
 1

 Cui Liu Cai
 Math 128B Report

A More Reliable Equation Solver –My_fzero

(Matlab Version)

My_fzero is a reliable and efficient root- finder program in Matlab version. The idea of
how My_fzero works comes from combining the ideas of “Personal Calculator Has Key
to Solve Any Equation 0)(=xf ” by Professor William M. Kahan, “An Equation Solver
for a Handheld Calculator” by Paul J. McClellan, and the Matlab root- finder, fzero.

Introduction

Finding zeros/roots of a given function f , that is, find a number a such that 0)(=af ,
is the most important and basic of tasks in many different fields. A lot of problems in
physics, chemistry, economics, statistics and mathematics field have to use the method of
finding zeros of functions. Therefore, a good method of determining the roots/zeros of
functions (including polynomials, equations with exponential terms, logarithm terms,
trigonometry terms, etc.) is very important. This topic has captured a lot of
mathematicians’ interests for centuries.

As the world becomes more and more technology-oriented, the problems we are facing
today become more and more complicated. The functions we have to solve are not only
some simple equations any more. They are usually some very complicated functions (for
instance, some computer programmed functions). And usually they are passed to us as a
black box. So a smart, efficient, and robust root finder program is essential for us today.

For us, the ideal equation solver should be able to find all solutions of any equation
provided by the user. However, this is impossible in general for today. A more realistic
expectation is that the root finder should have several key abilities. First, it can find one
root at a time for most equations, beginning with user provided initial guess or guesses
not necessarily restricted to be very near to the solution. Second, it can flexibly find
minimum or maximum or limitation instead of insisting to find a root where there might
be no root at all. Third, it can provide understandable and reliable diagnostic information
should the solver fail to find a solution, so that the user can rewrite)(xf into a new one
which is easier to solve, or the user can give different initial guess or guesses. These are
the design objective for the equation solver, “My_fzero”.

How things are today?

We have many documents about how to find roots for equations with one or more
independent variables. For instance, “Iterative Method for the Solution of Equations” by J.
F. Traub, “Solution of equations and Systems of Equations” by Ostrowski, “The

 2

Numerical Treatment of a single Non-linear equation” by Householder, etc. Here we will
only consider the equations with one independent variable.

There are already a lot of numerical root-finding methods. The most popular methods
include Bisection Method, Brent’s Method, False Position Method, Inverse Quadratic
Method, Muller’s Method, Newton’s Method, Ridders’ Method, Secant Method, etc. The
complexities of these methods vary a lot. Each method has some advantage for some
individual cases, but none of them is a heal-all. For example, Bisection Method is a very
simple and robust method. Given two points a and b where the function)(xf reverses
sign, and suppose)(xf is computable for all the points between a and b , Bisection
Method grantees to find a root where)(xf vanishes or find two successive machine
representable points where)(xf reverses sign. However Bisection Method is usually
very slow. And the requirement of)(xf reverses sign at the given two points is hard to
satisfy because the user usually does not know what the function is. Another famous
method, Newton’s Method, is theoretically good but hard to be applied, because it is
generally impossible to calculate the derivative for a user-defined function)(xf . Even
when the calculation of derivative is achievable, the performance of Newton’s Method
will not be good until the guess is near enough to the root, which is almost as hard as
finding the root.

Having the idea that none of these root-finding methods can fit all the cases, it is
reasonable to think that a good root finder should be a combination of many methods, and
it should have the ability to choose a proper method for each step automatically.
My_fzero is designed following this concept.

What is My_fzero? What does My_fzero do? When does it work?

My_fzero is an automatic numerical real root finder which can solve for the real roots of
one variable equations of the form

 0)(=xf (1)

where)(xf is generally a non- linear function of x defined by the user.)(xf can be as
simple as a function like 1)(−= xxf , and it can also be a very complicated user
provided program. Also,)(xf can be continuous or discontinuous, and might not be
computable for some regions. For an illustration of the usage of My_fzero, consider the
following function

32)(3 −−= xxxf (2)

The user can run:

My_fzero(inline('x.^3 -2*x -3'),1)

 3

where inline('x.^3 -2*x -3') means an inline func tion of)(xf , and the initial guess is 1.
The result 1.89328919630450 is displayed after the user run the above command.

Although some equation solvers use or partly use direct solver 1 to analyze)(xf and
attempt to solve it by applying rules of algebra, in general, no equation solver can
understand)(xf or the program that defines)(xf . Based on this reason, My_fzero does
not consider direct solving method at all. It just takes)(xf as a black box, and iteratively
executes it with its guess or guesses as the argument, beginning with the initial guess or
guesses provided by the user. It will consider a proper model to fit)(xf based on the
previous results, and find the best guess to the root as the next guess based on this model.
If everything goes well, My_fzero will get closer and closer to the root, until it finally
finds a guess where)(xf vanishes, which must then be the root.

However, will)(xf always vanish at its root? Mathematically speaking, yes. But for a
computer, it is not necessary to be true. Any computer has its precision, which means
computer cannot represent all real numbers precisely. For example, computer can
represent 1/2 as 0.5 precisely, but 1/3 will probably be represented as 0.33…3 within a
computer. Thus, for a computer, only discrete points in the real axis are representable,
and the density of these representable points near x is determined by the value of x and
the precision of the computer. This is the root of the notorious round off problem.

