
Page 1 of 34

RefinEig:
A Program to refine

Eigensystems

A Final Project by Sunil Ramesh
For Prof. Kahan

Page 2 of 34

Table of Contents

1. Introduction.. 3

2. The need for more than eig .. 4

3. RefinEig : A First Look... 5

4. Computation of Residuals ... 6

5. How RefinEig works for Non-Hermitian B .. 8

6. How RefinEig works for Hermitian A ...12

7. Testing RefinEig : Werner Frank Matrices ...17

8. Conclusions ...25

9. Acknowledgements ..26

10. References ..27

A. Appendix A : Processor Update ...28

B. Appendix B : Code Listings...29

C. Appendix C : Non-Uniqueness of ∆Q..33

D. Appendix D : Sylvester Equation and Solution ..34

Page 3 of 34

1. Introduction

One of the most interesting problems in Numerical Mathematics is that of finding
the eigenvalues and eigenvectors of a matrix. Even more challenging is the
generalized Eigenproblem which deals with finding the Eigensystem of a
nonsymmetric matrix. Often, the results of the computation are far less accurate
than can actually be achieved if simulated high-precision arithmetic had been
used. RefinEig is a program that will attempt to clean up the results of an
Eigensystem calculation using Iterative Refinement as if the whole computation
had been done using more significant bits of precision. RefinEig is designed to
best refine the most common cause of problems: an isolated pair of nearly
coincident eigenvalues.

Page 4 of 34

2. The need for more than eig

The function eig in Matlab is considered good software for computing
eigensystems. Ideally, given a matrix B, eig is supposed to calculate a
nonsingular matrix Q whose columns are the eigenvectors of the given square
matrix B and a diagonal matrix V of its eigenvalues. These constitute the
solution to the diagonalization problem. So, eig should find Q and V such that

B = Q * V * Q-1.

However, because of rounding errors, the eigensystem produced is that of a
matrix close to B, namely B - dB, so:

B - ∆B = Q * V * Q-1. The matrix ∆B is comparable to the roundoff in B.

Even when ∆B is very small, Q and V might be calculated very inaccurately
because of the algorithms used by eig.

Consider the case of Defective Matrices. (Defective Matrices are those that have
too few eigenvectors to permit diagonalization by any similarity transformation)
James Demmel showed in 1988 that Defective matrices are almost never
encountered at random, but it is possible to get matrices that are near-defective
more often.
RefinEig is designed to improve computed values of an eigensystem when the
matrix is nearly defective.

Page 5 of 34

3. RefinEig : A first look

RefinEig starts with a nonsingular matrix Q of approximate eigenvectors and a
diagonal matrix V of approximate eigenvalues. In MATLAB, we would be able to
get Q and V from the following assignment:
[Q, V] = eig(B)
Here, B is the matrix for which we are trying to compute the eigensystem. Now
we are ready to invoke RefinEig
[Q, V] = RefinEig(Q, V, B)
RefinEig performs one step of iterative refinement to replace the old Q and V with
new values. The step can be repeated manually if desired: RefinEig converges
very quickly.

Page 6 of 34

4. Computation of Residuals

The effectiveness of Iterative Refinement is generally limited by the accuracy to
which residuals like ∆R := B*Q - Q*V can be computed. If Q and V were exactly
computed, then ∆R should become 0, so in order for that to happen, a massive
cancellation must be incurred. Accuracy, however is no t limited by cancellation,
but rather by the precision to which scalar products are accumulated during
matrix multiplications.

Today's computers tend to have doubles that are 64-bits wide. They have 53 bits
of precision in which B, Q and V are stored in memory. In this case, the
computed residual dR does not generally rise much higher than the roundoff
accumulated during its computation. In these cases, RefinEig can improve Q
and V greatly. These cases occur often enough to justify the existence as will be
shown in the discussion about Werner Frank's matrices. RefinEig is most useful,
however, when the bits of dR are accumulated with extra precision, so it can be
well above the roundoff error accumulated.

Most popular processors today (Please see Appendix A for an update), the
floating point arithmetic is performed in registers that are 10 bytes wide. Thus,
access is available to 64 significant bits instead of the normal 53. These wide
registers are used regardless of the widths of narrower operands loaded from
memory. All subexpressions in MATLAB are stored in 8-byte memory cells
except that MATLAB accumulates scalar products in 10-byte registers during
matrix multiplications because doing so is faster than storing the expression in
memory.

Q. Does my computer have extra-precision accumulation ?

A. Try [(2 - 2^33), 2^33, -1] * [(1 + 2^32) ; 2^32 ; 1] ;
 on MATLAB. If the answer is +1, then you have extra-
 precision accumulation. If it is -1, then you don't. As an
 alternative, try running mxmuleps.m from
 Appendix B on your MATLAB.

