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1.  Introduction 

 

Let { tZ } be a sequence of observed independent vector variables. If the elements of tZ  

have a joint normal distribution, then { tZ } has a mean vector Z  and a variance-

covariance matrix zΩ .  Geometrically this is equivalent to that the tZ ’s are clustering 

around the coordinate Z  and is denser when it is closer to Z .  The changing of density 

around Z  is governed by the variance-covariance matrix zΩ .  To estimate Z  and zΩ , a 

common practice in Statistics/Econometrics, is simply to maximize the likelihood 

function,                                                                                  

,),;();(
1

∏
=

Ω=
T

t
zt ZZfSFMax θθ                                                                                      (1) 

Where, 

)]()'(5.0exp[||)2(),;( 12/12/ ZZZZZZf tztz
n

zt −Ω−−Ω=Ω −−−π ,                                       

SZZZ T ∈,.....,, 21 , 

θ∈Ω zZ , , and 

n: the dimensions of  tZ . 

 

Now suppose { ty } is a mixture of two sequences { 1tZ } and { 2tZ } each has different 

mean vector ( 1µ , 2µ ) and possibly different variance-covariance matrix ( 1Ω , 2Ω ) 

respectively.  That is, some of the ty ’s are clustering around 1µ , and the rest around 2µ , 

and the changing of density around 1µ  and 2µ  could be different because 1Ω  and 2Ω  

may not be the same.  If we can separate { ty } into { 1tZ } and { 2tZ }, then ( 1µ , 1Ω ) and 

( 2µ , 2Ω ) can be estimated separately as in (1). The challenge comes when we try to 

estimate ( 1µ , 1Ω ) and ( 2µ , 2Ω ), but a priori, we do not know which ty  belongs to which 

cluster. Then we need to find some ways to separate { 1tZ } and { 2tZ }.  
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Studying clustering data is an important field in many disciplines.  The mean vector and 

variance-covariance matrix of a given observed data set convey a lot of information about 

the observed data. And this information could be invaluable to business and economic 

study.  For example, if tZ  is a 2-vector, one element is annual income and the other is 

annual consumption of an individual, and if { tZ } is clustering in 2 different places, 

knowing the mean vector and the variance-covariance matrix of each cluster, economists 

may be able to better predict what will happen and explain what is happening in an 

economy.  And business executives may be able to better target individuals in each 

cluster with their products. 

 

The most common method used in estimating the mean vectors and the variance-

covariance matrices of normally distributed clustering data is the mixture likelihood 

model method.  Prof. W. Kahan also suggests a way (the separate method) to separate the 

clusters and evaluate the mean vector and variance-covariance matrix of each cluster.  

This paper proposes a simple algorithm to estimate the mean vectors and the variance-

covariance matrices of a data set with 2 normally distributed clusters.  In comparing these 

methods, the proposed method seems to be more reliable and its speed is comparable to 

that of the separation method.  The mixture likelihood method is the slowest, but it’s 

fairly accurate. 

 

This paper is organized in the following way.  Next section will summarize the existing 

methods in estimating the mean vectors and the variance-covariance matrices of some 

normally distributed data consisting of 2 clusters.  The proposed method will be outlined 

in section 3.  Section 4 will compare the estimated results from the separation method, 

the proposed method, and the mixture likelihood model method for some simulated data.  

Section 5 concludes. 

 

2.  The Existing Methods 
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The common method used in estimating  ( 1µ , 1Ω ) and ( 2µ , 2Ω ) in 

Statistics/Econometrics when { 1tZ } and { 2tZ } are both normally distributed is the 

mixture likelihood model approach (McLachlan and Basford, 1988).  The idea behind the 

mixture likelihood model approach is that a fixed percentage ( jw ) of the ty ’s belong to 

cluster j.  The mixture likelihood model approach will maximize the likelihood function: 
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,        the posterior Bayesian     (3) 

probability that iy  belongs to cluster j.                  

 

∑ =
=

T

i jij Tpw
1

/ ,            the percentage of data belongs to cluster j.                               (4) 

n: the dimensions of tZ . 

j=1,2.  i =1,….,Tj  

 

The algorithm to carry out the maximization of (2): 

 

I. Pick the initial values for 0
jw , 0

jµ , and 0
jΩ  for j=1,2. 

II. Substitute the initial values into (3) to get the 0
jip ’s.  

III. Substitute the 0
jip ’s into (2) to get the new estimates of 1

jµ  and 1
jΩ  , and into 

(4) to get the new estimates of 1
jw , for j=1,2. 