For example, if

21)(epsxxf −−= (3)

where eps is a constant of the floating-point relative accuracy in that computer, which
means the distance from 1.0 to the next representable number. In most recent computers,
eps is about 2.22e-16, not very small in fact. It’s easy to see that mathematically)(xf
has a root at 21 eps+ . But because the computer cannot represent 21 eps+ precisely,
and the nearest two representable points are 1 and eps+1 , the smallest absolute value of

)(xf is 2eps , which is about 1.11e-16, but)(xf never vanishes. Taking this in mind,
the equation solver can not insist to find a root where)(xf vanishes; instead, if it can
find two successive representable numbers where)(xf reverses sign, it will also declare
that a root is found.

For the below three most common and easiest cases, My_fzero guarantees to find a root2:

1.)(xf is strictly monotonic, regardless of initial guesses;

1 Direct solver: the equation solver attempts to solve the user defined equation directly by applying rules of
algebra to isolate the unknown on one side of an equation. If it succeeds, the value of the other side of the
equation is the solution to the equation. Paul J. McClellan, “An Equation Solver for a Handheld Calculator”,
Hewlett-Packard Journal, August 1987
2 William M. Kahan, “Personal Calculator Has Key to Solve Any Equation f(x) = 0”, Hewlett-Packard
Journal December 1979

 4

2.)(xf± is strictly convex, and there is a representable point where)(xf is 0, or there

are two representable points where)(xf reverses sign, regardless of initial guesses;

3.)(xf reverses sign in the initial guesses a and b which means)(af and)(bf has

different signs, and)(xf is computable for all numbers between a and b ;

For other cases, My_fzero will mostly succeed, but may also fail to find a place where

)(xf vanishes or reverses sign, possibly because no such place exists. When it happens
that My_fzero cannot find a root, rather than searching forever, it will stop where it
seems)(xf has reached to a local minimum or constant, or it will stop and declare that
no root has been found. An exit flag is returned to inform the user whether it finds a root,
finds two successive representable points where the function reverse sign, find a local
minimum of)(xf , or there is no root found. Based on the exit flag and the result, the
user can determine what to do next.

Although My_fzero is quite robust, it doesn’t necessarily mean My_fzero will never get
wrong. As illustrated above, the computer can represent only discrete points in the real
axis, thus the behavior of)(xf besides these representable points is not going to be
revealed by any root finder. For example, let

)4(2025)(2 epsxxxf ++−= (4)

It can be seen that mathematically speaking,)(xf has no real root. But due to the round-
off problem, the machine might return 0.4 as the root of)(xf , which is clearly wrong.

Furthermore, even if the computer can represent any real number without round off, any
root finder can still be fooled easily. In order to fool any root-finder, first let the root-
finder to solve for zeros of 1)(≡xf , and record the finitely many points nxxx ,,, 21 Λ at
which)(xf was calculated to reach the decision that)(xf never vanishes. Then we can
form a function:

 1)()()(
1

+−Π⋅=
= i

n

i
xxxgxf (5)

where)(xg can be any function with no pole at nxxx ,,, 21 Λ .

Since both functions take exactly the same value 1 at every sample argument, the root
finder must decide the same way for both: both equations 0)(=xf have no real root. But
that is obviously wrong.

 5

How does My_fzero compare with other root finders?

There are many equation solvers in the world. However, most of them are hampered by
one or more limitations listed below:

1. They may insist to be given two initial guesses where the function reverses sign. This

requirement is sometimes hard to satisfy because the user usually doesn’t know
exactly what the property of the function is. My_fzero can take one or two initial
guesses, when)(xf is real and finite for at least one of them, My_fzero will try its
best to find a root no matter the initial guess is near or far from the root. But better
guess will help My_fzero to find a root faster.

2. They may ask for one or more stopping criteria in case they will run forever. These

criteria includes maximum steps or maximum time they might iterate no matter they
find a root or not, or a tolerance that they will stop and claim a root when the
distance between either the two points where the function reverses sign or any two
successive guesses is less than the tolerance. These criteria are also hard to be
defined in advance properly, because of the unknown property of)(xf . Using the
maximum iteration steps or time criterion, they may claim no root when their search
permit expires after a long search, but just a few more steps before they would have
found a root. When using a tolerance, they may still run forever because that
tolerance can never be reached, or they may claim a “root” is found no matter how
silly it is. Furthermore, the tolerance should be relative to the root itself. For example,
a root 11.0 ± is not as precise as a root 1100 ± . My_fzero does not have these
problems. It will stop and claim a root only when it has found a point when)(xf
vanishes, or found two successive machine representable points where)(xf reverses
sign. My_fzero can go on searching for a long time for some cases like xxf 1)(= ,
but will not run forever.

3. They may insist to find a root, even there is not root at all. My_fzero will stop when

it thinks it has found a local minimum of)(xf .

4. They may be unable to handle out of domain problem. If an arithmetic error occurs

during the evaluation of)(xf for some x , then)(xf is not defined for that value of
x and we say that x lies outside the domain of the definition of)(xf . Usually, they
may stop and claim that there is no root, just because they encounter the out of
domain problem. My_fzero can properly deal with that problem.

5. They may simply return a root if they find one, or claim no root if they cannot find

one. There isn’t much more information for the user. My_fzero will return an exit
flag indicating why it stopped. The reason can be that it has found a root, or it has
found two successive representable points where)(xf reverses sign, or it has found

a local minimum of)(xf , or it found not root, etc. This exit flag can help the user to
decide what to do next, like re-write the function in another format to see whether it

 6

will be easier to solve, try out different guesses, etc. The user can even write a
program to deal with it automatically, based on the exit flag. My_fzero will also
return the last two guesses and the function values for these two guesses.

6. They may restrict)(xf . My_fzero has no requirement of what)(xf is.)(xf can be

a build in function, an inline function, or in general a user provided function.

