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1.  Introduction 
 
One of the most interesting problems in Numerical Mathematics is that of finding 
the eigenvalues and eigenvectors of a matrix.  Even more challenging is the 
generalized Eigenproblem which deals with finding the Eigensystem of a 
nonsymmetric matrix.  Often, the results of the computation are far less accurate 
than can actually be achieved if simulated high-precision arithmetic had been 
used.  RefinEig is a program that will attempt to clean up the results of an 
Eigensystem calculation using Iterative Refinement as if the whole computation 
had been done using more significant bits of precision.  RefinEig is designed to 
best refine the most common cause of problems: an isolated pair of nearly 
coincident eigenvalues. 
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2.  The need for more than eig 
 
The function eig in Matlab is considered good software for computing 
eigensystems.  Ideally, given a matrix B, eig is supposed to calculate a 
nonsingular matrix Q whose columns are the eigenvectors of the given square 
matrix B and a diagonal matrix V of its eigenvalues.  These constitute the 
solution to the diagonalization problem.  So, eig should find Q and V such that 
 
B = Q * V * Q-1. 
 
However, because of rounding errors, the eigensystem produced is that of a 
matrix close to B, namely B - dB, so: 
 
B - ∆B = Q * V * Q-1.  The matrix ∆B is comparable to the roundoff in B. 
 
Even when ∆B is very small, Q and V might be calculated very inaccurately 
because of the algorithms used by eig. 
 
Consider the case of Defective Matrices.  (Defective Matrices are those that have 
too few eigenvectors to permit diagonalization by any similarity transformation)  
James Demmel showed in 1988 that Defective matrices are almost never 
encountered at random, but it is possible to get matrices that are near-defective 
more often. 
RefinEig is designed to improve computed values of an eigensystem when the 
matrix is nearly defective. 
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3.  RefinEig :  A first look 
 
RefinEig starts with a nonsingular matrix Q of approximate eigenvectors and a 
diagonal matrix V of approximate eigenvalues.  In MATLAB, we would be able to 
get Q and V from the following assignment: 
[Q, V] = eig(B) 
Here, B is the matrix for which we are trying to compute the eigensystem.  Now 
we are ready to invoke RefinEig 
[Q, V] = RefinEig(Q, V, B) 
RefinEig performs one step of iterative refinement to replace the old Q and V with 
new values.  The step can be repeated manually if desired: RefinEig converges 
very quickly. 
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4. Computation of Residuals 
 
The effectiveness of Iterative Refinement is generally limited by the accuracy to 
which residuals like ∆R := B*Q - Q*V can be computed.  If Q and V were exactly 
computed, then ∆R should become 0, so in order for that to happen, a massive 
cancellation must be incurred.  Accuracy, however is no t limited by cancellation, 
but rather by the precision to which scalar products are accumulated during 
matrix multiplications. 
 
Today's computers tend to have doubles that are 64-bits wide.  They have 53 bits 
of precision in which B, Q and V are stored in memory.  In this case, the 
computed residual dR does not generally rise much higher than the roundoff 
accumulated during its computation.  In these cases, RefinEig can improve Q 
and V greatly.  These cases occur often enough to justify the existence as will be 
shown in the discussion about Werner Frank's matrices.  RefinEig is most useful, 
however, when the bits of dR are accumulated with extra precision, so it can be 
well above the roundoff error accumulated. 
 
Most popular processors today (Please see Appendix A for an update), the 
floating point arithmetic is performed in registers that are 10 bytes wide.  Thus, 
access is available to 64 significant bits instead of the normal 53.  These wide 
registers are used regardless of the widths of narrower operands loaded from 
memory.  All subexpressions in MATLAB are stored in 8-byte memory cells 
except that MATLAB accumulates scalar products in 10-byte registers during 
matrix multiplications because doing so is faster than storing the expression in 
memory. 
 

 
Q. Does my computer have extra-precision accumulation ? 
 
A. Try [ (2 - 2^33), 2^33, -1] * [ (1 + 2^32) ; 2^32 ; 1] ; 
     on MATLAB.  If the answer is +1, then you have extra- 
     precision accumulation.  If it is -1, then you don't. As an 
     alternative, try running mxmuleps.m from 
     Appendix B on your MATLAB. 
 

 
In order to make use of the extra-precision, RefinEig computes its residuals by 
performing a MATLAB matrix multiplication. ∆R, for example is computed in the 
following way: 
∆R := B*Q - Q*V  is obtained from ∆R := [B, Q] * [Q; -V] ; 
 
The residual: 
∆2R := Q*G - ∆R is obtained from ∆2R = [Q, dR]*[G;-I] ; 

for an identity matrix of appropriate size. 
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On machines that do not have extra-precise registers, the matrix multiplication 
would produce the same result as if the computation was done without using the 
matrix multiplication. 
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5.  How RefinEig works for Non-Hermitian B 
 
Assume that we are staring off with a diagonalizable non-Hermitian matrix B and 
an approximation [Q, V] to its eigensystem as given to us by invoking eig.  Also 
assume that the residual dR := B*Q - Q*V is small and that Q is not too ill-
conditioned. 
Here V will represent a diagonal matrix of eigenvalues. 
Our aim is to compute a small correction ∆Q and a small diagonal correction dV 
such that 
B * (Q + ∆Q) = (Q + ∆Q) * (V + ∆V) exactly. 
 
