illustration of how it finds a
root x of an equation f(x) = 0 take the function

B UILT INTO HEWLETT-PACKARD'S new handheld

f{x) =e* —Gx = C,

with constants C,; and C,. Equations f(x) = 0 involving
functions like this one have to be solved in connection
with certain transistor circuits, black-body radiation, and
stability margins of delay-differential equations. If the
equation f(x) = 0 has a real root x three steps will find it:
Step 1. Program f(x) into the calculator under, say, label
A (see Fig. 2).
Step 2. Enter one or two guesses at the desired root:
(first guess) ENTER (second guess if any)
Any x will do as a guess provided f(x) is defined at
that value of x, but the closer a guess falls to a de-
sired root the sooner that root will be found.
Step 3. Press SOLVE A and wait a little while to see
what turns up.
Figs. 3a-3d show what turns up for a typical assortment of
constants C; and C, and first guesses,

When a root is found it is displayved. But is it correct?
When no root exists, or when SOLVE can't find one. ERROR &
is displayed. But how does the calculator know when to
abandon its search? Why does it not search forever? And if
it fails to find a root, what should be done next? These
questions and some others are addressed in the sections that
follow.

What does SOLVE Do, and When Does It Work?

Neither SOLVE nor any other numerical equation solver
can understand the program that defines f(x). Instead, equa-
tion solvers blindly execute that program repeatedly. Suc-
cessive arguments x supplied to the f(x) program by
SOLVE are successive guesses at the desired root, starting
with the user's guess(es). If all goes well, successive guesses
will get closer to the desired root until, ideally, f(x)=0 at the
last guess x, which must then be the root, SOLVE is distin-
guished from other equation solvers by its guessing
strategy, a relatively simple procedure that will surely find
a rool, provided one exists, in an astonishingly wide range
of circumstances. The three simplest circumstances are the
ones that predominate in practice:

1. f({x)isstrictly monotonic, regardless of initial guesses, or

20 HEWLETT-PACKARD JOURNAL DECEMBER 1979

. *f(x) is strictly convex, regardless of initial guesses, or
3. Initial guesses x and y straddle an odd number of roots,
i.e., f(x) and f(y) have opposite signs, regardless of the
shape of the graph of f.
In these cases SOLVE always finds a root of f(x)=0 if a root
exists.
About as often as not, SOLVE must be declared to have
found a root even though f(x) never vanishes. For example,
take the function:

s b3

g(x) = x+2:(x—5)

L s Bril= 39

Re R+ I DSE

Fig. 1. The HP-34C, a new handheld programmable cal-
culator, has two keys that are new to handheld calculators-
f(f’n!egr&fe} and SOLVE SOLVE, a numerical equation solver, is
described in this article.

PRGMIIT_IRUN

oL
n % Is in the X Register

'] e*

Switch to Program Mode

Clear Program Memory

E Get x Back

[ReL] 6

B Cix

= " — Cyx

[RCL|2] Ca

= fix) =e" - Cix - Cs
RTN Return f(x) in the X register
PRAGM[_IIIRUN Switch to Run Mode
s o] T

n Store C; in Register 1
0T

2] Store C; in Register 2

Fig. 2. This is an HP-34C program for the function f(x) =
e* — Cyx —C.. It replaces x by f(x) in the HP-34C'’s X register
(display). Itis labeled A, but labels B, 0, 1, 2, or 3 would serve
as well.

Of course g(x) = 3x—10, and when calculated as prescribed
above (don't omit the parentheses!) it is calculated exactly
(without roundotf) throughout 1=x<6.666666666. Con-
sequently, the calculated value of g(x) cannot vanish be-
cause the obvious candidate x=10/3=3.333... cannot be
supplied as an argument on an ordinary calculator. SOLVE
does the sensible thing when asked to solve g(x)=0; it
delivers final guesses 3.333333333 and 3.333333334 in the
X and Y registers in a few seconds. In general, when SOLVE
finds a root of f(x)=0 it returns two final guesses x and y in
the X and Y registers respectively; either x=y and f(x)=0, or
else x and y differ in their last (10th) significant decimal
digit and f(x) and f(y) have opposite signs. In both cases the
Z register will contain f(x).

On the other hand, SOLVE may fail to find a place where
f(x) vanishes or changes sign, possibly because no such
place exists. Rather than search forever, the calculator will
stop where | f(x)| appears to be stationary, near either a local
positive minimum of |f(x)| as illustrated in Fig. 3d or where
f(x) appears to be constant. Then the calculator displays
ERROR 6 while holding a value x in the X register and f(x) in
the Z register for which f(y)/f(x)=1 at every other guess y
that was tried, usually at least four guesses on each side of x.
(One of those guesses is in the Y register.) When this hap-
pens the calculator user can explore the behavior of f(x) in
the neighborhood of x, possibly by pressing SOLVE again, to
see whether |f| really is minimal near x, as it is in Fig. 3d, or
whether the calculator has been misled by unlucky guesses.
More about this later.

So SOLVE is not foolproof. Neither is any other equation
solver, as explained on page 23.