How does My_fzero work?

The method My_fzero employed is a combination of Bisection Method, modified Secant
Method, Quadratic Method, and Brent’s Method, which itself is also a combination of
several root finding methods including Bisection Method, False Position Method (it is
also called Root Bracketing Method), and Inverse Quadratic Method.

Fig.1 below shows the three blocks of My_fzero. First, My_fzero analyze the input
arguments and initialize some variables, which include the search bounds with

∞= -lowerbound and ∞=upperbound . If it finds some syntax error, it will exit at that
point. Then, My_fzero will try to obtain two valid initial guesses, which means the values
of)(xf at these two points are real and finite. The user of My_fzero can input one or
two initial guesses. If the user provides two identical guesses, one of them will be
discarded. If no guess the user provides is valid, My_fzero will display some message
and exit. If the user provides two guesses, and they are all valid, the program will go on
to the main loop for root finding. Otherwise, the user has provided only one valid guess,
say, a . In this case, My_fzero will try to find another valid guess b before it can actually
begin to find a root. It will search the right side first to see whether it can find b . If 0=a ,
set 501=b , otherwise, set 50aab += . In this way, My_fzero will have another rough
guess not far away from a . If)(xf is out of domain at b , then use Bisection Method,
i.e., let () 2bab += . Any time)(xf is out of domain at b , the search bound will be
reset bupperbound = . This process will continue until a valid guess is found, or there
isn’t any other machine representable point between a and b . If the latter case happens,
My_fzero will try to find a valid point in the left side of a . The process will be the same,
except that b will be initially set to -1/50 or 50aa − , and that blowebound = if out of
domain happens.

If My_fzero has searched both sides and found no second valid point, it will return with
an exitflag indicating it cannot find a second valid point. Otherwise, it has successfully
finished the initial guesses block. If My_fzero happens to meet a point where)(xf
vanishes, which in fact seldom happens, it will luckily return with the root. Otherwise, it
goes on to the main loop.

Although this method for obtaining initial guesses is simple, it’s quite robust. Since we
do not have much information up to this stage, Bisection Method is a reasonable choice.
Other root finders might have some problem when trying to obtain two initial guesses.
For example, the Matlab root finder, fzero, can also take one or two initial guesses. If two

 7

guesses are provided, it insists that the function)(xf must reverse sign at these two
points, which in fact make it almost as difficult as finding the root itself. If only one
guess is provided, fzero will try both side of a alternatively, multiplying the distance
between a and the guess by a fix constant which is larger than 1, until it finds one b that

)(af and)(bf have different signs, or it meets an out of domain problem. However, this
method is not trustworthy. For example, when)(xf is computable anywhere and always
has the same sign, given whatever single guess, fzero will run for ever, because it can
never find two points where)(xf reverses sign.

Fig.1 Diagram of My_fzero

Fig.2 shows the diagram for the main loop of My_fzero. For each loop, there must be two
points a and b , and)(bf is always the best value, which means)()(afbf < . There
may also be a third point, depending on the previous result, which will be explained later.
As the methods used for the case where)(af and)(bf have the same sign and for the
case where)(af and)(bf have different signs are quite different, first of all, My_fzero
will select a processing block based on this information. In each of the two blocks,
My_fzero will try to find a proper next point c using the most suitable method, and
calculate)(cf . When My_fzero reaches one of its exit conditions, (which means it
successfully finds a root, or two successive machine representable points where)(xf

reverses sign, or a local minimum of)(xf , or it concludes that it can not find a root.)
My_fzero will prepare the output arguments and then return within the main loop. If
My_fzero has not reach any exit condition, it will record some information, and update
the current guesses a and b , and also make sure that)()(afbf < .

Fig.3 and Fig.4 show the diagram of processing blocks for the same sign case and
different signs case individually.

Initialize

START

Obtain two initial guesses

Main loop

END

 8

Fig.2 Diagram for the main loop

f(a) and f(b) have
same sign?

Find proper next point
c for same sign case

Find proper next point
c for different signs

case

Update a and b

No

Yes

 9

Fig.3 Diagram for the block dealing with the case where f(a) and f(b) have the same sign.

Use modified Secant Method to
find point c

Search interval
exhausted?

Prepare output arguments
and return

No

Yes

f(c) out of domain?

Reset search interval

Use Bisection Method to find
new c

Search interval
exhausted?

Prepare output arguments
and return

Yes

No

f(b) and f(c) have the same
sign & |f(c)|>=|f(b)|?

Yes

Quadratic Method
already done?

No

No

Yes

Quadratic Method has
been successively tried 20

times?

Reset quadratic
counter

Prepare output arguments
and return

Yes

No

Yes

No

Use Quadratic
Method to find

a new c

 10

Fig.4 Diagram for the block dealing with the case where f(a) and f(b) have different signs.

Reset search interval

Brent’s Method

Search interval
exhausted?

Separate the interval [a b] into two
sub search intervals

[a c) and (c b]

Yes

f(c) out of domain?

Prepare output arguments
and return

No

Yes

Use Bisection Method to reduce the
lengths of both sub search intervals

Both sub intervals
exhausted?

Yes

Prepare output arguments
and return

No

At least one sub interval
is valid, and f(x) reverses

sign at this interval?