However, by this equation, ∆Q is not determined uniquely because we can 
postmultiply both sides of the equation by any diagonal matrix and still have 
equality.  For more information on this, please refer to Appendix C. 
 
So, our first task is to introduce a restriction on ∆Q to make it unique. 
 
Let ∆Z := Q-1∆Q. 
We will now choose ∆Q = Q * ∆Z by imposing the condition that diag(∆Z) = o. 
 
Now we can define: 
∆C := Q-1 ∆R = Q-1 B Q  -  V 
 
It is necessary to be able to calculate ∆C as accurately as possible in order to 
protect it from accuracies caused when eigenvalues and eigenvectors' elements 
span a very wide range of magnitudes. 
 
It is possible to do iterative refinenement by the following equation: 
∆Cnew := ∆C  -  Q-1 (Q * ∆C - ∆R) 
 
Here, Q * ∆C - ∆R is the residual from the defining equation ∆C := Q ∆C - ∆R = 0 
 
After the iterative refinement process, we now have a good estimate of ∆C. 
 
 
Let us go back to our original equation that we are trying to solve: 
B * (Q + ∆Q) = (Q + ∆Q) * (V + ∆V) which we are trying to solve for ∆Q and 
diagonal ∆V. 
 
Consider the substitutions: 
B = Q (V+C) Q-1.   and  ∆Q = Q ∆Z 
 
We can now transform the equation into a new one: 
(V + ∆C) * (I + ∆Z) = (I + ∆Z) * (V + ∆V) 
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We now expand to get: 
V + ∆C + V*∆Z + ∆C * ∆Z = V + ∆V + ∆Z * V + ∆Z * ∆V 
 
We now proceed to take the diagonal entries of both sides.  The left-hand-sides’s 
diagonal is 0 because V and ∆V are diagonal, and diag(∆Z) = 0. 
 
∆V = Diag(∆C) + O(∆)2 

 
We can also recognize here that  
 
∆Z * (V + ∆V)  -  V * ∆Z = ∆C * (I + ∆Z) - ∆V 
 
By performing only half the cancellations from last time. 
 
We are now ready to describe the process for finding ∆Z and ∆V. 
 
Step 1.  We first proceed to solve ∆V using: 
 ∆V = Diag(∆C) + O(∆)2 

 
Step 2.  Solve for ∆Z.  Solving for ∆Z is trickier and involves what is known as the 
Sylvester equation.  Please see Appendix E for more information on how this 
equation is applied for the following solution. 
 
Finding ∆Z 
 
Let u be the column vector whose elements are all 1.  Then condense the 
diagonal matrices V and ∆V into column vectors v = diag(V) and ∆v  = diag(∆V).  
Now proceed to compute 
E := (u * vT - v * uT) + (u * ∆vT - ∆V) + I 
 
Now proceed to calculate ELEMENTWISE 
∆Z = ( (∆C + ∆C*∆Z) - ∆V) / E = (∆C - ∆V) / E   +  O(∆)2. 
 
Notice that the diagonal elements of ∆Z will be 0 automatically because of the 
method in which ∆V is computed. 
 
The above-described process might best be described as a process of 
relaxation.  Relaxation is the name given to a process in which two values are 
sought and are calculated one after the other, and the process repeated till 
desired levels of accuracy are obtained. 
 
In keeping with relaxation, the above steps 1 and 2 can be repeated iteratively to 
refine guesses of ∆Z and ∆V. 
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As a starting point, ∆Z := 0 can be chosen.  After 1 pass through these steps, we 
will obtain a new ∆Z in error my terms of order O(d)^2.  After a second pass, the 
error in ∆Z will be O(∆)3.  After ∆Z is refined to a level of suitable accuracy: 
∆Q = Q*∆Z     can by computed. 
 
Once we have a suitable ∆Q, Q+∆Q and V+∆V can be computed. 
 
Unfortunately, the above process actually fails to converge in situations close to 
those that cause eig(B) to fail in the first place.  The most likely failure situation 
arises, as mentioned above, from pairs of nearly coincident eigenvalues.  So, 
RefinEig computes a starting ∆Z to use in place of ∆Z =0.  It calculates this from 
a formula that would be perfect if ∆C were a permuted diagonal sum of 1x1 and 
2x2 matrices, and is otherwise still correct in the first order terms. 
 