In order to make use of the extra-precision, RefinEig computes its residuals by
performing a MATLAB matrix multiplication. ∆R, for example is computed in the
following way:
∆R := B*Q - Q*V is obtained from ∆R := [B, Q] * [Q; -V] ;

The residual:
∆2R := Q*G - ∆R is obtained from ∆2R = [Q, dR]*[G;-I] ;

for an identity matrix of appropriate size.

Page 7 of 34

On machines that do not have extra-precise registers, the matrix multiplication
would produce the same result as if the computation was done without using the
matrix multiplication.

Page 8 of 34

5. How RefinEig works for Non-Hermitian B

Assume that we are staring off with a diagonalizable non-Hermitian matrix B and
an approximation [Q, V] to its eigensystem as given to us by invoking eig. Also
assume that the residual dR := B*Q - Q*V is small and that Q is not too ill-
conditioned.
Here V will represent a diagonal matrix of eigenvalues.
Our aim is to compute a small correction ∆Q and a small diagonal correction dV
such that
B * (Q + ∆Q) = (Q + ∆Q) * (V + ∆V) exactly.

However, by this equation, ∆Q is not determined uniquely because we can
postmultiply both sides of the equation by any diagonal matrix and still have
equality. For more information on this, please refer to Appendix C.

So, our first task is to introduce a restriction on ∆Q to make it unique.

Let ∆Z := Q-1∆Q.
We will now choose ∆Q = Q * ∆Z by imposing the condition that diag(∆Z) = o.

Now we can define:
∆C := Q-1 ∆R = Q-1 B Q - V

It is necessary to be able to calculate ∆C as accurately as possible in order to
protect it from accuracies caused when eigenvalues and eigenvectors' elements
span a very wide range of magnitudes.

It is possible to do iterative refinenement by the following equation:
∆Cnew := ∆C - Q-1 (Q * ∆C - ∆R)

Here, Q * ∆C - ∆R is the residual from the defining equation ∆C := Q ∆C - ∆R = 0

After the iterative refinement process, we now have a good estimate of ∆C.

Let us go back to our original equation that we are trying to solve:
B * (Q + ∆Q) = (Q + ∆Q) * (V + ∆V) which we are trying to solve for ∆Q and
diagonal ∆V.

Consider the substitutions:
B = Q (V+C) Q-1. and ∆Q = Q ∆Z

We can now transform the equation into a new one:
(V + ∆C) * (I + ∆Z) = (I + ∆Z) * (V + ∆V)

Page 9 of 34

We now expand to get:
V + ∆C + V*∆Z + ∆C * ∆Z = V + ∆V + ∆Z * V + ∆Z * ∆V

We now proceed to take the diagonal entries of both sides. The left-hand-sides’s
diagonal is 0 because V and ∆V are diagonal, and diag(∆Z) = 0.

∆V = Diag(∆C) + O(∆)2

We can also recognize here that

∆Z * (V + ∆V) - V * ∆Z = ∆C * (I + ∆Z) - ∆V

By performing only half the cancellations from last time.

We are now ready to describe the process for finding ∆Z and ∆V.

Step 1. We first proceed to solve ∆V using:
 ∆V = Diag(∆C) + O(∆)2

Step 2. Solve for ∆Z. Solving for ∆Z is trickier and involves what is known as the
Sylvester equation. Please see Appendix E for more information on how this
equation is applied for the following solution.

Finding ∆Z

Let u be the column vector whose elements are all 1. Then condense the
diagonal matrices V and ∆V into column vectors v = diag(V) and ∆v = diag(∆V).
Now proceed to compute
E := (u * vT - v * uT) + (u * ∆vT - ∆V) + I

Now proceed to calculate ELEMENTWISE
∆Z = ((∆C + ∆C*∆Z) - ∆V) / E = (∆C - ∆V) / E + O(∆)2.

Notice that the diagonal elements of ∆Z will be 0 automatically because of the
method in which ∆V is computed.

The above-described process might best be described as a process of
relaxation. Relaxation is the name given to a process in which two values are
sought and are calculated one after the other, and the process repeated till
desired levels of accuracy are obtained.

In keeping with relaxation, the above steps 1 and 2 can be repeated iteratively to
refine guesses of ∆Z and ∆V.

Page 10 of 34

As a starting point, ∆Z := 0 can be chosen. After 1 pass through these steps, we
will obtain a new ∆Z in error my terms of order O(d)^2. After a second pass, the
error in ∆Z will be O(∆)3. After ∆Z is refined to a level of suitable accuracy:
∆Q = Q*∆Z can by computed.