No

No

Yes

 11

l Root finding method when f(a) and f(b) have the same sign

The basic method used for the case where)(af and)(bf have the same sign is modified
Secant Method. Secant Method is a well-known powerful root finding method. Suppose
we have the current two guesses a and b . As illustrated in Fig.5, the straight line cross
())(, afa and ())(, bfb will usually cut the x-axis at ()0,c . The value of c is given by
the formula:

())()()()(afbfbfabbc −⋅−−= (6)

If a and b lie close enough to the root of)(xf and the graph of)(xf near the root is
smooth enough,)(xf is assumed to be approximately linear near the root, so we can see
that c is much closer to the root than a and b . This means Secant Method can give a
better approximation toward the root based on the current guesses. Furthermore, this
approaching can be done in an iterative way, that is, each time let ba = and cb = , and
go on using Secant Method. In this way, the new guess will get closer and closer to the
root until it finally reaches the root.

Fig.5 Secant Method

However, there are still some problems with Secant Method. When the difference
between)(af and)(bf is relatively small, the next point c may run far away from the

 12

root, as illustrated in Fig.6. To avoid this problem, a constraint that c cannot run too far
away at a time was added. That is, when)()(bfaf = or abbc −⋅>− 100 , let

abbc −⋅=− 100 .

Fig.6 Secant Method when different between f(a) and f(b) is small

Another problem is that, when it happens that)(af is much larger than)(bf , as
illustrated in Fig.7, round off problem may make c coincide with b . This may let Secant
Method stop unsuccessfully. The modification used in My_fzero for this case is to let c
be the next representable point of b .

To find the root, Secant Method requires a and b to be close enough to the root,
otherwise it may possibly run away from the root, and even may never come back. But
finding guesses close to the root usually can take a long time. After Secant Method finds
good guesses near the root, usually it will converge to it very fast. Then when)(xf
becomes tiny, the rounding error becomes significant too. The relatively inaccurate)(af
and)(bf makes the quotient ())()()(afbfbf − not very reliable. It’s worth to point out
that if)(xf has some level of uncertainty, that is to say there is some “noise” when
calculating)(xf , it’s better for the user who defines)(xf to make sure that)(xf is
forced to be 0 when the its absolute value is under the level of uncertainty. This is to
make the root finding process more robust against no ise.

 13

Fig.7 Round off problem makes Secant Method stop

Another thing worth to mention is that, when the two guesses are very near to the roots,

ab − and)(bf are both so small that when calculating formula (6),)()(bfab ⋅− may
be first rounded off to 0, then ())()()()(afbfbfab −⋅− will also be 0 not matter how
small)()(afbf − is. To avoid this problem, parentheses should be added to the formula
as:

()())()()()(afbfbfabbc −⋅−−= (7)

Sometimes Secant Method iteration cycles endlessly through estimations
Λ,,,,,,,, dcbadcba , as illustrated in Fig.8 and Fig.9. My_fzero will not cycle like

Fig.8, because when it finds two points where)(xf reverses sign, it will give up Secant
Method and begin to use Brent’s Method. To avoid cycling like Fig.9, when My_fzero
finds)(cf is larger than)(bf , it uses Quadratic Method, trying to find a local

minimum of)(xf . Here Quadratic Method means interpolating a quadratic through the

three points ())(, afa , ())(, bfb and ())(, cfc , and set d to the place where that
quadratic’s derivative vanishes. In effect, d is the highest or lowest point on the
quadratic. Then, My_fzero will resume the Secant iteration using b and d as the next
two guesses. At all times, b and)(bf records the smallest)(xf calculated so far.

 14

Fig.8 Cycling of Secant Method, (case 1)

Quadratic Method can keep Secant Method from cycling around a relatively shallow
minimum of)(xf , as illustrated in Fig.10, because it will usually look elsewhere for the
root. But Quadratic Method still cannot prevent the searching from trapped near
relatively deep minimum of)(xf . To solve this, My_fzero does not insist to find a root.

If)(bf has not decreased for Q consecutive quadratic fits, My_fzero concludes that

there is a local minimum of)(xf at b , and stops searching. Q is a constant number.
The larger Q , the larger chance My_fzero will avoid being trapped near a local minimum

of)(xf , or the larger chance it will find a more precise local minimum. However, the
calculation increases with larger Q . In My_fzero, Q is 20.

The whole process of a root finding iteration when)(af and)(bf have the same sign is
described below:

First, use Secant Method to find next guess c . If abbc −⋅>− 100 , let

)(100 bcsignabbc −⋅−⋅+= . If c happens to coincide with b , let c be the next

representable point of b . If c is out of search interval, let c be () 2lowerboundb + or
() 2upperboundb + , depending on to which side of the search interval c locates.

 15

Fig.9 Cycling of Secant Method, (case 2)

Then, if the search interval has been exhausted, My_fzero meets its exit condition. It will
decide whether that’s because it cannot find a root, or because it has expanded the
searching to infinite.

If the search interval has not been exhausted, My_fzero will calculate)(cf . If)(cf is
out of domain, Bisection Method will be used iteratively, reset the search interval and let

2)(cbc += in each iteration. This will not stop until the search interval has been
exhausted, or)(cf is within domain. If the search interval has been exhausted, My_fzero
has failed to find a root. Otherwise, My_fzero has found a valid c , and it will go on the
following steps.

If)(cf and)(bf have different signs, My_fzero will stop Secant Method and jump to
the block which deal with the case that)(xf reverses sign. Otherwise, My_fzero

compares)(cf and)(bf . If)()(bfcf < , Secant Method has found a better

approximation to the root, so it will go on to the next iteration. If)()(bfcf ≥ ,
Quadratic Method is used, and c is reset to the point where the derivation of the
quadratic vanishes. Each time Quadratic Method is employed, a counter is decremented
and tested. Each time Secant method finds)(cf with decreasing magnitude, that counter

 16

is reset to Q . When the decremented counter value is zero, My_fzero returns the last

sample value as an approximate local minimum of)(xf . Otherwise, it will go on
searching with the new guess c . However, this new c is still possible to be out of
domain, so My_fzero will go back to the place where it calculate)(cf and see whether

)(cf is out of domain. So there is a loop within each iteration, as illustrated in Fig.3. If

)(cf is within the domain, then no matter)(cf is less than)(bf or not, My_fzero will
take it and go on to the next iteration.