Recall that we want to solve: 
(V + ∆C) * (I + ∆Z) = (I + ∆Z) * (V + ∆V) for ∆Z and diagonal ∆V with the 
constraint that all the diagonal entries of ∆Z are zero. 
 
The following recipe can be followed to come up with an initial guess for ∆Z. 
 
We will again make use of the Column vector u of all 1's. 
We will define ∆v := diag(∆V) and v = diag(V). 
 
First, we will construct ∆C2 = ∆C - Diag(∆v) with zeros on its diagonal. 
 
Next the matrix complex skew matrix S :=  ( (u*vT - v*uT) + (u*∆vT - ∆v*uT) ) / 2. 
 
Then T := sqrt(S * S + ∆C2T * ∆C)   ELEMENTWISE 
 
Now, we will proceed to compute skew K := Re { S * conj(T) }  ELEMENTWISE     
 
(conj refers to the complex conjugate) 
 
During this process, we must reverse the sign of every element of T for which the 
corresponding element of K is either negative or subdiagonal and zero. 
 
Lastly, we will compute H := S + Y and then ∆Z := ∆C2 / (H + I)  ELEMENTWISE  
 
The above recipe can be used even if ∆C is an arbitrary matrix and not a 
permuted diagonal sum of 1x1 and 2x2 matrices.  In that case, then, the recipe 
produces approximations ∆V = Diag(∆v) and ∆Z that satisfy the original we were 
solving to within errors of order O(∆)2.  Therefore, RefinEig is able to reduce the 
errors after just pass of the relaxation process. to just O(∆)3. 
 



Page 11 of 34 

The first-guess procedure is what distinguishes RefinEig from previous attempts 
at iterative refinement.  RefinEig still works well when clustered pairs of 
eigenvalues are close to each other but far away from other such pairs of 
clustered eigenvalues.  This situation is what causes other iterative refinement 
schemes to fail. 
 
There is an important point to note.  If the original matrix Q is very close to a 
singular matrix, or if V+∆V has too many values that are close to each other, then 
RefinEig will fail.  It is for this reason, that it is useul to check the value of the 
residual ∆R := B*Q - Q*V after every run through to make sure that RefinEig did 
not cause matters to get worse.  If the residual is smaller but still too large, 
RefinEig can be invoked again. 
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6.  How RefinEig works for Hermitian A 
 
A Notational Convention that uses symmetric letters A, H, I, M, O, T, U, V, W, X 
and Y to represent Hermitian matrices to distinguish them for the non-Hertmitian 
matrices will be used.  It is for this reason that the input for the non-Hermitian 
was called B and now will be renamed to A.  O, S, and Z will represent skew-
Hermitian matrices. 
 
There is a huge difference between the Hermitian and the Non-Hermitian case of 
the Eigenproblem.  We expect eig to produce an orthogonal (unitary) eigenvector 
matrix Q.  So it must be true that Q'Q + I.  However, roundoff corrupts this 
equation.  Using the RefinEig algorithm for the Non-Hermitian Q + ∆Q will also 
not satisfy the equation.  The equation will fail even when the final normalization 
of Q -> Q * sqrt(Diag(Q'Q))-1.  Even if the formulas push every column of Q 
closer to an eigenvector, they pull Q farther from unitary if some eigenvalues of A 
are nearly the same.  It is for this reason that RefinEig must treat Hermitian 
matrices differently.  In addition, Hermitian matrices cannot be defective, so 
RefinEig cannot fail. 
 
Let us suppose that an eigenvector matrix Q and a real diagonal eigenvalue 
matrix V have been found approximately for a Hermitian matrix A (= A').  In 
MATLAB, it we could find it using [Q, V] = eig(A) 
 
MATLAB will ensure that Q is unitary.  However, since RefinEig does not assume 
that eig is being used, it must replace Q by the nearest unitary matrix 
P := Q * sqrt((Q'Q)-1) 
A singular value decomposition can be used for this purpose. 
 
There is, however, a quicker way to calculate P, if the residual ∆Y := Q'Q - I, 
computed making use of high-precision residuals in MATLAB (from ∆Y := [Q', I] * 
[Q;-I]  ), is small enough.  If that is the case, then P := Q - Q*∆Y / 2 to working 
accuracy, and ∆Y is small enough when 1 - |∆Y|^2 rounds to 1.  So RefinEig is 
able to obtain an accurate P := Q- dQ. 
 
The next task is to refine P towards the eigenvectors of A.  However, this 
refinement is different from the non-Hermitian case in that it must preserve the 
orthogonality of the columns of P.  So it is has to be put into the form: 
 
P -> P - 2 * P * (I+∆Z)-1 * ∆Z.             Here, ∆Z = -∆Z' is a skew-Hermitian matrix.  
The Cayley Transform of ∆Z is 
 
I - 2*(I+∆Z)-1*∆Z  =  (I + ∆Z)-1(I - ∆Z)     is obviously unitary.  This cannot have an 
eigenvalue of -1, however. 
 