Once we have a suitable ∆Q, Q+∆Q and V+∆V can be computed.

Unfortunately, the above process actually fails to converge in situations close to
those that cause eig(B) to fail in the first place. The most likely failure situation
arises, as mentioned above, from pairs of nearly coincident eigenvalues. So,
RefinEig computes a starting ∆Z to use in place of ∆Z =0. It calculates this from
a formula that would be perfect if ∆C were a permuted diagonal sum of 1x1 and
2x2 matrices, and is otherwise still correct in the first order terms.

Recall that we want to solve:
(V + ∆C) * (I + ∆Z) = (I + ∆Z) * (V + ∆V) for ∆Z and diagonal ∆V with the
constraint that all the diagonal entries of ∆Z are zero.

The following recipe can be followed to come up with an initial guess for ∆Z.

We will again make use of the Column vector u of all 1's.
We will define ∆v := diag(∆V) and v = diag(V).

First, we will construct ∆C2 = ∆C - Diag(∆v) with zeros on its diagonal.

Next the matrix complex skew matrix S := ((u*vT - v*uT) + (u*∆vT - ∆v*uT)) / 2.

Then T := sqrt(S * S + ∆C2T * ∆C) ELEMENTWISE

Now, we will proceed to compute skew K := Re { S * conj(T) } ELEMENTWISE

(conj refers to the complex conjugate)

During this process, we must reverse the sign of every element of T for which the
corresponding element of K is either negative or subdiagonal and zero.

Lastly, we will compute H := S + Y and then ∆Z := ∆C2 / (H + I) ELEMENTWISE

The above recipe can be used even if ∆C is an arbitrary matrix and not a
permuted diagonal sum of 1x1 and 2x2 matrices. In that case, then, the recipe
produces approximations ∆V = Diag(∆v) and ∆Z that satisfy the original we were
solving to within errors of order O(∆)2. Therefore, RefinEig is able to reduce the
errors after just pass of the relaxation process. to just O(∆)3.

Page 11 of 34

The first-guess procedure is what distinguishes RefinEig from previous attempts
at iterative refinement. RefinEig still works well when clustered pairs of
eigenvalues are close to each other but far away from other such pairs of
clustered eigenvalues. This situation is what causes other iterative refinement
schemes to fail.

There is an important point to note. If the original matrix Q is very close to a
singular matrix, or if V+∆V has too many values that are close to each other, then
RefinEig will fail. It is for this reason, that it is useul to check the value of the
residual ∆R := B*Q - Q*V after every run through to make sure that RefinEig did
not cause matters to get worse. If the residual is smaller but still too large,
RefinEig can be invoked again.

Page 12 of 34

6. How RefinEig works for Hermitian A

A Notational Convention that uses symmetric letters A, H, I, M, O, T, U, V, W, X
and Y to represent Hermitian matrices to distinguish them for the non-Hertmitian
matrices will be used. It is for this reason that the input for the non-Hermitian
was called B and now will be renamed to A. O, S, and Z will represent skew-
Hermitian matrices.

There is a huge difference between the Hermitian and the Non-Hermitian case of
the Eigenproblem. We expect eig to produce an orthogonal (unitary) eigenvector
matrix Q. So it must be true that Q'Q + I. However, roundoff corrupts this
equation. Using the RefinEig algorithm for the Non-Hermitian Q + ∆Q will also
not satisfy the equation. The equation will fail even when the final normalization
of Q -> Q * sqrt(Diag(Q'Q))-1. Even if the formulas push every column of Q
closer to an eigenvector, they pull Q farther from unitary if some eigenvalues of A
are nearly the same. It is for this reason that RefinEig must treat Hermitian
matrices differently. In addition, Hermitian matrices cannot be defective, so
RefinEig cannot fail.

Let us suppose that an eigenvector matrix Q and a real diagonal eigenvalue
matrix V have been found approximately for a Hermitian matrix A (= A'). In
MATLAB, it we could find it using [Q, V] = eig(A)

MATLAB will ensure that Q is unitary. However, since RefinEig does not assume
that eig is being used, it must replace Q by the nearest unitary matrix
P := Q * sqrt((Q'Q)-1)
A singular value decomposition can be used for this purpose.

There is, however, a quicker way to calculate P, if the residual ∆Y := Q'Q - I,
computed making use of high-precision residuals in MATLAB (from ∆Y := [Q', I] *
[Q;-I]), is small enough. If that is the case, then P := Q - Q*∆Y / 2 to working
accuracy, and ∆Y is small enough when 1 - |∆Y|^2 rounds to 1. So RefinEig is
able to obtain an accurate P := Q- dQ.