How Does SOLVE Compare with Other Root-Finders?
Program libraries for large and small computers and cal-

culators usually contain root-finding programs, but none of

them works over so wide a range of problems or so conve-

niently as does the HP-34C’s SOLVE key. Other root-finders
are hampered by at least some of the following limitations:

1. They insist upontwo initial guesses that straddle an odd
number of roots. SOLVE accepts any guess or two and
does what it can to find a root nearby, if possible, or else
farther away.

2. They may have to be told in advance how long they are
permitted to search lest they search forever. Con-
sequently their search permit may expire after a long
search, but just moments before they would have found a
root. SOLVE knows when to quit; it can’t go on forever,
but it can go on for a long time (e.g., when f[x)=1/x).

3. They may require that you prescribe a tolerance and then
oblige vou to accept as a root any estimate closer than
that tolerance to some previous estimate, even if both
estimates are silly. SOLVE will claim to have found a root
x only when either f(x)=0 or f(x)-f(y}<0 for some y
differing from x only in their last (10th) significant dec-
imal digit.

4. They may claim that no root exists when they should
admit that no root was found. SOLVE will not abandon
its search unless it stumbles into a local minimum of |f|,
namely an argument x for which f{y)/f(x)=1 at all other
(usually at least nine) sampled arguments y on both
sides of x.

5. They may deny tothe program that calculates f(x) certain
of the calculator’s resources; for instance

“begin with no label other than A" "

“do not use storage registers 0 through 8"

“do not use certain operations like CLR or =",
SOLVE allows the f(x) program to use everything in
the calculator except the SOLVE key. Moreover, SOLVE
may be invoked from another program just like any other
key on the calculator; and f(x) can use the HP-34C's
powerful [} key.

A lot of thought has gone into making SOLVE conform to

Albert Einstein's dictum: “As simple as possible, but no

simpler.”

How Does SOLVE Work?

The SOLVE key's microprogram uses very little of the
HP-34C's resources. Reserved for SOLVE's exclusive use are
just five memory registers for data and a handful of other
bits. Those five memory registers hold three sample argu-
ments «, B, and y and two previously calculated sample
values f{«) and f(8) while the user’s f(x) program is calculat-
ing f(x) from the argument x = v, which it found in the stack.
How does SOLVE choose that argument y?

Suppose a and g both lie close to a root x = { of the
equation f(x)=0. Then a secant (straight line) that cuts the
graph of f at the points [x=u ; y=f{a]] and [x:ﬁ ; y=f[,:‘3]]
must cut the x-axis at a point [x= y, y=0] given by

y = B — (B—a)-f(B)(H(B)—t(a)) (1)

Provided the graph of [is smooth and provided { is a
simple root, i.e., f({) = 0 # ['({), then as Fig. 4 suggests,y
must approximate { much more closely than do « and g.
In fact the new error y—{ can be expressed as

DECEMBER 1979 HEWLETT-PACKARD JOURNAL 21

(8) -20 1+ f(x) = exp(x) + x — 2

f(x) = exp(x) — 4x — (4 — 4In 4)

18.00
16.00 +
14.00 -+
12.00
10.00 +

8.00 +

2.00 —\
W o 1 1 1 | 1 1

T T T 1 T
-5.00 -4.00 -3.00 —2.00 —-1.00 000 1.00 200 3.00 4.00

(c)

0.50 —

0.40

f(x) = exp(x) — 5x + 3

0.30 -

0.20

0.10

300.00

f(x) = exp(x) — 20x + 90

50.00

L |
=10.00 -6.00

(d)

Fig. 8. Examples of soLve results for different values of C, and C, and different first guesses for
the root x in the program of Fig. 2. (a) If the first guessis —99the root x = 0.442854401 is foundin
25 seconds. The graph of f(x) on the negative-x side is refatively straight, so soLVE works qQuickly.
If the first guess is 99 the root is found in 190 seconds. soLVEtakes longer to get around a sharp
bend. (b) With first guesses 0 and 2 the root 1.468829255 is found in 30 seconds. With first
guesses 2and 4 the root x = 1.74375199 is found in 20 seconds. Many root finders have trouble
finding nearby roots. (c) With first guesses 0 and 2 the double root 1.386277368 is found in 50
seconds. Many root finders cannot find a double root at all. (d) Since no root exists, SOLVEdisplays
erROR 6. With first guesses of 0 and 10, soLve displays ERROR 6 in 25 seconds. After the error is
cleared soLVEdisplays 2.32677..,., which approximates the place x =2.99573.... where f(x) takes
its minimum value 50.085.. ..

P EieE Kilo=—=t)B={]

where K is complicated but very nearly constant when «
and g both lie close enough to {. Consequently the secant
formula, equation 1, improves good approximations to ¢
dramatically, and it may be iterated (repeated): after f(y) has
been calculated « and f(«) may be discarded and a new and
better guess & calculated from a formula just like equation 1:

5=y — (y=B)fxN(fly)-£(B) (2)

This process repeated constitutes the secant iteration
and is the foundation underlying the operation of

22 HEWLETT-PACKARD JOURNAL DECEMBER 1979

the SOLVE key.