Page 13 of 34 

In this equation, because postmultiplication by any Unitary Diagonal matrix is 
allowed, just like the non-Hermitian case (where any diagonal matrix would have 
done), we will insist again that diag(∆Z) = o. 
 
Please refer to Appendix A of Prof Kahan's paper [1] for a proof of whether 
this constraint is always satisfiable. 
 
Now, define a residual: 
∆H := P' * (A*P - P*V)  =  P' * A * P - V 
 
This is computed from P' * ([A, P], * [P; -V]) in MATLAB, would be Hermitian if 
there were no roundoff errors.  However, we can replace this residual with 
another: 
∆H <- (∆H + ∆H') / 2.  Now the residual is also Hermitian. 
 
Then (I + ∆Z)-1(I - ∆Z) turns out to have to be a matrix of eigenvectors for 
V + ∆H.  From here, by the diagonalization problem, it follows that : 
 
(V + ∆H) * ( (I + ∆Z)-1 * (I - ∆Z) )   =  ( (I + ∆Z)-1 * (I - ∆Z)) * (V + ∆V)   where ∆V 
is also diagonal like V is. 
 
The above equation simplifies to: 
 
∆V - ∆Z ∆V ∆Z - ∆Z (2V - ∆V) + (2V + ∆V) ∆Z = ∆H  +  ∆Z∆H  - ∆H∆Z -  ∆Z∆H∆Z. 
 
This equation now has to be solved, just like the non-Hermitian case, for a real 
diagonal ∆V and a skew-Hermitian ∆Z. 
 
Let us consider the ∆V just like we did for the non-Hermitian case. 
Remembering that diag(∆Z) = o and defining |∆Z|^2 := -∆Z' * ∆Z      

(ELEMENTWISE) 
 
We can now form an estimate of 
∆v := (I + |∆Z|2)-1 * diag(∆H + ∆Z∆H - ∆H∆Z - ∆Z∆H∆Z)  =  diag(∆H) +  O(∆)2.
 Here ∆v must be exactly real. 
 
Now we have found ∆V := Diag(∆v) 
 
We will now use our column vector u of all 1's.  The vectors v = diag(V) and ∆v = 
diag(∆V) will also be needed again. 
 
We will construct a skew matrix S := (2v + ∆v) uT  -  u (2v + ∆v) T  =  -ST 
 
Just like the non-Hermitian case, we will produce an estimate to dZ 
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∆Z := (∆H - ∆V + ∆Z∆H - ∆H∆Z - ∆Z(∆H - ∆V) ∆Z) / (S + iI)  =  (∆H - ∆V) / (S + iI)  
               + O(∆)2   

ELEMENTWISE 
 
Now we will automatically have diag(∆z) = o.  Note here that i = sqrt(-1) 
 
We add iI to prevent division by zero on the diagonal.  If, for some reason, they 
occur elsewhere, we can replace any resulting <infinity> or NaN in ∆Z by 0. 
This will limit the damage done to those eigenvectors of A belonging to 
eigenvalues that are almost the same. 
 
 
Now, these formulas can be used to refine ∆V and ∆Z in a relaxation process 
quite like the non-Hermitian case.  Starting with ∆Z = 0 on the right-hand-side, 
they will quickly yield errors of O(∆)2 after one pass and errors of O(∆)3 after 
another. 
 
Once ∆Z is refined to a desirable level of accuracy, 
∆P := -2 * P * (I + ∆Z)-1 * ∆Z can be computed and then P + ∆P and v + ∆V can 
be computed. 
 
However, we encounter the same problem that we do in the non-Hermitian case: 
The iteration can converge too slow, or might not converge at all if eigenvalues 
are too nearly coincident.  We will guess a first ∆Z better than O much the same 
way we did for the non-Hermitian case, ie, by extending a closed-form solution. 
 
The formula is derived the same way as a formula attributed by Bodewig, in 
1959, to Jacobi (in 1838), Jahn (in 1948) and to Magnier (in 1948).  Their 
formula, however, is only valid for real ∆H. 
 

 
Their formula has served successfully as a quadratically 
convergent iteration to compute eigenvalues of real 
symmetric matrices (for order <= 4) in a programmable shirt 
pocket calculator, the HP 15C in 1982. 
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Using the same ideas as the non-Hermitian case, the derivation begins by 
considering 2x2 Hermitian matrices ∆H and extends the arguments to permuted 
diagonal sums ∆H of 1x1 and 2x2 matrices.  It provides for these matrices 
exactly the skew solution ∆Z in a formula that approximates the same in general 
within an error of O(∆)2. 
The results of the derivation are given below: 
 
Define signum(mu) as follows: 
signum(µ) := µ / |µ|   for all u except 0, and define signum(0) := 0 
 
For all finite µ, define: 
β(µ) := signum(µ) * tan( arctan(|µ| / 2) )  =  µ / (1 + sqrt (1 + |µ|^2))       and 
f(µ) := signum(µ) * tan( arctan(|µ| / 4) )   =  β (β (µ)) 
 

Some computers can compute f(mu) faster using tan and 
arctan than from two square roots and divisions. 