The next task is to refine P towards the eigenvectors of A. However, this
refinement is different from the non-Hermitian case in that it must preserve the
orthogonality of the columns of P. So it is has to be put into the form:

P -> P - 2 * P * (I+∆Z)-1 * ∆Z. Here, ∆Z = -∆Z' is a skew-Hermitian matrix.
The Cayley Transform of ∆Z is

I - 2*(I+∆Z)-1*∆Z = (I + ∆Z)-1(I - ∆Z) is obviously unitary. This cannot have an
eigenvalue of -1, however.

Page 13 of 34

In this equation, because postmultiplication by any Unitary Diagonal matrix is
allowed, just like the non-Hermitian case (where any diagonal matrix would have
done), we will insist again that diag(∆Z) = o.

Please refer to Appendix A of Prof Kahan's paper [1] for a proof of whether
this constraint is always satisfiable.

Now, define a residual:
∆H := P' * (A*P - P*V) = P' * A * P - V

This is computed from P' * ([A, P], * [P; -V]) in MATLAB, would be Hermitian if
there were no roundoff errors. However, we can replace this residual with
another:
∆H <- (∆H + ∆H') / 2. Now the residual is also Hermitian.

Then (I + ∆Z)-1(I - ∆Z) turns out to have to be a matrix of eigenvectors for
V + ∆H. From here, by the diagonalization problem, it follows that :

(V + ∆H) * ((I + ∆Z)-1 * (I - ∆Z)) = ((I + ∆Z)-1 * (I - ∆Z)) * (V + ∆V) where ∆V
is also diagonal like V is.

The above equation simplifies to:

∆V - ∆Z ∆V ∆Z - ∆Z (2V - ∆V) + (2V + ∆V) ∆Z = ∆H + ∆Z∆H - ∆H∆Z - ∆Z∆H∆Z.

This equation now has to be solved, just like the non-Hermitian case, for a real
diagonal ∆V and a skew-Hermitian ∆Z.

Let us consider the ∆V just like we did for the non-Hermitian case.
Remembering that diag(∆Z) = o and defining |∆Z|^2 := -∆Z' * ∆Z

(ELEMENTWISE)

We can now form an estimate of
∆v := (I + |∆Z|2)-1 * diag(∆H + ∆Z∆H - ∆H∆Z - ∆Z∆H∆Z) = diag(∆H) + O(∆)2.
 Here ∆v must be exactly real.

Now we have found ∆V := Diag(∆v)

We will now use our column vector u of all 1's. The vectors v = diag(V) and ∆v =
diag(∆V) will also be needed again.

We will construct a skew matrix S := (2v + ∆v) uT - u (2v + ∆v) T = -ST

Just like the non-Hermitian case, we will produce an estimate to dZ

Page 14 of 34

∆Z := (∆H - ∆V + ∆Z∆H - ∆H∆Z - ∆Z(∆H - ∆V) ∆Z) / (S + iI) = (∆H - ∆V) / (S + iI)
 + O(∆)2

ELEMENTWISE

Now we will automatically have diag(∆z) = o. Note here that i = sqrt(-1)

We add iI to prevent division by zero on the diagonal. If, for some reason, they
occur elsewhere, we can replace any resulting <infinity> or NaN in ∆Z by 0.
This will limit the damage done to those eigenvectors of A belonging to
eigenvalues that are almost the same.

Now, these formulas can be used to refine ∆V and ∆Z in a relaxation process
quite like the non-Hermitian case. Starting with ∆Z = 0 on the right-hand-side,
they will quickly yield errors of O(∆)2 after one pass and errors of O(∆)3 after
another.

Once ∆Z is refined to a desirable level of accuracy,
∆P := -2 * P * (I + ∆Z)-1 * ∆Z can be computed and then P + ∆P and v + ∆V can
be computed.

However, we encounter the same problem that we do in the non-Hermitian case:
The iteration can converge too slow, or might not converge at all if eigenvalues
are too nearly coincident. We will guess a first ∆Z better than O much the same
way we did for the non-Hermitian case, ie, by extending a closed-form solution.

The formula is derived the same way as a formula attributed by Bodewig, in
1959, to Jacobi (in 1838), Jahn (in 1948) and to Magnier (in 1948). Their
formula, however, is only valid for real ∆H.

Their formula has served successfully as a quadratically
convergent iteration to compute eigenvalues of real
symmetric matrices (for order <= 4) in a programmable shirt
pocket calculator, the HP 15C in 1982.