A lot could be said about the secant iteration's ultimately
rapid convergence, but for two reasons the theory hardly
ever matters. First, the theory shows how strongly the se-
cant formula (equation 1) improves good estimates of a root
without explaining how to find them, even though the
search for these estimates generally consumes far more time
than their improvement. Second, after good estimates have
been found, the secant iteration usually improves them so
quickly that, after half a dozen iterations or so, the tiny
calculated values of f{x) fall into the realm of rounding error
noise. Subsequent applications of equation 1 are con-
founded by relatively inaccurate values f(«) and f(3) that

18)

|
SV

Fig. 4. Given guesses « and B with corresponding function
values f(a) and f(B) the secant iteration produces a new guess
y by the formula y = B — (B—a) f(B)/(f(B)—f(e)).

produce a spurious value for the quotient f(8)/(f(8)—f(a)).
For these reasons the secant iteration is capable of dithering
interminably (or until the calculator’s battery runs down).
Figs. 5a-5b show examples where the secant iteration cycles
endlessly through estimates «, 8, y, 8, @, B. v, 8. ...

Therefore, the secant iteration must be amended before it
can serve the SOLVE key satisfactorily.

SOLVE cannot dither as shown in Fig. 5a because, having
discovered two samples of f(x) with opposite signs, it con-
strains each successive new guess to lie strictly between
every two previous guesses at which f(x) took opposite
signs, thereby forcing successive guesses to converge to a
place where f vanishes or reverses sign. That constraint is
accomplished by modifying equation 2 slightly to bend the

f(x)

f(x)

= X

(b)
Fig. 5. Examples of how the secant iteration can cycle end-

lessly through the values a, B, v, 8. (1) &, B—y (2) B, y—8 (3)
¥y, &—a (4) 8, a—3 and so forth

Why Is Equation Solving Provably
Impossible?

"The merely Difficult, we do immediately; the Impossible will take
slightly longer.” Old British naval maxim.

What makes equation solving merely difficult is the proper calcula-
tion of f(x) when the equation f(x) = 0 has to be solved. Sometimes the
calculated values of f(x) can simultaneously be correct and yet utterly
misleading. For example, let g(x) = x+2:(x—5); this is the function
whose calculated values change sign but never vanish. Next let the
constant ¢ be the calculated value of (g(10/3))2; this amounts to ¢ =
10~ '8 on an HP handheld calculator, but another calculator may get
some other positive value. Finally, let f(x) = 1-2 exp(—g?(x)/c?). The
graph of f crosses the x-axis despite the fact that the correctly
rounded value calculated for f(x) is always 1. None of the arguments x
for which f(x) differs significantly from 1 can be keyed into the cal-
culator, so it has no way to discover that f(x) vanishes twice very near
10/3, namely at

x = 10/3 = cVIn 2/3

No numerical equation solver could discover those roots.

Worse, perhaps, than roots that can't be found are roots that aren't
roots. Here is an example where the calculator cannot know whether
it has solved f(x) = 0 or f(x) = =, Consider the two functions

f(x) = 1/g(x) and f(x) = 1/(g(x) + c/g(x))

where g(x) and c are defined above. These two functions have
identical calculated values, after rounding, for every x that can be
keyed into the calculator, which consequently can't tell one from the
other despite the fact that at x = 10/3 the first has a pole, f(10/3) = o=,
and the second a zero, f(10/3) = 0. Starting from straddling initial
guesses x = 1 and x = 10 the soLve key finds a “root" of both
equations f(x) = Oto lie between 3.333333333 and 3.333333334 after
only 49 samples. The user, not the calculator, must decide whether
the place where f(x) changes sign is a root of f(x) = 0 or not. A similar
decision arises when both initial guesses lie on the same side of 10/3,
in which case soLve ultimately finds a "root” of f(x) at some huge x
with |x|> 3.33 x 10%, where the calculated value of f(x) underflows
to zero. That huge x must be regarded as an approximationtox = + =
where both functions f(+x=) = 0,

The foregoing examples illustrate how our inability to perform cal-
culations with infinitely many figures makes equation solving difficult.
What makes equation solving impossible, even if rounding errors
never happened, is our natural desire to decide after only finitely
many samples of f(x) whether it never vanishes. Any procedure that
claims to accomplish this task in all cases can be exposed as a fraud
as follows:

First apply the procedure to “solve" f(x) = 0 when
f(x) = —1 everywhere, and record the finitely many
sample arguments xi, Xz, X3 ..., X, at which f(x) was
calculated to reach the decision that f(x) never van-
ishes. Then apply the procedure again to f(x) = (x—x1)-
(x=xz2)*(x—xa)“(...): (x—xn)—1. Since both functions
f(x) take exactly the same value, —1, at every sample
argument, the procedure must decide the same way for
both: both equations f(x) = 0 have no real root. But that
is visibly not so,

So equation solving is impossible in general, however necessary it
may be in particular cases of practical interest. Therefore, ask not
whether soLve can fail, rather ask, “When will it succeed?"

Answer: Usually.

DECEMBER 1979 HEWLETT-PACKARD JOURNAL 23