 
So :   |β (µ)| < 1        and         |f(µ)| < 1 / (1 + sqrt(2)) 
 
From vectors u := the column vector of 1's and y := ( diag(V) + diag(∆H) ) / 2, 
compute skew-Hermetian 
 
 ∆S := ∆H / (yu' - uy' + iI)   ELEMENTWISE and 
 ∆Z := f(∆S)    ELEMENTWISE 
 
The exception is that wherever an element of ∆zij of ∆Z is found to be infinity or 
NaN because of division by zero or because of overflow, replace it by 
∆zij := signum( (j-i) * ∆hij) / (1 + sqrt(2))  using the corresponding element ∆hij of 
∆H. 
 
Hence, all elements ∆zij of ∆Z satisfy ∆zij = - ∆zij, signum(∆zij) = +/- signum(∆hij), 
and |∆zij| <= 1 / (1 + sqrt(2)) 
 
The formula above is perfect for ∆Z if ∆H is a permutation of a diagonal sum of 
1x1 and 2x2 matrices, and correct to first order in ∆H otherwise.  The first-guess 
provided, therefore, is better than Z := O. 
 
This formula, however, also exposes a weakness of RefinEig. 
 
If A has a cluster of too many eigenvalues that are too close to each other, ∆Z 
may have too many elements that are not very tiny, and then (I + |∆Z|2) may be 
close to a singular matrix or might be one itself.  Then, while the iterative 
refinement of (I + |∆Z|2)-1 reduces the malfunction of RefinEig, it does not entirely 
eliminate it. 
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Also, if ∆Z has huge elements, the same problem arises with (I + ∆Z)-1 * ∆Z.  A 
reasonable alternative is to clip the magnitudes of the excessively large elements 
of ∆Z. 
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7. Testing RefinEig:  Werner Frank Matrices 
 
There is a family of matrices discovered by Werner Frank in 1958.  These 
matrices have been widely used to test eigensystem-computing software 
because some of the eigenvalues become extremely ill-conditioned as n 
increases. 
 
Please look at Appendix B for an example of a Matlab program used to produce 
a Frank matrix of a given order. 
 
The eigenvalues of a Frank matrix are all positive real numbers, and they occur 
in reciprocal pairs.  That is, if f is an eigenvalue of a Frank Matrix, then so is 1/f.  
In the case of n being odd, then, the Frank Matrix will have an eigenvalue of 1. 
 
Cf. Abramowitz and Stegun showed in 1964 that by reducing the eigenproblem to 
one of a tridiagonal matrix, that: 
Every 
(sqrt(f) – 1/sqrt(f)) is a zero of the Hermite Polynomial 
 
Hen(x) := x * Hen-1(x) – (n-1)Hen-1(x). 
 
The smallest eigenvalues f of the Frank Matrices become very ill-conditioned as 
the order of the matrix increases. 
 
As many as 16 sig bits might be lost for 8 <= n <= 19. 
 
As a matter of fact, what we find is that eig refuses to return all real values, but 
returns values in conjugate pairs of complex numbers for n >= 15. 
 
The tests that were carried out in Maple were done with Digits := 100 
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Correct Significant Bits obtained from RefinEig on 10-byte wide floating register 
machines for Frank Matrix F. 
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Correct Significant Bits obtained from RefinEig with 8-byte floating register 
calculations for Frank matrix F 
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Correct Significant Bits obtained from Eig. For Frank Matrix F 
 

 



Page 21 of 34 

Correct Significant Bits obtained from Eig (nobalance) for Frank Matrix F 
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Correct Significant Bits obtained from Maple for Frank Matrix F 
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Graph of Dimension vs. Time taken to compute in Maple 
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Graph of Dimension vs. Time taken to compute RefinEig + Eig in MATLAB 
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8. Conclusions 
 
As we can see from the last few graphs, Maple does an excellent job of 
computing the significant bits of the Frank matrices because it uses simulated 
high-precision arithmetic throughout the calculation.  However, Maple takes a 
really long time to converge even for dimensions around n = 20.  MATLAB did 
not converge, however for values for n greater than 15. 
 
This brings us to a fundamental question for the use of high-precision 
mathematics.  Sometimes it is more useful to let the brute-force approach take 
over, even if it does take a long time to compute.  RefinEig works very well, as 
illustrated, but in a somewhat limited fashion, because it depends upon the fact 
that the first residual it calculates is valid. 
 