IV. Stop if k
jip , k

jµ , and k
jΩ  converge;  otherwise repeat step (II). 
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This algorithm is tantamount to weigh each iy  to see how much of it belongs to each 

cluster. If iy  has more weight toward cluster j, then iy  will contribute more to the 

calculation of the k
jµ  and k

jΩ  in the iteration.  This is also called the EM (Expectation & 

Maximization) algorithm.  Expectation: 1+k
jip  the posterior Bayesian probability that iy  

belongs to cluster j given k
jw , k

jµ , and k
jΩ .  Maximization: maximizing (2) given k

jip . 

 

Another closely related method which is often used in time series Econometrics to 

estimate the interested statistics [( 1µ , 1Ω ) and ( 2µ , 2Ω ) in our case ] is the Markov 

Regime Switching model method (Hamilton, 1989).  The idea behind the Markov 

Regime Switching model method is that there are n (n=2, in our case) states of the world. 

When a particular state i of the world is realized in a given period, there is a fixed 

probability ijq  that the j state of the world will be realized in the next period for i, j = 

1,2,….,n, 10 ≤≤ ijq , and ∑ =
=

n

j ijq
1

1  . The Markov Regime Switching model method is 

basically the same as the mixture likelihood model method, but the Markov Regime 

Switching model method also imposes the assumption that a first order Markov process 

governs the probability that a particular vector in the sequence belongs to a particular 

cluster, a state of the world.  

 

The numerical method for the Markov Regime Switching model is costly, complicated, 

and convergence is not guaranteed even for nicely distributed well-separated cluster data.  

Since the method is quite complicated, we will not get into the details of the Markov 

Regime Switching model here.  Another drawback of the Markov Regime Switching 

model is that the model assumes the changing of the state of the world follows a Markov 

process.  If the realization of a particular state of the world does not follow a Markov 

process, then the imposition of the Markov process will constrain the data to fit the 

Markov process and other statistical estimates.  That, in turn, may bias all the statistical 

estimates.  The numerical method for the mixture likelihood model is less complicated 

and costly, but convergence is also not guaranteed. 
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The separation method is quite straightforward.  Given two clusters of data in a nR  

Euclidean space, the separation method will find a hyperplane to separate the data into 

two clusters, and the hyperplane will pass the point (region) where the density is the 

lowest in between the clusters.  To locate the point (region) with the lowest density, the 

norm vector of the hyperplane is first found by minimize and then maximize the 

following, 

nn
ncuYn

MinMax cn '
)(' −

 

 

Where 

n: the norm of the hyperplane, 

],........,,[: 21 TyyyY =  

]1,........,1,1[:=u . 

 

c turns out to be the mean vector of the whole data set, the center gravity of all the points 

in the data set.  After finding the norm vector (n) of the hyperplane, place the hyperplane 

at (c), the center gravity of the all the points in the data set to separate the data into two 

sets temporarily.  Then calculate the mean vectors of each set.  Finally, the point (region) 

with the lowest density can be found along the norm in between the two mean vectors 

just found.  Then the hyperplane can be placed there to separate two clusters.  Obviously, 

convergence is not an issue here because no iteration is need.  But if the data overlap too 

much, there may not be any least dense point along the norm vector (n) in between the 

two mean vectors just described 

  

3.  The Proposed Method 

 

Just like the approach in estimating the mean vector and variance-covariance matrix in 

the single cluster vector sequence { tZ }, we estimate ( 1µ , 1Ω ) and ( 2µ , 2Ω ) by 

maximizing the likelihood function, but now with respect to all four parameters,  

  ),;(),;();( 22
11

11

21

µµθθ ΩΩ= ∏∏
==

T

t
t

T

t
t yfyfSFMax                                                    (5) 
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Where 

)]()'(5.0exp[||)2(),;( 12/12/
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n
jjt yyyf µµπµ −Ω−−Ω=Ω −−− ,   

Syyy T ∈,.....,, 21 ,  

θµ ∈Ω jj , ,  

j =1,2, And 

n: the dimensions of ty . 

 

Since { 1tZ } and { 2tZ } are independent, maximizing (3) is equivalent to maximizing 

∏
=

Ω
1

1
11 ),;(

T

t
tyf µ  and ),;( 22

1

2

µΩ∏
=

T

t
tyf  with respect to ( 1µ , 1Ω ) and ( 2µ , 2Ω ) in 

separation as in (1).  The idea of the method proposed here is the same as in (1), the trick 

is to separate { ty } into { 1tZ } and { 2tZ }. 