Page 15 of 34

Using the same ideas as the non-Hermitian case, the derivation begins by
considering 2x2 Hermitian matrices ∆H and extends the arguments to permuted
diagonal sums ∆H of 1x1 and 2x2 matrices. It provides for these matrices
exactly the skew solution ∆Z in a formula that approximates the same in general
within an error of O(∆)2.
The results of the derivation are given below:

Define signum(mu) as follows:
signum(µ) := µ / |µ| for all u except 0, and define signum(0) := 0

For all finite µ, define:
β(µ) := signum(µ) * tan(arctan(|µ| / 2)) = µ / (1 + sqrt (1 + |µ|^2)) and
f(µ) := signum(µ) * tan(arctan(|µ| / 4)) = β (β (µ))

Some computers can compute f(mu) faster using tan and
arctan than from two square roots and divisions.

So : |β (µ)| < 1 and |f(µ)| < 1 / (1 + sqrt(2))

From vectors u := the column vector of 1's and y := (diag(V) + diag(∆H)) / 2,
compute skew-Hermetian

 ∆S := ∆H / (yu' - uy' + iI) ELEMENTWISE and
 ∆Z := f(∆S) ELEMENTWISE

The exception is that wherever an element of ∆zij of ∆Z is found to be infinity or
NaN because of division by zero or because of overflow, replace it by
∆zij := signum((j-i) * ∆hij) / (1 + sqrt(2)) using the corresponding element ∆hij of
∆H.

Hence, all elements ∆zij of ∆Z satisfy ∆zij = - ∆zij, signum(∆zij) = +/- signum(∆hij),
and |∆zij| <= 1 / (1 + sqrt(2))

The formula above is perfect for ∆Z if ∆H is a permutation of a diagonal sum of
1x1 and 2x2 matrices, and correct to first order in ∆H otherwise. The first-guess
provided, therefore, is better than Z := O.

This formula, however, also exposes a weakness of RefinEig.

If A has a cluster of too many eigenvalues that are too close to each other, ∆Z
may have too many elements that are not very tiny, and then (I + |∆Z|2) may be
close to a singular matrix or might be one itself. Then, while the iterative
refinement of (I + |∆Z|2)-1 reduces the malfunction of RefinEig, it does not entirely
eliminate it.

Page 16 of 34

Also, if ∆Z has huge elements, the same problem arises with (I + ∆Z)-1 * ∆Z. A
reasonable alternative is to clip the magnitudes of the excessively large elements
of ∆Z.

Page 17 of 34

7. Testing RefinEig: Werner Frank Matrices

There is a family of matrices discovered by Werner Frank in 1958. These
matrices have been widely used to test eigensystem-computing software
because some of the eigenvalues become extremely ill-conditioned as n
increases.

Please look at Appendix B for an example of a Matlab program used to produce
a Frank matrix of a given order.

The eigenvalues of a Frank matrix are all positive real numbers, and they occur
in reciprocal pairs. That is, if f is an eigenvalue of a Frank Matrix, then so is 1/f.
In the case of n being odd, then, the Frank Matrix will have an eigenvalue of 1.

Cf. Abramowitz and Stegun showed in 1964 that by reducing the eigenproblem to
one of a tridiagonal matrix, that:
Every
(sqrt(f) – 1/sqrt(f)) is a zero of the Hermite Polynomial

Hen(x) := x * Hen-1(x) – (n-1)Hen-1(x).

The smallest eigenvalues f of the Frank Matrices become very ill-conditioned as
the order of the matrix increases.

As many as 16 sig bits might be lost for 8 <= n <= 19.

As a matter of fact, what we find is that eig refuses to return all real values, but
returns values in conjugate pairs of complex numbers for n >= 15.

The tests that were carried out in Maple were done with Digits := 100

Page 18 of 34

Correct Significant Bits obtained from RefinEig on 10-byte wide floating register
machines for Frank Matrix F.

Page 19 of 34

Correct Significant Bits obtained from RefinEig with 8-byte floating register
calculations for Frank matrix F

Page 20 of 34

Correct Significant Bits obtained from Eig. For Frank Matrix F

Page 21 of 34

Correct Significant Bits obtained from Eig (nobalance) for Frank Matrix F

Page 22 of 34

Correct Significant Bits obtained from Maple for Frank Matrix F

Page 23 of 34

Graph of Dimension vs. Time taken to compute in Maple

Page 24 of 34

Graph of Dimension vs. Time taken to compute RefinEig + Eig in MATLAB

Page 25 of 34

8. Conclusions

As we can see from the last few graphs, Maple does an excellent job of
computing the significant bits of the Frank matrices because it uses simulated
high-precision arithmetic throughout the calculation. However, Maple takes a
really long time to converge even for dimensions around n = 20. MATLAB did
not converge, however for values for n greater than 15.

This brings us to a fundamental question for the use of high-precision
mathematics. Sometimes it is more useful to let the brute-force approach take
over, even if it does take a long time to compute. RefinEig works very well, as
illustrated, but in a somewhat limited fashion, because it depends upon the fact
that the first residual it calculates is valid.