Fig.10 Quadratic Method

l Root finding method when f(a) and f(b) have different signs

The main method used in this block is Brent’s Method, also known as van Wijngaarden-
Deker-Brent Method.

Although Secant Method and other methods like False Position Method usually converge
faster than Bisection Method, we still often find cases for which Bisection converges
more rapidly. Bisection Method always halves the interval, while Secant Method and
False Position Method can sometimes spend many iterations trying to get near to the root.
A better way to do root finding is to combine these methods together. We can use a
usually fast method while keeping track of whether it is actually converging or not. If not,

 17

Bisection Method will be used as a back up to make sure the program at least converges
linearly. Brent ’s Method is an excellent algorithm that works in the above way. It is a
combination of False Position, Bisection, and Inverse Quadratic Method. False Position is
similar to Secant Method, and it only differs in that False Position retains the known
smallest interval brackets the root. Inverse Quadratic Method is similar to the Quadratic
Method. It uses three points to fit an inverse quadratic function for which x is a quadratic
function of y, as illustrated in Fig.11.

Fig.11 Inverse Quadratic Method

The function of the inverse quadratic can be written as:3

b
afbfcfbf

afycfy

a
cfafbfaf

cfybfy
c

bfcfafcf
bfyafy

x

⋅
−⋅−

−⋅−
+

⋅
−⋅−

−⋅−
+⋅

−⋅−
−⋅−

=

)]()([)]()([
)]([)]([

)]()([)]()([
)]([)]([

)]()([)]()([
)]([)]([

 (8)

The point where the inverse quadratic crosses x-axis is taken as the next guess. Setting y
to zero gives this point, which can be written as:

3 William H. Press, “Numerical Recipes – the Art of Scientific Computing,” Page 252, Cambridge
University Press 1986

 18

QPbx += (9)
Where, set:

)()(,)()(,)()(cfafTafbfScfbfR === (10)

And:

)]()1()()([abRbcTRTSP −⋅−−−⋅−⋅⋅= (11)

)1()1()1(−⋅−⋅−= SRTQ (12)

And b and)(bf records the smallest)(xf calculated so far. Usually, QP ought to be
a small correction. However, Inverse Quadratic method is not very stable. It will give
very bad guess. Brent ’s Method avoids this problem by maintaining brackets on the root
and checking whether the new guess calculated using Inverse Quadratic Method or False
Position Method is within the brackets and is converging rapidly enough. If not, it will
use Bisection Method instead. Thus, Brent’s Method combines the robustness of
Bisection Method with the higher speed of Inverse Quadratic Method and False Position
Method.

The whole process of a root finding iteration when)(af and)(bf have different signs is
described below:

First, reset the search interval which is known the smallest interval which brackets the
root. That is,),min(l baowerbound = and),max(baupperbound = . Then, if)(af or

)(bf is infinite, use Bisection Method, otherwise use Brent ’s Method to find a new guess
c . Brent’s Method will choose one out of the three methods: Bisection Method, False
Position Method and Inverse Quadratic Method. If the search interval has been exhausted,
My_fzero has successfully found two successive machine representable points which
bracket the root. Otherwise, My_fzero calculate)(cf and see whether)(cf is out of
domain. If not, My_fzero will go on to the next iteration. If)(cf is out of domain, the
search interval []upperboundlowerbound is divided into two sub intervals
[)1glowerbound and (]upperboundg2 , where cgg == 21 initially. Then, these two sub
intervals are halved alternatively and iteratively using Bisection Method. In each time, let

2)(1glowerboundc += first. If)(cf is out of domain, then let cg =1 . Otherwise, if
)(cf and)(lowerboundf have the same sign, let clowerbound = . Then the right sub

interval is processed in the same way. This loop will continue until both sub intervals are
exhausted; or My_fzero finds a sub interval which brackets the root. If the intervals are
exhausted, My_fzero fails to find any root. If it’s the latter case, the sub interval which
brackets the root will be kept, while the other sub interval will be discarded. Then
My_fzero will resume root finding.

 19

Examples and Comparison

In order to test the performance of My_fzero, some examples are given in this chapter.
Also, several other methods are used as comparison. These methods (or program) include
fzero, Bisection Method, Secant Method, False Position Method and Brent’s Method.
Because fzero uses Brent ’s Method after it finds two points where)(xf reverses sign,
the result of Brent ’s Method is the same as fzero if two initial guesses are provided.
Consequently, it is not necessary to list Brent ’s Method in the tables. The program of
fzero requires a tolerance, which is eps in default.

The numbers listed in these tables may be cut short if they are too long to be put in the
tables. Also, My_fzero may output an interval that brackets the root, so there may be two
values listed in the “X” and “fval” row. If a method is not applied, it will be left empty.

1. 2)exp()(−+= xxxf

The function is shown in Fig.12.

Fig.12 2)exp()(−+= xxxf

The result is shown in Tab.1.