 

The first order conditions ,  
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1

1 jt

T

t jt
j

j yy
T

j µµ −−=Ω ∑ =
                                                                               

 

j = 1, 2,  

and TTT =+ 21 . 

 

Proposition:  If *
1µ , *

2µ , *
1Ω , and *

2Ω  satisfy the above first order conditions. Then 

),;(),;(*);( *
2

*
2

11

*
1

*
1

21

µµθ ΩΩ= ∏∏
==

T

t
t

T

t
t yfyfSF  is the global maximum. 

  

Proof:  

Since we know tha t if a set of parameters, *θ , satisfies the first order conditions 

in a maximization problem with a pseudo-concave objective function over a convex 

region, then the objective function attains its global maximum at *θ , to show the first 

order conditions are the sufficient conditions in the maximization problem above, we 

only need to show:  i) the objective function is pseudo-concave, and ii) the feasible 

parameters set(s) are convex.  

 

We first show the objective function is pseudo-concave.  Since 

)]()'(5.0exp[||)2(),;( 12/12/
jtjjtj

n
jjt yyyf µµπµ −Ω−−Ω=Ω −−−  is the bell-shaped 

normal distribution density curve, it is pseudo-concave.  And the objective function is the 

product of the pseudo-concave functions, so it is pseudo-concave. Now we show the 

feasible parameters set(s) is convex. Since there is no restriction on the parameter jµ  and 

jΩ , except that jµ  is an n by 1 vector and jΩ  is an n by n symmetric positive definite 

matrix, 2Rj ∈µ  and 2R  is convex, and jΩ  belongs to the set of all n by n symmetric 

positive definite matrices which is also convex, the feasible region is convex. This 

completes the proof. 
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These first order conditions are quite conventional, and they just have been shown to be 

the necessary and sufficient conditions in maximizing the likelihood function 

),;(),;();( 22
11

11

21

µµθ ΩΩ= ∏∏
==

T

t
t

T

t
t yfyfSF .  Now the problem is to decide which ty  

belongs to which cluster. The following algorithm should do the trick to separate the ty ’s 

 

The algorithm, 

 

I. Pick the initial 0
1µ , 0

1Ω  and 0
2µ , 0

2Ω  values. 

II. Substitute 0
1µ , 0

1Ω  and then 0
2µ , 0

2Ω  into the following equation to get two 

sequences of  ),;()( k
j

k
jtt

j yfyf µΩ=  ( t = 1, 2, ……, T; and j = 1, 2 ) values, 

           

)]()()'(5.0exp[||)2(),;()( 12/12/ k
jt

k
j

k
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k
j

nk
j

k
jtt

j yyyfyf µµπµ −Ω−−Ω=Ω= −−−  

 

III. Compare the )( t
i yf values for each t, if )(1

tyf is greater than )(2
tyf  assign 

ty  to set kS1 .  If )(2
tyf  is greater than )(1

tyf , assign ty  to set kS2 .  If  

)(1
tyf  equals )(2

tyf , then assign ty  to set kS3 . 

IV. Calculate the ratio: 

∑ =

=
2

1
)(

)(

j
k
j

k
jk

j
Sycardinalit

Sycardinalit
r      j=1,2.  And assign  

)](*)[( 31
kk Sycardinalitrceiling  numbers of ty  in set kS3  to set kS1  randomly, 

the rest to set kS2 . 

V. Calculate the mean vector and variance-covariance matrix of set k
jS  as 1+k

jµ  

and 1+Ω k
j . 

VI. If k
1µ , k

1Ω , k
2µ , and k

2Ω  converge, then stop. Otherwise repeat step (II). 
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Troubled Initial Values 

 

If some extreme initial values are picked such that the values from ),;( 0
1

0
1 µΩtyf  

completely dominate the values from ),;( 0
2

0
2 µΩtyf  or vice verse, then obviously, the 

algorithm cannot go on. This problem can be dealt with easily by choosing the initial 

mean vectors and variance-covariance matrices near the mean vector and variance-

covariance matrices of the whole data set.  Still if jµ , jΩ  are picked such that,  

 