Like everything else in Numerical Mathematics, the approach should be chosen
appropriately to the situation and constraints at hand.

Page 26 of 34

9. Acknowledgements

I would firstly like to thank Prof. William Kahan for the opportunity to work on this
project with him. It has truly been a great learning experience for me, and I thank
him for making me think! His guidance on this project has been truly
inspirational.

I would also like to thank David Bindel, currently a CS Grad Student at UC
Berkeley for his countless hours of helping me with trying to find a mex-file
solution in Matlab 6, and also for putting up with many nagging questions from
me over both email as well as in person.

Lastly, but not the least, I would like to thank Vishwanath Sankaran, currently a
Mathematics Grad Student at UC Berkeley for helping me formulate the correct
order in which to make my arguments in this paper.

Page 27 of 34

10. References

[1] Kahan, William. RefinEig: a Program to Refine Eigensystems May 7, 1998

[2] Demmel, James. Applied Numerical Linear Algebra. Philadelphia © 1997

Page 28 of 34

Appendix A

Update on Processors with 10-byte long floating point registers

The following processors have 10-byte long floating point registers

Intel x86/87 and (Cyrix and AMD) clones
Intel Pentium and (Cyrix and AMD) clones
Intel Pentium 2 and (Cyrix and AMD) clones
Intel Pentium 3 and (Cyrix and AMD) clones
Intel Pentium 4 and (Cyrix and AMD) clones

Motorola 68040
Motorola 680x0 + 68881/2 processors

Matlab 5 and 6 are not currently supported. They will be
supported as of August 2002.

Page 29 of 34

Appendix B

Code Listings

RefinEig.m

-- BEGIN REFINEIG.M ------------------------------------

function [Q1, V1] = RefinEig(Q, V, B)
% [Q, V] = RefinEig(Q, V, B) applies iterative refinement to try
% to improve the accuracy of the eigenvectors Q and eigevalues V ,
% of a square matrix B , previously delivered by [Q V] = eig(B) .
% Prudence requires a check that the residual [B, Q]*[Q; -V] be not
% much bigger after RefinEig than before, since RefinEig could
% worsen rather than improve accuracy if the eigenvalues are not well
% separated or if the eigenvectors are too nearly linearly dependent.
% Sometimes repetition of [Q, V] = RefinEig(Q, V, B) pays off.
% This version of RefinEig works with MATLAB versions 3.5 & 4.2 .
% RefinEig works best on ix86-based PCs and 680x0-based Macs,
% whose floating-point arithmetics accumulate matrix products with
% 11 extra bits of precision. (C) W. Kahan, 18 Jan. 1996

I = eye(size(Q)) ; u = diag(I) ; n = length(u) ;
v = diag(V) ; V = diag(v) ; % ... ensures that V is diagonal.
if all(all(B == B')) , % ... deal first with Hermitian B .
 dQ = [Q', I]*[Q; -I]*0.5 ; d = min([norm(dQ,1), norm(dQ,inf)])^2 ;
 if (0.25 - d) ~= 0.25 , % ... which is not uncommon, ...
 % ... the likliest case ...
 if (0.125 - d*d) == 0.125,
 dQ = dQ - dQ*(1.5*dQ - 2.5*dQ*dQ) ;

 % ... Q requires full re-orthogonalization:
 else [dQ, dZ, Q] = svd(Q) ; Q = dQ*Q' ;

 dQ = [Q', I]*[Q; -I]*0.5 ; end, end % ... small dQ = (Q'*Q-I)/2 .
 dQ = Q*dQ ; % ... P = Q - dQ is accurately unitary.
 dH = [B, Q, dQ, B]*[Q; -V; V; -dQ] ; % ... = B*(Q-dQ) - (Q-dQ)*V ..
 dH = [-dQ', Q']*[dH;dH] ; dH = (dH+dH')*0.5 ; % ... = P'*(B*P-P*V)
 dh = diag(dH) ; y = v*0.5 ; yt = y' ; dx = dh*0.5 ; dxt = dx' ;
 dZ = (dH-diag(dh)) ./ ((y(:,u') - yt(u,:)) + (dx(:,u') - dxt(u,:)) +
I) ;
 dZ = dZ ./(sqrt(real(dZ.*conj(dZ)) + 1) + 1) ;
 dZ = dZ ./(sqrt(real(dZ.*conj(dZ)) + 1) + 1) ; K = ~finite(dZ) ;
 if any(any(K))
 a = 1/(1 + sqrt(2)) ; A = triu(K)*a ; A = A - A' ;
 dZ(K) = sign(dH(K)).*A(K) ; end
 dX = dZ*dH ; dX = ((dX' + dX) - dX*dZ) + dH ; dx = real(diag(dX));
 A = real(conj(dZ).*dZ) ; a = norm(A, 1) ; % ... A = abs(dZ).^2 .
 if (8192 + a*a) == 8192 , % ... the normal case
 dv = dx - A*dx ; % ... dv = (I+A)\dx .
 else
 [L, U] = lu(I+A) ;
 dv = U\(L\dx) ; dv = dv - U\(L\([I, -I, A]*[dv; dx; dv]));
 k = ~finite(dv) ;
 if any(k), dv(k) = dx(k) ; end, end
 dX = dX + dZ*diag(dv)*dZ ; dX = (dX+dX')*0.5 ;