Like everything else in Numerical Mathematics, the approach should be chosen 
appropriately to the situation and constraints at hand. 
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Appendix A 
 

Update on Processors with 10-byte long floating point registers 
 
 
The following processors have 10-byte long floating point registers 
 
Intel x86/87  and (Cyrix and AMD) clones 
Intel Pentium  and (Cyrix and AMD) clones 
Intel Pentium 2  and (Cyrix and AMD) clones 
Intel Pentium 3  and (Cyrix and AMD) clones 
Intel Pentium 4  and (Cyrix and AMD) clones 
 
Motorola 68040 
Motorola 680x0 + 68881/2 processors 
 

 
Matlab 5 and 6 are not currently supported.  They will be 
supported as of August 2002. 
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Appendix B 
 

Code Listings 
 
RefinEig.m 
 
------------------------------------------ BEGIN REFINEIG.M ------------------------------------ 
 
function  [ Q1, V1 ] = RefinEig( Q, V, B ) 
%  [Q, V] = RefinEig( Q, V, B )  applies iterative refinement to try 
%  to improve the accuracy of the eigenvectors  Q  and eigevalues  V , 
%  of a square matrix  B ,  previously delivered by  [Q  V] = eig(B) . 
%  Prudence requires a check that the residual  [B, Q]*[Q; -V]  be not 
%  much bigger after  RefinEig  than before,  since  RefinEig  could 
%  worsen rather than improve accuracy if the eigenvalues are not well 
%  separated or if the eigenvectors are too nearly linearly dependent. 
%  Sometimes repetition of  [Q, V] = RefinEig( Q, V, B )  pays off. 
%  This version of  RefinEig  works with  MATLAB  versions  3.5 & 4.2 . 
%    RefinEig  works best on  ix86-based PCs  and  680x0-based Macs, 
%    whose floating-point arithmetics accumulate matrix products with 
%    11  extra bits of precision.         (C) W. Kahan,  18 Jan. 1996 
 
I = eye(size(Q)) ;  u = diag(I) ;  n = length(u) ; 
v = diag(V) ;  V = diag(v) ; % ...  ensures that  V  is diagonal. 
if  all(all(B == B')) ,  % ...  deal first with  Hermitian  B . 
   dQ = [Q', I]*[Q; -I]*0.5 ;  d = min([ norm(dQ,1), norm(dQ,inf)])^2 ; 
   if  (0.25 - d) ~= 0.25 ,  % ... which is not uncommon, ... 
                      %  ...  the likliest case  ... 
      if  (0.125 - d*d) == 0.125,    
      dQ = dQ - dQ*(1.5*dQ - 2.5*dQ*dQ) ; 

           % ...  Q  requires full re-orthogonalization: 
   else          [dQ, dZ, Q] = svd(Q) ;  Q = dQ*Q' ; 

   dQ = [Q', I]*[Q; -I]*0.5 ; end, end % ... small dQ = (Q'*Q-I)/2 . 
   dQ = Q*dQ ;  % ...  P = Q - dQ  is accurately unitary. 
   dH = [B, Q, dQ, B]*[Q; -V; V; -dQ] ; % ... = B*(Q-dQ) - (Q-dQ)*V .. 
   dH = [-dQ', Q']*[dH;dH] ;  dH = (dH+dH')*0.5 ; % ... = P'*(B*P-P*V) 
   dh = diag(dH) ;  y = v*0.5 ;  yt = y' ;  dx = dh*0.5 ;  dxt = dx' ; 
   dZ = (dH-diag(dh)) ./ ((y(:,u') - yt(u,:)) + (dx(:,u') - dxt(u,:)) + 
I) ; 
   dZ = dZ ./( sqrt(real(dZ.*conj(dZ)) + 1) + 1 ) ; 
   dZ = dZ ./( sqrt(real(dZ.*conj(dZ)) + 1) + 1 ) ;  K = ~finite(dZ) ; 
   if  any(any(K)) 
         a = 1/(1 + sqrt(2)) ;  A = triu(K)*a ;  A = A - A' ; 
         dZ(K) = sign(dH(K)).*A(K) ;  end 
   dX = dZ*dH ;  dX = ((dX' + dX) - dX*dZ) + dH ;  dx = real(diag(dX)); 
   A = real(conj(dZ).*dZ) ;  a = norm(A, 1) ; % ...  A = abs(dZ).^2 . 
   if (8192 + a*a) == 8192 ,   % ...  the normal case 
            dv = dx - A*dx ; % ...  dv = (I+A)\dx . 
      else 
            [L, U] = lu(I+A) ; 
            dv = U\(L\dx) ;  dv = dv - U\(L\([I, -I, A]*[dv; dx; dv])); 
            k = ~finite(dv) ; 
            if any(k),  dv(k) = dx(k) ;  end,  end 
   dX = dX + dZ*diag(dv)*dZ ;  dX = (dX+dX')*0.5 ;  
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   y = 2*v ;  yt = y' ;  dvt = dv' ; 
   dZ = ( y(:,u') - yt(u,:) ) + ( dv(:,u') - dvt(u,:) ) + I ; 
   dZ = ( dX - diag(diag(dX))) ./ dZ ;   a = norm(dZ, 1) ; 
   if (8192 + a*a) == 8192 ,   % ...  the normal case 
          dX = (dZ - dZ*dZ)*2 ;  %  ...  = 2*((I+dZ)\dZ) . 
      else 
          K = ~( abs(dZ) < 1024 ) ; % Will this work on PC-Matlab 3.5 ? 
          if  any(any(K)) 
               A = triu(K)*1024 ;  A = A - A' ; 
               dZ(K) = sign(dX(K)).*A(K) ;  end 
          dX = ( (I + dZ)\dZ )*2 ;  end 
   dQ = [Q, -dQ, dQ]*[dX; dX; I] ;  Q1 = Q - dQ ;  V1 = diag(v + dv) ; 
   return,  end  %  Subsequent lines deal with non-Hermitian  B . 
 