 )
)()'(

)')((
(

)()'(

)')((

jiji

jiji

jiji

jiji
j yy

yy
I

yy

yy

µµ

µµ
ε

µµ

µµα

−−

−−
−+

−−

−−
=Ω ,                                                (8)  

 

α  >> 0 and ε  à 0 for any given iy , then ),;( jjiyf µΩ  will tend to infinity, and the 

algorithm will not work.  Theoretically, this could happen. Since ),;( µΩyf  is a bell-

shaped Gaussian curve and 1),;(∫ =Ω
nR

dyyf µ , if the base of the bell is made very 

narrow, the peak of the bell could go to infinity.  So if one or a few of the ),;( µΩtyf  

values approach infinity, and the rest are not zero, the likelihood function approaches 

infinity. Certainly, an initial point such as the one in (8) can be picked and obtain a very 

high or an infinite likelihood value. If the ty ’s are not nicely distributed (that is one or a 

few ty ’s are far away from the rest) the estimates generated by the algorithm could also 

converge to such problem spots. 

 

 Another possibility is that the 0
1µ , 0

1Ω  and 0
2µ , 0

2Ω  are picked such that exactly halves 

of the { 1tZ } and { 2tZ } in { ty } attain higher vales with 0
1µ , 0

1Ω  and the other halves 

with 0
2µ , 0

2Ω , then the algorithm may be stuck at the same point. We think such a point is 

not stable and the algorithm cannot converge to such a point.  But this conjecture still 

needs to be proven. 
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Proposition:  If  { ty } consists of 2 nice, normally-distributed clusters (that is, no 

outliners are located far away from both clusters), the two clusters are well-separated, and 

the troubled initial values mentioned above are avoided, then the k
1µ , k

1Ω , k
2µ , and k

2Ω  

generated by the above algorithm will converge to 1µ , 1Ω , 2µ , and 2Ω . 

 

Proof.   

From the first order conditions, it is clear that to maximize the likelihood function 

(5), we simply have to pick the parameters ( jµ , jΩ ) to generate as many high 

),;( jjtyf µΩ  values as possib le with { ty }, j = 1, 2.  Given a set of initial values ( 0
jµ , 

0
jΩ ), j = 1,2, without lost of generality, assume ),;( 11 µΩtyf  attains a higher value with 

more of the ty ’s clustering around 1µ  (for convenient, call this cluster A, and the other 

cluster B).  Then 1
1µ  is the mean of more ty ’s in cluster A than those in cluster B.  And 

1
1Ω  is the average outer products of the ty ’s mostly near cluster A minus 1

1µ .  Since there 

are only two clusters in the data, if the ty ’s are not used in generating the ( k
1µ , k

1Ω ), they 

are used in generating ( k
2µ , k

2Ω ), what happens in cluster A is just the mirror image of 

what is happening in cluster B.  Since 1
1µ  and 1

1Ω  are generated by the ty ’s mostly in 

cluster A, ( 1
1µ , 1

1Ω ) are closer to ( 1µ , 1Ω ) than ( 1
2µ , 1

2Ω ) respectively.  Similarly, 

( 1
2µ , 1

2Ω ) are closer to ( 2µ , 2Ω ) than ( 1
1µ , 1

1Ω ) respectively.  Since ),;( jjtyf µΩ  is a 

bell-shaped Gaussian curve and 1),;(∫ =Ω
nR jj dyyf µ , ),;( jjtyf µΩ  is small if ty  is 

far away from jµ .  That is for a given ( *µ , *Ω ), ),;( ** µΩtyf  attains a higher value if 

ty  is closer to *µ .  Since 1
1µ  is closer to 1µ  than 1

2µ , it is closer to most of the ty ’s in 

cluster A than those from cluster B, and the same is true for 1
2µ  with respect to cluster B.  

So more ty ’s in cluster A will be included in calculating ( 2
1µ , 2

1Ω ).  Successively, 

( k
1µ , k

1Ω ) will get closer and closer to ( 1µ , 1Ω ), and ( k
2µ , k

2Ω ), to ( 2µ , 2Ω ).  As 

( k
1µ , k

1Ω ) get close enough to ( 1µ , 1Ω ), ),;( 11
kk

tyf µΩ  will attain a higher value than 
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),;( 22
kk

tyf µΩ  with every ty ’s in cluster A. The same is true for ),;( 22
kk

tyf µΩ  with 

every ty ’s in cluster B.  Consequently, k
1µ , k

1Ω , k
2µ , and k

2Ω  will converge to 1µ , 1Ω , 

2µ , and 2Ω  respectively. 