Page 30 of 34

 y = 2*v ; yt = y' ; dvt = dv' ;
 dZ = (y(:,u') - yt(u,:)) + (dv(:,u') - dvt(u,:)) + I ;
 dZ = (dX - diag(diag(dX))) ./ dZ ; a = norm(dZ, 1) ;
 if (8192 + a*a) == 8192 , % ... the normal case
 dX = (dZ - dZ*dZ)*2 ; % ... = 2*((I+dZ)\dZ) .
 else
 K = ~(abs(dZ) < 1024) ; % Will this work on PC-Matlab 3.5 ?
 if any(any(K))
 A = triu(K)*1024 ; A = A - A' ;
 dZ(K) = sign(dX(K)).*A(K) ; end
 dX = ((I + dZ)\dZ)*2 ; end
 dQ = [Q, -dQ, dQ]*[dX; dX; I] ; Q1 = Q - dQ ; V1 = diag(v + dv) ;
 return, end % Subsequent lines deal with non-Hermitian B .

dZ = [B, Q]*[Q; -V] ; [L, U] = lu(Q) ; dC = U\(L\dZ) ; % residual.
dC = dC - U\(L\([Q, -I]*[dC; dZ])) ; % ... iteratively refines dC
dv = diag(dC) ; % ... 1st order approx'n to eigenvalue corrections.
vt = v.' ; dvt = dv.' ;
S = 0.5*((vt(u,:) - v(:,u')) + (dvt(u,:) - dv(:,u'))) ; % ... skew.
dZ = dC - diag(dv) ; Y = sqrt(dZ.*dZ.' + S.*S) ; % ... symmetric.

K = real(Y.*conj(S));
K = (K < 0) + triu(K==0, 1) ; % ... 0's & 1's .
 K = find(K); % COMMENT THIS LINE BEFORE MATLAB 5.2
Y(K) = -Y(K) ; % ... Turns Y skew.

S = S + Y ;
% Because MATLAB bungles division of complex numbers by Inf ,
% division
% by zero cannot be prevented simply by setting S = S + Inf*(~S) .
dZ = dZ ./ (S+I) ; % exact for diag-sum of 2x2 's, else 1st order.
K = ~finite(dZ) ; if any(any(K)), dZ(K) = I(K) ; end % NaN&Inf --> 0
dC = dC + dC*dZ ; dvt = diag(dC).' ; ... 2nd order approximation.
dV = diag(dvt) ; S = (vt(u,:) - v(:,u')) + (dvt(u,:) - dV) + I ;
dZ = (dC - dV) ./ S ; % ... 2nd order approximation.
K = ~finite(dZ) ; if any(any(K)) , dZ(K) = I(K) ; end
dZ = Q*dZ ;
for j = 1:n , % ... Normalize column j of Q1 just as eig should.
 q = Q(:,j) ; z = dZ(:,j) ; ... q+z is improved eigenvector.
 q1 = [q', -1]*[q; 1] ; % ... = q'*q - 1 .
 d = (z'*z + 2*real(q'*z)) + q1 ; % ... = (q+z)'*(q+z)^2 - 1.
 d = d/(1 + sqrt(1+d)) ; dq = (z - q*d)/(1 + d) ;
 if dq'*dq*64 < 1 + q1 , % ... additive normalization is best:
 Q1(:,j) = q + dq ;
 else , % ... normalization by division may be more accurate:
 q = q+z ; Q1(:,j) = q/sqrt(q'*q) ; end, end % ... dq, j
V1 = diag(v + dvt.') ; % End RefinEig.m