dZ = [B, Q]*[Q; -V] ;  [L, U] = lu(Q) ;  dC = U\(L\dZ) ;  % residual. 
dC = dC - U\(L\([Q, -I]*[dC; dZ])) ;  %  ...  iteratively refines  dC 
dv = diag(dC) ;  % ...  1st order approx'n to eigenvalue corrections. 
vt = v.' ;  dvt = dv.' ; 
S = 0.5*( (vt(u,:) - v(:,u')) + (dvt(u,:) - dv(:,u')) ) ;  % ... skew. 
dZ = dC - diag(dv) ;  Y = sqrt( dZ.*dZ.' + S.*S ) ;  % ... symmetric. 
 
K = real(Y.*conj(S));   
K = (K < 0) + triu(K==0, 1) ; % ... 0's & 1's . 
  K = find(K);     % COMMENT THIS LINE BEFORE MATLAB 5.2 
Y(K) = -Y(K) ;  % ... Turns  Y  skew. 
 
S = S + Y ; 
%  Because  MATLAB  bungles division of complex numbers by  Inf ,  
% division 
%  by zero cannot be prevented simply by setting  S = S + Inf*(~S) . 
dZ = dZ ./ (S+I) ; % exact for diag-sum of 2x2 's,  else  1st order. 
K = ~finite(dZ) ;  if any(any(K)),  dZ(K) = I(K) ;  end % NaN&Inf --> 0 
dC = dC + dC*dZ ;  dvt = diag(dC).' ;  ...  2nd order approximation. 
dV = diag(dvt) ;  S = ( vt(u,:) - v(:,u') ) + ( dvt(u,:) - dV ) + I ; 
dZ =  (dC - dV) ./ S ;   % ...  2nd order approximation. 
K = ~finite(dZ) ;  if any(any(K)) ,  dZ(K) = I(K) ;  end 
dZ = Q*dZ ; 
for  j = 1:n , % ... Normalize column  j  of  Q1  just as  eig  should. 
  q = Q(:,j) ;  z = dZ(:,j) ; ...  q+z  is improved eigenvector. 
  q1 = [q', -1]*[q; 1] ; % ... = q'*q - 1 . 
  d = (z'*z + 2*real(q'*z)) + q1 ; % ... = (q+z)'*(q+z)^2 - 1. 
  d = d/(1 + sqrt(1+d)) ;  dq = ( z - q*d )/(1 + d) ; 
  if  dq'*dq*64 < 1 + q1 , % ... additive normalization is best: 
        Q1(:,j) = q + dq ; 
     else ,  % ... normalization by division may be more accurate: 
        q = q+z ;  Q1(:,j) = q/sqrt( q'*q ) ;  end,  end  % ... dq, j 
V1 = diag(v + dvt.') ;  %  End  RefinEig.m 
 
------------------------------------------ END REFINEIG.M --------------------------------------- 
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------------------------------------------ BEGIN MXMULEPS.M ---------------------------------- 
 