 

4.  Methods Comparison 

 

In this section we will compare the separation method, the proposed method, and the 

mixture likelihood method in terms of the numbers of iterations and computing time 

(since no iteration is need for the separation method, only the computing time (as in 

MatLab) of the method is compared to the other two methods) needed for the estimates to 

converge, and the sum of the norms of the differences between the true mean vectors, 

variance-covariance matrices and the respective estimated mean vectors, variance-

covariance matrices. 

 

The method of generating the comparing figures: two vector sequences with different 

mean vectors and variance-covariance matrices are generated.  The mean vector and 

variance-covariance matrix of each sequence are calculated as the true mean vector and 

variance-covariance matrix. Then the two sequences are mixed, the separation method, 

the proposed method, and the mixture likelihood method are employed to estimate the 

mean vector and the variance-covariance matrix of each sequence.  The amount of time 

and the numbers of iterations needed for the estimates to converge for each method are 

recorded.  Also the norms of the differences between the true mean vectors and the 

variance-covariance matrices and the mean vectors and variance-covariance matrices 

estimated by each method are calculated. 

 

Since the data generated or observed are random, if the cluster overlap too much, without 

knowing beforehand, there is no way one can tell which data point belongs to which 

cluster in the overlapping area. So we make an arbitrary decision that if the clusters 

overlap too much, roughly more than ten percent, we will advise the user of the proposed 

algorithm to look at the estimates with caution.  The percentage of overlapping is 



 12

estimated first by calculating the distance between the estimated mean vectors of the two 

clusters A and B.  Then draw a hyperplane (PB), normal to the vector which runs from the 

mean vector of cluster A to that of cluster B, to pass through the mean vector of cluster B.  

Then calculate the average distance (DB) of all the points in cluster B which lie on the 

side of the hyperplane (PB) away from cluster A.  Follow the same procedure to calculate 

DA.  If ty  is 3 dimensional, when the distance between the estimated mean vectors is less 

than 1.2*( DA+ DB ), the clusters should overlap each other more than ten percent.  Then 

we send out the warning message to urge the user of this method to look at the estimates 

with caution.  Under this circumstance we estimate the variance-covariance matrix of 

cluster B based on the data that lie on the side of PB that is away from cluster A in each 

iteration.  The same method is used to estimate the variance-covariance matrix of cluster 

A. 

 

Now we move on to look at the experiment results.  We first look at how does each 

method do with well-separated clusters as in figure 1 in the Appendix. Data sets with 2 

well-separated clusters and a total of 1000 and 10000 data points were generated. And 

1000 experiments for each scenario were repeated, but only the results of the last ten 

experiments and the summaries figures are reported in Table 1 and Table 2 in the 

Appendix. 

 

In the table, under the heading of each method, the first column, Time is the amount of 

time needed for the estimates generated by the method to converge, for the separation 

method, it is the time need to generate the estimates. Iterations is the numbers of 

iterations needed for the estimates generated by the method to converge. Norms is the 

sum of the norms as described in the previous paragraph.  N.C. is the time when the 

estimates generated by the method do not converge in that experiment (after 2000 

iterations), then the column takes the value of one.  Since Iterations and N.C. do not 

apply to the separation method, we just put N/A in these columns for the separation 

method.  The first ten rows of the table are the results of last ten of the one thousand 

experiments.  The next to the last row is the sum of each column and the last row is the 

average of each column. 
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As we can see from Table 1 and Table 2 in the Appendix, the message is consistent from 

both tables.  The proposed method is the fastest and has the smallest Norms.  The 

separation method comes in second.  The mixture likelihood method is the slowest and 

has the biggest norms.  The numbers of iterations for the proposed method and the 

mixture likelihood method are consistent with the computing time: the proposed method 

is about three times faster than the mixture likelihood method.  In one occasion under 

each scenario, the estimates from mixture likelihood method did not converge.  

 

For the clusters that are closed but may or may not overlap as in Figure 2 in the 

Appendix, the experiment with 1000 and 10000 data points are reported in Table 3 and 

Table 4.  Table 3 is very much like Table 1 and Table 2.  From Table 4, when the clusters 

are closed, the separation method becomes the fastest, but the norms is also the biggest, 

more than twice as big as the proposed method.  The mixture likelihood method is still 

about three times as costly as the proposed method in terms of computing time or 

numbers of iterations.  Also about two percent of the time, the estimates for the mixture 

likelihood method did not converge. 