-- END REFINEIG.M ---------------------------------------

Page 31 of 34

-- BEGIN MXMULEPS.M ----------------------------------

function y = mxmuleps

% mxmuleps = the roundoff threshold for MATLAB's matrix
multiplication
% = eps if no Extra-Precise Accumulation occurs ... (1)
% = eps/2048 if Extra-Precise Accumulation occurs ... (2)
% is NaN if a Fused Multiply-Accumulate is enabled ... (3)
% on three important classes of computers conforming to IEEE Standard
% 754
% for Binary Floating-Point Arithmetic. These three classes include
% 1)Sun SPARC; H-P PA RISC-1; SGI MIPS; DEC Alpha; and some others;
% and Matlab 5.x running on Intel x86-based PCs and clones.
% 2) Old Apple Macintoshes based upon the Motorola 680x0; and
% Matlab 3.5 and 4.x running on Intel x86-based PCs and clones.
% 3) IBM RS/6000 & Apple Power Mac; HAL SPARC; SGI R8000; H-P PA
% RISC-2.
% Matlab 3.5 does not run on computers in class 3) whereon later
% versions
% of Matlab use Fused Multiply-Accumulation only during non-sparse
% matrix multiplication so far as I have been able to determine.
% On computers in class 2) MATLAB accumulates Extra-Precisely only
% non-sparse matrix multiplication and perhaps exponentiation (y^n)
% so far as I have been able to determine. C) W. Kahan, 2 Aug. 1998.

e = eps ; % eps = 1/2^52 on all machines listed above.
z = 4/3 ; u = (1-z)*3 + 1 ; % |u| = 1 ULP of 1.xxxx , z = 4/3 - u/3
if abs(u) ~= e, % ... Question whether arithmetic is anomalous:
 disp(' Has precision been altered? Why do the following differ? ...')
 AnULPofOne = abs(u) , Eps = e
 disp(' Now mxmuleps cannot be trusted.'), end % if |u| ~= e .
z = (z-1)*4 ; zzz = [z; z; z] ; % ... z = (1 - u)*4/3
y = max(abs([-u, 1+u, -1 ; -1, 1+u, -u]*zzz))*3 ;

% = 0 for Fused Mult-Acc.
if y == 0 , y = NaN ; else y = u/round(u/y) ; end %End mxmuleps

-- END MXMULEPS.M ----------------------------------

Page 32 of 34

-- BEGIN FRANK.M ----------------------------------

function F = Frank(n, k)
% F = Frank(n, k) is the Frank matrix of order n . The default
% is k = 0 ; otherwise the elements of F get reflected about the
% anti-diagonal (1,n)--(n,1) . Anyway, Frank is upper-Hessenberg.
if nargin == 1, k = 0; end
if n < 2, % ... necessitated by MATLAB’s faulty diag([], -1) .
F = eye(n) ; % ... with error message if n < 0 .
else
p = [n:-1:1] ;
F = triu(p(ones(n,1), :) - diag(ones(n-1,1), -1), -1) ;
if k ~= 0 , F = F(p,p); end, end

-- END FRANK.M ----------------------------------

Page 33 of 34

Appendix C

Non-Uniqueness of ∆Q

Consider the equation:

B (Q + ∆Q) = (Q + ∆Q) (V + ∆V)

We are trying to solve this equation for ∆Q and for ∆V.

Where V + dV is a diagonal matrix. Now consider multiplying both sides of the
equation by a Diagonal matrix, D.

We now obtain:

B (Q + ∆Q) D = (Q + ∆Q) (V + ∆V) D

Because V + ∆V and D are both diagonal matrices, they commute, that is:

(V + ∆V) D = D (V + ∆V)

Substituting this back into the original equation, we get:

B (Q + ∆Q) D = (Q + ∆Q) D (V + ∆V)

Now, by defining E = (Q + ∆Q) D, we get:

B E = EV,

for a matrix E that is not equal to Q. Moreover, a choice of any diagonal matrix D
yields a new E.

So it must be the case that ∆Q is not unique.

Page 34 of 34

Appendix D

Sylvester Equation and solution

Sylvester Equation (or Lyapunov Equation) is one of the form:

AX – XB = C, where X and C are mxn, A is mxm and B is nxn.

There is a systematic method for solving these equations.

A Sylvester Equation AX – XB = F is equivalent to :

(In ⊗ A – BT ⊗ Im) vec(X) = vec(F).

In our case, we are dealing with the equation:

∆Z (V + ∆V) – V ∆Z = ∆C (I + ∆Z) - ∆V

…that we are trying to solve for ∆Z. Here, V, ∆V and ∆C are all known values, so
we can put it into a Sylvester equation form.

In our case, A = -V - ∆C, B = (V + ∆V) and F = ∆C - ∆V, and X = ∆Z

In this case, B is a symmetric matrix, so B = B T. Now, we have for our equations,

(A – B) vec(X) = vec(F), which in our notation means, which we are solving for

The solution to this equation is the E in the exposition about non-Hermitian
matrices (only done in a smart way) !!

