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A More Reliable Equation Solver –My_fzero 

(Matlab Version) 
 

 
My_fzero is a reliable and efficient root- finder program in Matlab version. The idea of 
how My_fzero works comes from combining the ideas of “Personal Calculator Has Key 
to Solve Any Equation 0)( =xf ” by Professor William M. Kahan, “An Equation Solver 
for a Handheld Calculator” by Paul J. McClellan, and the Matlab root- finder, fzero.  
 
Introduction 
 
Finding zeros/roots of a given function f , that is, find a number a  such that 0)( =af , 
is the most important and basic of tasks in many different fields. A lot of problems in 
physics, chemistry, economics, statistics and mathematics field have to use the method of 
finding zeros of functions. Therefore, a good method of determining the roots/zeros of 
functions (including polynomials, equations with exponential terms, logarithm terms, 
trigonometry terms, etc.) is very important. This topic has captured a lot of 
mathematicians’ interests for centuries.  
 
As the world becomes more and more technology-oriented, the problems we are facing 
today become more and more complicated. The functions we have to solve are not only 
some simple equations any more. They are usually some very complicated functions (for 
instance, some computer programmed functions). And usually they are passed to us as a 
black box. So a smart, efficient, and robust root finder program is essential for us today.  
 
For us, the ideal equation solver should be able to find all solutions of any equation 
provided by the user. However, this is impossible in general for today. A more realistic 
expectation is that the root finder should have several key abilities. First, it can find one 
root at a time for most equations, beginning with user provided initial guess or guesses 
not necessarily restricted to be very near to the solution. Second, it can flexibly find 
minimum or maximum or limitation instead of insisting to find a root where there might 
be no root at all. Third, it can provide understandable and reliable diagnostic information 
should the solver fail to find a solution, so that the user can rewrite )(xf  into a new one 
which is easier to solve, or the user can give different initial guess or guesses. These are 
the design objective for the equation solver, “My_fzero”. 
 
How things are today? 
 
We have many documents about how to find roots for equations with one or more 
independent variables. For instance, “Iterative Method for the Solution of Equations” by J. 
F. Traub, “Solution of equations and Systems of Equations” by Ostrowski, “The 
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Numerical Treatment of a single Non-linear equation” by Householder, etc.  Here we will 
only consider the equations with one independent variable. 
 
There are already a lot of numerical root-finding methods. The most popular methods 
include Bisection Method, Brent’s Method, False Position Method, Inverse Quadratic 
Method, Muller’s Method, Newton’s Method, Ridders’ Method, Secant Method, etc. The 
complexities of these methods vary a lot. Each method has some advantage for some 
individual cases, but none of them is a heal-all. For example, Bisection Method is a very 
simple and robust method. Given two points a  and b  where the function )(xf  reverses 
sign, and suppose )(xf  is computable for all the points between a  and b , Bisection 
Method grantees to find a root where )(xf  vanishes or find two successive machine 
representable points where )(xf  reverses sign. However Bisection Method is usually 
very slow. And the requirement of )(xf  reverses sign at the given two points is hard to 
satisfy because the user usually does not know what the function is. Another famous 
method, Newton’s Method, is theoretically good but hard to be applied, because it is 
generally impossible to calculate the derivative for a user-defined function )(xf . Even 
when the calculation of derivative is achievable, the performance of Newton’s Method 
will not be good until the guess is near enough to the root, which is almost as hard as 
finding the root. 
 
Having the idea that none of these root-finding methods can fit all the cases, it is 
reasonable to think that a good root finder should be a combination of many methods, and 
it should have the ability to choose a proper method for each step automatically. 
My_fzero is designed following this concept.  
 
What is My_fzero? What does My_fzero do? When does it work? 
 
My_fzero is an automatic numerical real root finder which can solve for the real roots of 
one variable equations of the form 
 

                          0)( =xf                                       (1) 
 

where )(xf  is generally a non- linear function of x defined by the user. )(xf  can be as 
simple as a function like 1)( −= xxf , and it can also be a very complicated user 
provided program. Also, )(xf  can be continuous or discontinuous, and might not be 
computable for some regions. For an illustration of the usage of My_fzero, consider the 
following function 
 

32)( 3 −−= xxxf      (2) 
 

The user can run: 
 

My_fzero(inline('x.^3 -2*x -3'),1) 
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where inline('x.^3 -2*x -3') means an inline func tion of )(xf , and the initial guess is 1. 
The result 1.89328919630450 is displayed after the user run the above command. 
 
Although some equation solvers use or partly use direct solver 1  to analyze )(xf  and 
attempt to solve it by applying rules of algebra, in general, no equation solver can 
understand )(xf  or the program that defines )(xf . Based on this reason, My_fzero does 
not consider direct solving method at all. It just takes )(xf  as a black box, and iteratively 
executes it with its guess or guesses as the argument, beginning with the initial guess or 
guesses provided by the user. It will consider a proper model to fit )(xf  based on the 
previous results, and find the best guess to the root as the next guess based on this model. 
If everything goes well, My_fzero will get closer and closer to the root, until it finally 
finds a guess where )(xf  vanishes, which must then be the root. 
 
However, will )(xf  always vanish at its root? Mathematically speaking, yes. But for a 
computer, it is not necessary to be true. Any computer has its precision, which means 
computer cannot represent all real numbers precisely. For example, computer can 
represent 1/2 as 0.5 precisely, but 1/3 will probably be represented as 0.33…3 within a 
computer. Thus, for a computer, only discrete points in the real axis are representable, 
and the density of these representable points near x is determined by the value of x and 
the precision of the computer. This is the root of the notorious round off problem.  
 