 

Lastly, we look at the case where the clusters overlap as in Figure 3 in the Appendix.  

The results for 1000 and 10000 data points are reported in Table 5 and Table 6.  The 

results in Table 5 and Table 6 are similar to those in Table 4.  The separation method is 

the fastest, but the proposed method has the smallest norms.  In the case of 1000 data 

points, about one percent of the time, the estimates from the proposed method did not 

converge.  And about two and a half percent of the time the estimates from mixture 

likelihood method did not converge.  In Table 6 (the 10000 data points case) about five 

percent of the time, estimates from the mixture likelihood method did not converge.  This 

figure seems a bit too high.  But since the data were random, mostly likely the mixture 

likelihood method was just “lucky” to get such a high figure. 
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5. Conclusion 

  

In this paper a simple algorithm is proposed to estimate the mean vectors and the 

variance-covariance matrices of two clusters of data, which are not overlapping too 

much.  The results produced by the proposed method are also compared to those 

produced by the separation method and the mixture likelihood method for some 

simulated data under different scenarios.  Clearly, when the clusters are well-separated, 

the proposed method stands out in terms of speed and accuracy.  When the clusters are 

closed or overlap, the separation method is the fastest, but the proposed method is the 

most accurate. The mixture likelihood method is fairly accurate but it is relatively slow.  
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                                                        Appendix 

 

 

 

 
Figure 1 
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Figure 2 
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Figure 3 
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Table 1 With 1000 Well-Separated Data Point 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.0200 0.0000 0.0034 N/A 0.0100 3.0000 0.0034 0.0000 0.0400 11.0000 0.0069 0.0000 
0.0100 0.0000 0.0035 N/A 0.0100 2.0000 0.0035 0.0000 0.0810 21.0000 0.0507 0.0000 
0.0200 0.0000 0.0037 N/A 0.0200 3.0000 0.0037 0.0000 0.0300 7.0000 0.0038 0.0000 
0.0200 0.0000 0.0036 N/A 0.0100 2.0000 0.0036 0.0000 0.0300 9.0000 0.0047 0.0000 
0.0200 0.0000 0.0035 N/A 0.0200 3.0000 0.0035 0.0000 0.0300 9.0000 0.0046 0.0000 
0.0100 0.0000 0.0035 N/A 0.0100 3.0000 0.0035 0.0000 0.0300 7.0000 0.0036 0.0000 
0.0200 0.0000 0.0037 N/A 0.0100 3.0000 0.0037 0.0000 0.0300 7.0000 0.0037 0.0000 
0.0200 0.0000 0.0038 N/A 0.0100 2.0000 0.0038 0.0000 0.0300 7.0000 0.0040 0.0000 
0.0200 0.0000 0.0036 N/A 0.0200 3.0000 0.0036 0.0000 0.0300 9.0000 0.0045 0.0000 
0.0200 0.0000 0.0036 N/A 0.0100 2.0000 0.0036 0.0000 0.0400 10.0000 0.0061 0.0000 

                        
18.2050 0.0000 10.8985 N/A 10.8330 2556.0000 7.6304 0.0000 31.6990 8547.0000 9.0057 1.0000 
0.0182 0.0000 0.0109 N/A 0.0108 2.5560 0.0076 0.0000 0.0317 8.5470 0.0090 0.0010 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
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Table 2 With 10000 Well-Separated Data Points 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.1500 N/A 0.0003 N/A 0.1300 3.0000 0.0003 0.0000 0.3710 10.0000 0.0061 0.0000 
0.1500 N/A 0.0003 N/A 0.1300 3.0000 0.0003 0.0000 0.4110 11.0000 0.0031 0.0000 
0.1500 N/A 0.0003 N/A 0.1300 3.0000 0.0003 0.0000 0.3010 8.0000 0.0009 0.0000 
0.1500 N/A 0.0157 N/A 0.1300 3.0000 0.0003 0.0000 0.3710 10.0000 0.0041 0.0000 
0.1500 N/A 0.0003 N/A 0.1300 3.0000 0.0003 0.0000 0.3010 8.0000 0.0010 0.0000 
0.1500 N/A 0.0132 N/A 0.1400 3.0000 0.0003 0.0000 0.4010 11.0000 0.0060 0.0000 
0.1500 N/A 0.0003 N/A 0.1900 4.0000 0.0138 0.0000 0.4110 11.0000 0.0073 0.0000 
0.1500 N/A 0.0158 N/A 0.1400 3.0000 0.0003 0.0000 0.4110 11.0000 0.0060 0.0000 
0.1500 N/A 0.0003 N/A 0.1300 3.0000 0.0003 0.0000 0.3810 10.0000 0.0030 0.0000 
0.1500 N/A 0.0119 N/A 0.1300 3.0000 0.0119 0.0000 0.4210 11.0000 0.0074 0.0000 