function  y = mxmuleps 
 
%  mxmuleps  =  the roundoff threshold for  MATLAB's  matrix 
multiplication 
%  =  eps     if no  Extra-Precise Accumulation occurs    ... (1) 
%  =  eps/2048   if  Extra-Precise Accumulation occurs    ... (2) 
%  is  NaN   if a Fused Multiply-Accumulate is enabled    ... (3) 
%  on three important classes of computers conforming to  IEEE Standard 
%  754 
%  for  Binary Floating-Point Arithmetic.  These three classes include  
% 1)Sun SPARC;  H-P PA RISC-1;  SGI MIPS;  DEC Alpha;  and some others; 
%   and  Matlab 5.x  running on  Intel x86-based  PCs  and clones. 
% 2)  Old Apple Macintoshes based upon the  Motorola 680x0;  and 
%    Matlab 3.5 and 4.x  running on  Intel x86-based PCs and clones. 
% 3) IBM RS/6000 & Apple Power Mac;  HAL SPARC;  SGI R8000;  H-P PA 
%     RISC-2. 
%  Matlab 3.5  does not run on computers in class  3)  whereon later 
%   versions 
%  of  Matlab  use  Fused Multiply-Accumulation  only during non-sparse 
%    matrix multiplication so far as I have been able to determine. 
% On computers in class  2)  MATLAB  accumulates  Extra-Precisely  only 
% non-sparse matrix multiplication and perhaps exponentiation  ( y^n ) 
% so far as I have been able to determine. C)  W. Kahan,  2 Aug. 1998. 
 
e = eps ;  %  eps = 1/2^52  on all machines listed above. 
z = 4/3 ;  u = (1-z)*3 + 1 ; % |u| = 1 ULP of  1.xxxx ,  z = 4/3 - u/3 
if  abs(u) ~= e,  % ...  Question whether arithmetic is anomalous: 
 disp(' Has precision been altered?  Why do the following differ? ...') 
      AnULPofOne = abs(u) ,  Eps = e 
      disp(' Now  mxmuleps  cannot be trusted.'),  end % if |u| ~= e . 
z = (z-1)*4 ;  zzz = [z; z; z] ; % ...  z = (1 - u)*4/3 
y = max(abs([-u, 1+u, -1 ; -1, 1+u, -u]*zzz))*3 ; 

% = 0 for Fused Mult-Acc. 
if y == 0 ,  y = NaN ;  else  y = u/round(u/y) ;  end  %End mxmuleps 
 
------------------------------------------ END MXMULEPS.M ---------------------------------- 
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------------------------------------------ BEGIN FRANK.M ---------------------------------- 
 
function F = Frank(n, k) 
% F = Frank(n, k) is the Frank matrix of order n . The default 
% is k = 0 ; otherwise the elements of F get reflected about the 
% anti-diagonal (1,n)--(n,1) . Anyway, Frank is upper-Hessenberg. 
if nargin == 1, k = 0; end 
if n < 2, % ... necessitated by MATLAB’s faulty diag([], -1) . 
F = eye(n) ; % ... with error message if n < 0 . 
else 
p = [n:-1:1] ; 
F = triu( p( ones(n,1), : ) - diag( ones(n-1,1), -1 ), -1 ) ; 
if k ~= 0 , F = F(p,p); end, end 
 
------------------------------------------ END FRANK.M ---------------------------------- 
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Appendix C 
 

Non-Uniqueness of ∆Q 
 
Consider the equation: 
 
B (Q + ∆Q) = (Q + ∆Q) (V + ∆V) 
 
We are trying to solve this equation for ∆Q and for ∆V. 
 
Where V + dV is a diagonal matrix.  Now consider multiplying both sides of the 
equation by a Diagonal matrix, D. 
 
We now obtain: 
 
B (Q + ∆Q) D  =  (Q + ∆Q) (V + ∆V) D 
 
Because V + ∆V and D are both diagonal matrices, they commute, that is: 
 
(V + ∆V) D = D (V + ∆V) 
 
Substituting this back into the original equation, we get: 
 
B (Q + ∆Q) D = (Q + ∆Q) D (V + ∆V) 
 
Now, by defining E = (Q + ∆Q) D, we get: 
 
B E = EV, 
 
for a matrix E that is not equal to Q.  Moreover, a choice of any diagonal matrix D 
yields a new E. 
 
So it must be the case that ∆Q is not unique. 
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Appendix D 
 

Sylvester Equation and solution 
 
Sylvester Equation (or Lyapunov Equation) is one of the form: 
 
AX – XB = C,     where X and C are mxn, A is mxm and B is nxn.   
 
There is a systematic method for solving these equations. 
 
A Sylvester Equation AX – XB = F is equivalent to : 
 
(In ⊗ A – BT ⊗ Im) vec(X) = vec(F). 
 
In our case, we are dealing with the equation: 
 
∆Z ( V + ∆V ) – V ∆Z = ∆C (I + ∆Z) - ∆V 
 
…that we are trying to solve for ∆Z.  Here, V, ∆V and ∆C are all known values, so 
we can put it into a Sylvester equation form. 
 
In our case, A = -V - ∆C, B = (V + ∆V) and F = ∆C - ∆V, and X = ∆Z 
 
In this case, B is a symmetric matrix, so B = B T.  Now, we have for our  equations, 
 
(A – B) vec(X) = vec(F), which in our notation means, which we are solving for  
 
The solution to this equation is the E in the exposition about non-Hermitian 
matrices (only done in a smart way) !! 