 20

 Initial_Guess(es)
Method -5 4 -5, 4 -5, -3

X 0.44285440100239 0.44285440100239 0.44285440100239 0.44285440100239

fval 0 0 0 0
My_fzero

steps 11 13 11 12

X 0.44285440100239 0.44285440100239 0.44285440100239

fval 0 0 0
fzero

steps 33 27 11
X 0.44285440100239 0.44285440100239

fval 0 0 Secant
steps 14 12
X 0.44285440100239

fval 0 Bisection
steps 58
X 0.44285440100239

fval -3.1086244689e-015 False Position
steps 207

Tab.1 Comparison for 2)exp()(−+= xxxf

 21

2.)4ln44(4)exp()(−−−= xxxf

Fig.13)4ln44(4)exp()(−−−= xxxf

 Initial_Guess(es)
Method -3 2 -3, 2 -3,-2

X 1.38629435046769 1.38629437556774 1.38629435316725 1.38629434784790

fval 0 0 0 0
My_fzero

steps 41 39 40 40

X NaN NaN

fval NaN NaN
fzero

steps 55 (Failed) 58 (Failed)
X 1.38629437500115 1.38629434784790

fval 0 0 Secant
steps 40 40

Tab.2 Comparison for)4ln44(4)exp()(−−−= xxxf

 22

3. 9020)exp()(+−= xxxf

Fig.14 9020)exp()(+−= xxxf

 Initial_Guess(es)
Method -4 5 -6, -4 -2, 5

X 2.99380152969407 2.99452197374669 2.99573192325833 2.99175808342445

fval 50.08539178265905 50.08536917126861 50.08535452892141 50.08551226176941
My_fzero

steps 42 (min) 43 (min) 47 (min) 44 (min)

X NaN NaN

fval NaN NaN
fzero

steps 53 (Failed) 52 (Failed)
X -4.73465295951742 4.74423859164874

fval 184.7018446875744 110.0354990955713 Secant
steps 33 (Wrong) 178 (Wrong)

Tab.3 Comparison for 9020)exp()(+−= xxxf

 23

4. 1)16exp()(4 −−−= xxxf

Fig.15 1)16exp()(4 −−−= xxxf

 Initial_Guess(es)
Method -0.5 1 3 1, 3

X 0.16679566609859 0.16679566609859 3.06000000000000 1.75777201824726

fval 0 0 -1 0
My_fzero

steps 12 13 41 (Min) 14

X 0.16679566609859 0.16679566609859 1.75777201824726 1.75777201824726

fval 8.8817841970e-016 0 0 -1.776356839e-015
fzero

steps 36 29 27 16
X -Inf

fval -1 Secant
steps 4
X 1.7577720182472

fval 0 Bisection
steps 54

False Position X 1.75777201824726

 24

fval -5.329070518e-015
steps 183

Tab.4 Comparison for 1)16exp()(4 −−−= xxxf

5.)6ln()(4xxxf −=

Fig.16)6ln()(4xxxf −=

 Initial_Guess(es)
Method 1 0.1, 1 0.5, 1 0.1, 1.8

X 0.16679566609859 0.16679566609859 0.16679566609859 0.16679566609859

fval 0 0 0 0
My_fzero

steps 13 10 12 16

X 0.16679566609859 0.16679566609859

fval 0 0
fzero

steps 30 10
X NaN NaN NaN Secant
fval NaN NaN NaN

 25

 steps 4 (Failed) 3 (Failed) 3 (Failed)
X 0.16679566609859

fval 0 Bisection
steps 56
X 0.16679566609859

fval 0 False Position
steps 28

Tab.5 Comparison for)6ln()(4xxxf −=

6. 1)1()(2 −−= xxf

Fig.17 1)1()(2 −−= xxf

 Initial_Guess(es)
Method -1 1 -2, 1 1, 4

X -9.073655918e-017 2 3.5343903075e-017 2

fval 0 0 0 0
My_fzero

steps 9 9 11 11

X -1.538729133e-017 -1.258661437e-017 3.5568126759e-017 2
fzero

fval 0 0 0 0

 26

steps 31 32 11 11
X -7.073198405e-018 2

fval 0 0 Secant
steps 13 11
X -1.110223024e-016 2

fval 0 0 Bisection
steps 55 55
X 3.7088953354e-018 2.00000000000000

fval 0 -8.881784197e-016 False Position
steps 57 54

Tab.6 Comparison for 1)1()(2 −−= xxf

7.)1.0)exp(2sin()(2 +−⋅= xxf π

Fig.18)1.0)exp(2sin()(2 +−⋅= xxf π

 Initial_Guess(es)
Method -9 -0.5 -6, 0.5 0, 2

My_fzero X -8.82000000000000 0.12666296163542, -0.85176040584, - 0.12666296163542,

 27

 0.12666296163542 0.85176040584 0.12666296163542

fval 0.09983341664683 -0.24492935e-15,
0.643249059e-15

0.1224646799e-15, -
0.3216245299e-15

-0.2449293e-15,
0.6432490e-15

steps 41 (Min) 18 12 19

X -0.12666296163542 -0.85176040584857

fval -2.44929359e-016 1.2246467991e-016
fzero

steps Never Stop 31 14
X

fval Secant
steps 8 (Failed) 7 (Failed)

X
-0.8517604058485, -

0.8517604058485

fval
0.1224646799e-15, -
0.3216245299e-15

Bisection

steps 58
X -0.85176040584857

fval 1.224646799e-016 False Position
steps 21

Tab.7 Comparison for)1.0)exp(2sin()(2 +−⋅= xxf π

8. () 05.0||exp||)(+−⋅= xxxf

 28

Fig.19 () 05.0||exp||)(+−⋅= xxxf

 Initial_Guess(es)
Method -4 -0.2 -4, -0.2 -0.2, -0.1

X -315.704551030901 0.00019712926687 -212.35589595391 148.92040406551

fval 0.05000000000000 0.05019709041075 0.05000000000000 0.05000000000000
My_fzero

steps 45 (Min) 50 (Min) 44 (Min) 44 (Min)