                        
150.0290 N/A 6.1664 N/A 137.9580 3051.0000 3.9086 0.0000 361.6930 9624.0000 4.9602 1.0000 
0.1500 N/A 0.0062 N/A 0.1380 3.0510 0.0039 0.0000 0.3617 9.6240 0.0050 0.0010 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
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Table 3 With 1000 Closed Data Points 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.0100 0.0000 0.1358 N/A 0.0200 4.0000 0.1358 0.0000 0.0810 21.0000 0.1603 0.0000 
0.0200 0.0000 0.2759 N/A 0.0200 3.0000 0.1343 0.0000 0.0900 25.0000 0.1593 0.0000 
0.0200 0.0000 0.9335 N/A 0.0200 4.0000 0.3890 0.0000 0.0000 0.0000 0.0000 1.0000 
0.0100 0.0000 0.2962 N/A 0.0200 3.0000 0.1317 0.0000 0.1100 31.0000 0.1285 0.0000 
0.0200 0.0000 0.0035 N/A 0.0200 3.0000 0.0035 0.0000 0.0800 23.0000 0.0624 0.0000 
0.0300 0.0000 0.3019 N/A 0.0100 3.0000 0.0879 0.0000 0.1010 26.0000 0.1409 0.0000 
0.0200 0.0000 0.0900 N/A 0.0200 4.0000 0.0900 0.0000 0.0900 27.0000 0.1401 0.0000 
0.0100 0.0000 0.3992 N/A 0.0300 4.0000 0.0875 0.0000 0.1000 28.0000 0.1348 0.0000 
0.0200 0.0000 0.3136 N/A 0.0200 4.0000 0.1936 0.0000 0.1000 27.0000 0.1778 0.0000 
0.0200 0.0000 0.0644 N/A 0.0100 3.0000 0.0644 0.0000 0.0800 20.0000 0.0924 0.0000 

                        
18.6480 0.0000 177.1844 N/A 17.1350 3590.0000 105.1713 0.0000 85.5960 23035.0000 121.8572 22.0000 
0.0186 0.0000 0.1772 N/A 0.0171 3.5900 0.1052 0.0000 0.0856 23.0350 0.1219 0.0220 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
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Table 4 With 10000 Closed Data Points 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.1510 N/A 0.0392 N/A 0.1900 4.0000 0.0373 0.0000 0.8410 23.0000 0.0906 0.0000 
0.1500 N/A 0.1049 N/A 0.2410 5.0000 0.0456 0.0000 0.8110 22.0000 0.0830 0.0000 
0.1500 N/A 0.0789 N/A 0.2300 5.0000 0.0485 0.0000 0.8120 22.0000 0.0890 0.0000 
0.1500 N/A 0.1508 N/A 0.2400 5.0000 0.0658 0.0000 0.8910 24.0000 0.1051 0.0000 
0.1510 N/A 0.0377 N/A 0.1900 4.0000 0.0555 0.0000 0.8210 22.0000 0.1020 0.0000 
0.1500 N/A 0.2250 N/A 0.2410 5.0000 0.0933 0.0000 0.9310 25.0000 0.1237 0.0000 
0.1500 N/A 0.0309 N/A 0.1910 4.0000 0.0339 0.0000 0.9310 25.0000 0.1015 0.0000 
0.1500 N/A 0.0881 N/A 0.1900 4.0000 0.0395 0.0000 0.8220 22.0000 0.0833 0.0000 
0.1500 N/A 0.0988 N/A 0.1900 4.0000 0.0873 0.0000 0.9010 24.0000 0.1048 0.0000 
0.1510 N/A 0.0477 N/A 0.2400 5.0000 0.0276 0.0000 0.8210 22.0000 0.0804 0.0000 

                        
150.1380 N/A 111.3727 N/A 220.3830 4594.0000 50.8061 0.0000 835.8510 22396.0000 91.1561 24.0000 
0.1501 N/A 0.1114 N/A 0.2204 4.5940 0.0508 0.0000 0.8359 22.3960 0.0912 0.0240 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
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Table 5 With 1000 Overlapping Data Points 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.0200 0.0000 0.3177 N/A 0.0200 5.0000 0.6129 0.0000 0.2200 60.0000 0.5154 0.0000 
0.0200 0.0000 0.4654 N/A 0.0300 6.0000 0.6661 0.0000 0.2710 75.0000 0.6097 0.0000 
0.0200 0.0000 0.7195 N/A 0.0300 7.0000 0.4316 0.0000 0.2700 75.0000 0.4217 0.0000 
0.0200 0.0000 1.8858 N/A 0.0200 5.0000 0.2596 0.0000 0.2910 81.0000 0.5203 0.0000 
0.0100 0.0000 1.1770 N/A 0.0300 5.0000 0.4865 0.0000 0.2400 66.0000 0.5719 0.0000 
0.0200 0.0000 0.6200 N/A 0.0200 5.0000 0.2407 0.0000 0.1800 50.0000 0.2871 0.0000 
0.0210 0.0000 0.5516 N/A 0.0200 6.0000 0.5103 0.0000 0.2500 68.0000 0.5981 0.0000 
0.0200 0.0000 0.2515 N/A 0.0300 7.0000 0.2566 0.0000 0.1800 51.0000 0.4151 0.0000 
0.0200 0.0000 0.7115 N/A 0.0200 5.0000 0.4030 0.0000 0.3110 84.0000 0.5821 0.0000 
0.0200 0.0000 0.2471 N/A 0.0300 5.0000 0.4971 0.0000 0.2300 65.0000 0.4645 0.0000 

                        
18.7520 0.0000 673.6066 N/A 27.3250 5729.0000 428.3384 11.0000 237.9720 66097.0000 522.6922 24.0000 
0.0188 0.0000 0.6736 N/A 0.0273 5.7290 0.4283 0.0110 0.2380 66.0970 0.5227 0.0240 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
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Table 6 With 10000 Overlapping Data Points 
Separation Method Proposed Method Mixture Likelihood 

Time Iterations Norms N.C. Time Iterations Norms N.C. Time Iterations Norms N.C. 
0.1500 N/A 0.2771 N/A 0.3900 8.0000 0.2487 0.0000 2.3040 63.0000 0.4258 0.0000 
0.1600 N/A 0.4086 N/A 0.3400 7.0000 0.3451 0.0000 2.2140 60.0000 0.4770 0.0000 
0.1500 N/A 0.5152 N/A 0.3500 7.0000 0.3119 0.0000 2.4340 65.0000 0.4752 0.0000 
0.1600 N/A 0.4742 N/A 0.3510 7.0000 0.2745 0.0000 2.4930 67.0000 0.4338 0.0000 
0.1500 N/A 0.5628 N/A 0.3510 7.0000 0.2789 0.0000 2.4130 65.0000 0.4123 0.0000 
0.1610 N/A 0.6030 N/A 0.3500 7.0000 0.3013 0.0000 2.3140 62.0000 0.4576 0.0000 
0.1500 N/A 0.4307 N/A 0.4000 8.0000 0.3438 0.0000 2.5040 67.0000 0.4543 0.0000 
0.1600 N/A 0.7283 N/A 0.2910 6.0000 0.2875 0.0000 2.3430 63.0000 0.4335 0.0000 
0.1500 N/A 0.7084 N/A 0.3510 7.0000 0.3261 0.0000 2.3130 62.0000 0.4618 0.0000 
0.1500 N/A 0.4063 N/A 0.4010 8.0000 0.3214 0.0000 2.3530 63.0000 0.4534 0.0000 

                        
152.4720 N/A 545.5960 N/A 386.8970 7717.0000 331.6460 0.0000 2318.6200 62309.0000 445.0488 51.0000 
0.1525 N/A 0.5456 N/A 0.3869 7.7170 0.3316 0.0000 2.3186 62.3090 0.4450 0.0510 

Note: Time is the amount of time needed for convergence in MatLab. Iterations is the numbers of iterations need for convergence. Norms is the 
sum of norms of the differences of the true statistics and the respective estimated statistics .  N.C. equals 1 if the program does not converge after 
2000 iterations.  N/A : not applied.  The first ten rows are the last ten results of the one thousand experiments.  The next to last row is the sum of 
each column, the last row is the average. 
 

 

 

 

 

 