X NaN NaN

fval NaN NaN
fzero

steps 4111 (Failed) 4127 (Failed)
X NaN NaN

fval NaN NaN Secant
steps 7 (Failed) 7 (Failed)

Tab.8 Comparison for () 05.0||exp||)(+−⋅= xxxf

9.)sin(1)(xxf =

 29

Fig.20)sin(1)(xxf =

 Initial_Guess(es)
Method -2 3.5 -3,-0.2 2, 4

X 0, 4.940656458e-
324

6.28318530717959,
6.28318530717959

6.28318530717959,
6.28318530717959

3.14159265358979,
3.14159265358979

fval -Inf,Inf 0.6529855401e+15, -
4.0828098382e+15

1.5546077909e+15, -
4.0828098382e+15

-3.109215581e+15,
8.1656196765e+15

My_fzero

steps 1371 73 69 67

X -3.14159265358979 3.14159265358979 3.14159265358980

fval -6.87411693e+014 -6.0463434e+014 -4.7664865e+014
fzero

steps 86 71 67
X 7.15444238e+015 1.35452182e+029

fval -1.42857839908636 1.89740919371289 Secant
steps 638 (Wrong) 974 (Wrong)

Bisection X
3.14159265358979,
3.14159265358979

 30

fval
8.1656196765e+15, -

3.109215581e+15

steps 54
X 3.14159265358979

fval -1.30597108e+015 False Position
steps 123

Tab.9 Comparison for)sin(1)(xxf =

10. () ()()002.011)exp()()(2 ++⋅−⋅−⋅= xxxxsignxf

Fig.21 () ()()002.011)exp()()(2 ++⋅−⋅−⋅= xxxxsignxf

 Initial_Guess(es)
Method -2 -8 -2, -8 -2, 3

 31

X -1, 1 -1, 1 -1, 1 -1, 1

fval -0.00200000000,
0.00200000000

-0.00200000000,
0.00200000000

-0.00200000000,
0.00200000000

-0.00200000000,
0.00200000000

My_fzero

steps 140 116 117 112

X NaN NaN -0.529 - 0.034i

fval NaN NaN -0.000 - 0.642i
fzero

steps 19 (Failed) 21 (Failed) 57 (Wrong)
X NaN NaN

fval NaN NaN Secant
steps 4 (Failed) 8 (Failed)
X NaN

fval NaN Bisection
steps 3 (Failed)
X NaN

fval NaN False Position
steps 5 (Failed)

Tab.10 Comparison for () ()()002.011)exp()()(2 ++⋅−⋅−⋅= xxxxsignxf

11.)1()exp()(2 epsxxf +−=

 32

Fig.22)1()exp()(2 epsxxf +−=

 Initial_Guess(es)
Method 1 10 -4, 5 26, 26.64

X 1.648771146e-008 1.48799085e-008 -1.58398597e-008 1.61566267e-008

fval 0 0 0 0
My_fzero

steps 41 187 66 1024

X NaN NaN

fval NaN NaN
fzero

steps 41 (Failed) 26 (Failed)
X NaN 26

fval NaN 3.82886246e+293 Secant
steps 68 (Failed) 2 (Wrong)

Tab.11 Comparison for)1()exp()(2 epsxxf +−=

12. 4)(−= xxf

 33

Fig.23 4)(−= xxf

 Initial_Guess(es)
Method 0.5 777 0.5, 40 20, 30

X 16 16.00000000000000 16 16.00000000000000

fval 0 0 0 0
My_fzero

steps 11 13 4 8

X NaN NaN 16.00000000000000

fval NaN NaN 0
fzero

steps 23 (Failed) 23 (Failed) 4
X 16.00000000000000 16.00000000000000

fval 0 0 Secant
steps 9 8
X 16

fval 0 Bisection
steps 55
X 16.00000000000000 False Position
fval 0

 34

 steps 43

Tab.12 Comparison for 4)(−= xxf

13. ()101.0)(2 −−⋅= xxxf

Fig.24 ()101.0)(2 −−⋅= xxxf

 Initial_Guess(es)
Method -8 -50 -50, -8 -11, 10

X -1.0000499987500, -
1.0000499987500

-1.0000499987500, -
1.0000499987500

-1.0000499987500, -
1.0000499987500

-1.0000499987500, -
1.0000499987500

fval 0.105511156e-13, -
0.116544549e-13

0.105511156e-13, -
0.116544549e-13

0.105511156e-13, -
0.116544549e-13

0.105511156e-13, -
0.116544549e-13

My_fzero

steps 58 62 54 73
fzero

X NaN 0.9471 - 0.0038i 0.7322 + 0.0978i

 35

fval NaN -0.0000 + 0.3041i -0.0000 - 0.5185i

steps 21 83 (Wrong) 61 (Wrong)
X NaN NaN

fval NaN NaN Secant
steps 8 (Failed) 3 (Failed)
X NaN

fval NaN Bisection
steps 3 (Failed)
X NaN

fval NaN False Position
steps 3 (Failed)

Tab.13 Comparison for ()101.0)(2 −−⋅= xxxf

Conclusion

In this report, a robust and efficient real root finder My_fzero for one variable equation

0)(=xf is introduced. It uses a combination of many root finding methods: Bisection
Method, modified Secant Method, Quadratic Method, and finally Brent’s Method, which
itself is also a combination of several root finding methods including Bisection Method,
False Position Method and Inverse Quadratic Method. My_fzero automatically selects
one of the methods which it considers to be the best for the current searching situation. It
can also deal with out of domain problem, which makes it even robust.

My_fzero tries to find a root, beginning from one or two initial guesses provided by the
user. Usually, it will find it quickly if such a root exists. Sometimes round off problem
makes)(xf never vanish. In this case, My_fzero tries to approach to the root as precise
as possible. That is to say, it finds two successive machine representable points where

)(xf reverses sign.

However, My_fzero does not insist to find a root. This is mainly because a root does not
always exist. When My_fzero can not find two points where)(xf reverses sign, and can
not find a point with decreasing magnitude of)(xf for a number of successive iterations,

it assumes it has found a local minimum of)(xf . This method prevents My_fzero from
searching forever, when a root does not exist, or when My_fzero is dithering near a local
minimum. But the cost is that My_fzero becomes more ready to stop near a local
minimum, even if there is a root.

My_fzero does not require a tolerance. It tries to find the root as precise as possible.
Although this is usually beneficial for the user, sometimes it will become slow, especially

 36

when the root is 0 or infinite. Take xxf 1)(= as an example, given the initial guess 1,
My_fzero iterates 1477 times before it finds the root at infinite. Another example is

2)(xxf = . Given the initial guess 1, it needs 776 iterations before it finds that)(xf
vanishes at 1.570382273913005e-162.

Future work may be directed to improving My_fzero for some cases where My_fzero is
not efficient. For example, when solving 2)(xxf = , My_fzero uses Secant Method,
while Secant Method converges slowly for this case. Also, more examples are necessary
to test My_fzero for further improvement.

 37

REFERENCES

[1] WILLIAM M. KAHAN: Personal Calculator Has key to Solve Any Equation f(x)=0,

Hewlett-Packard Journal, December 1979

[2] PAUL J. McCLELLAN: An Equation Solver for a Handheld Calculator, Hewlett-

Packard Journal, August 1987

[3] Matlab “fzero.m”, Version 5.3

[4] WILLIAM H. PRESS: Numerical Recipes, the Art of Science Computing, Cambridge

University Press 1986

[5] A. M. OSTROWSKI: Solution of Equations and Systems of Equations. 2nd Edition,

New York: Academic Press 1966

[6] J. F. Traub: Iterative Methods for the Solution of Equations, Englewood Cliffs, N. J.

Prentice-Hall, Inc. 1964

[7] J. STORE: Introduction to numerical Analysis, Springer-Verlag New York Inc. 1980

 38

Appendix

Syntax
 x = My_fzero(fun, x0)
 x = My_fzero(fun, x0, trace_level)
 x = My_fzero(fun, x0, trace_level, p1, p2 …)
 [x, fval] = My_fzero(…)
 [x, fval, exitflag] = My_fzero(…)
 [x, fval, exitflag, fcount] = My_fzero(…)

Description

x = My_fzero(fun, x0) tries to find a zero using the initial guess(es) x0. x0 can be
a scalar or a vector of length two, which means My_fzero can have one or two
initial guesses.

The value x is a root if My_fzero finds one, or x(1) and x(2) are two successive
machine representable points where fun reverses sign, or x is a local minimum of
|f(x)|, or x is the last point before My_fzero claims no root has been found.
Usually, x(2) will keep the second latest point of guess. The meaning of x is
indicated by exitflag.

x = My_fzero(fun, x0, trace_level) displays information according to trace_level:

x = My_fzero(fun, x0, trace_level, p1, p2 …) provides for additional arguments,
p1, p2, etc., which passed to the objective function, fun.

[x, fval] = My_fzero(…) returns the value of the objective function fun at the
solution.

[x, fval, exitflag] = My_fzero(…) returns a value exitflag that describes the exit
condition, thus the meaning of x.

[x, fval, exitflag, fcount] = My_fzero(…) returns a fcount which indicates how
many times the function fun has been executed.

Arguments
 Input Argument:

fun The function whose zero is to be searched. fun is a function that accepts a
scalar x and returns a scalar f, the objective function evaluated at x. The
function fun can be specified as a function object:

 x = My_fzero(‘Anyfun’, x0)
 where Anyfun is a Matlab function.
 Fun can also be an inline function:
 x = My_fzero(inline(‘exp(x)-3’), x0)

 39

x0 Initial guess or guesses

trace_level

 trace_level indicates what information to display. The value of trace_level
can be:
0 no display.
1 display the final message (find a root, minimum, no root or error,

etc.)
2 display information for each iteration.

 p1, p2, …
 Additional arguments for function fun.

 Output Argument:

x Root or two successive representable points where fun reverses sign or
local minimum of |fun| or the last point before exit.

 fval The value of the function fun at x.

 exitflag
 A value indicates the exit condition. It can be:
 0 Root found successfully.
 1 Arguments error.
 2 Second argument must be of length 1 or 2.
 3 The input function failed.
 4 All guess(s) is/are not valid or out of domain.
 5 One guess is valid, but cannot find any other valid point near it.

6 Search already extended to +/-Inf. But the value of FunFcnIn at
that infinite point is not a number. There might be a limit.

7 Search already extended to +/-Inf. There might be a limit.
8 Search interval exhausted during Secant extrapolation.
9 There might be a minimum magnitude.
10 Found an interval where the function reverses sign.
11 Search interval whether the function reverses sign exhausted

during Bisection method.

 Fcount
 Number of times the function fun has been executed.

Algorithm
 Please refer to the body of this report.