For example, if 

21)( epsxxf −−=       (3) 
 

where eps  is a constant of the floating-point relative accuracy in that computer, which 
means the distance from 1.0 to the next representable number. In most recent computers, 
eps  is about 2.22e-16, not very small in fact. It’s easy to see that mathematically )(xf  
has a root at 21 eps+ . But because the computer cannot represent 21 eps+  precisely, 
and the nearest two representable points are 1 and eps+1 , the smallest absolute value of 

)(xf  is 2eps , which is about 1.11e-16, but )(xf  never vanishes. Taking this in mind, 
the equation solver can not insist to find a root where )(xf  vanishes; instead, if it can 
find two successive representable numbers where )(xf  reverses sign, it will also declare 
that a root is found. 
 
For the below three most common and easiest cases, My_fzero guarantees to find a root2: 
 
1. )(xf  is strictly monotonic, regardless of initial guesses; 

                                                 
1 Direct solver: the equation solver attempts to solve the user defined equation directly by applying rules of 
algebra to isolate the unknown on one side of an equation. If it succeeds, the value of the other side of the 
equation is the solution to the equation. Paul J. McClellan, “An Equation Solver for a Handheld Calculator”, 
Hewlett-Packard Journal, August 1987  
2 William M. Kahan, “Personal Calculator Has Key to Solve Any Equation f(x) = 0”, Hewlett-Packard 
Journal December 1979 
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2. )(xf±  is strictly convex, and there is a representable point where )(xf  is 0, or there 

are two representable points where )(xf  reverses sign, regardless of initial guesses; 
 
3. )(xf  reverses sign in the initial guesses a and b which means )(af  and )(bf  has 

different signs, and )(xf  is computable for all numbers between a  and b ; 
 
For other cases, My_fzero will mostly succeed, but may also fail to find a place where 

)(xf  vanishes or reverses sign, possibly because no such place exists. When it happens 
that My_fzero cannot find a root, rather than searching forever, it will stop where it 
seems )(xf  has reached to a local minimum or constant, or it will stop and declare that 
no root has been found. An exit flag is returned to inform the user whether it finds a root, 
finds two successive representable points where the function reverse sign, find a local 
minimum of )(xf , or there is no root found. Based on the exit flag and the result, the 
user can determine what to do next. 
 
Although My_fzero is quite robust, it doesn’t necessarily mean My_fzero will never get 
wrong. As illustrated above, the computer can represent only discrete points in the real 
axis, thus the behavior of )(xf  besides these representable points is not going to be 
revealed by any root finder. For example, let  
 

)4(2025)( 2 epsxxxf ++−=                                       (4) 
 

It can be seen that mathematically speaking, )(xf  has no real root. But due to the round-
off problem, the machine might return 0.4 as the root of )(xf , which is clearly wrong.  
 
Furthermore, even if the computer can represent any real number without round off, any 
root finder can still be fooled easily. In order to fool any root-finder, first let the root-
finder to solve for zeros of 1)( ≡xf , and record the finitely many points nxxx ,,, 21 Λ  at 
which )(xf  was calculated to reach the decision that )(xf  never vanishes. Then we can 
form a function: 
 

  1)()()(
1

+−Π⋅=
= i

n

i
xxxgxf      (5) 

 
where )(xg  can be any function with no pole at nxxx ,,, 21 Λ . 
 
Since both functions take exactly the same value 1 at every sample argument, the root 
finder must decide the same way for both: both equations 0)( =xf  have no real root. But 
that is obviously wrong. 
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How does My_fzero compare with other root finders? 
 
There are many equation solvers in the world. However, most of them are hampered by 
one or more limitations listed below: 
 
1. They may insist to be given two initial guesses where the function reverses sign. This  

requirement is sometimes hard to satisfy because the user usually doesn’t know 
exactly what the property of the function is. My_fzero can take one or two initial 
guesses, when )(xf is real and finite for at least one of them, My_fzero will try its 
best to find a root no matter the initial guess is near or far from the root. But better 
guess will help My_fzero to find a root faster. 

 
2. They may ask for one or more stopping criteria in case they will run forever. These 

criteria includes maximum steps or maximum time they might iterate no matter they 
find a root or not, or a tolerance that they will stop and claim a root when the 
distance between either the two points where the function reverses sign or any two 
successive guesses is less than the tolerance. These criteria are also hard to be 
defined in advance properly, because of the unknown property of )(xf . Using the 
maximum iteration steps or time criterion, they may claim no root when their search 
permit expires after a long search, but just a few more steps before they would have 
found a root. When using a tolerance, they may still run forever because that 
tolerance can never be reached, or they may claim a “root” is found no matter how 
silly it is. Furthermore, the tolerance should be relative to the root itself. For example, 
a root 11.0 ±  is not as precise as a root 1100 ± . My_fzero does not have these 
problems. It will stop and claim a root only when it has found a point when )(xf  
vanishes, or found two successive machine representable points where )(xf  reverses 
sign. My_fzero can go on searching for a long time for some cases like xxf 1)( = , 
but will not run forever. 

 
3. They may insist to find a root, even there is not root at all. My_fzero will stop when 

it thinks it has found a local minimum of )(xf . 
 
4. They may be unable to handle out of domain problem. If an arithmetic error occurs 

during the evaluation of )(xf  for some x , then )(xf  is not defined for that value of 
x  and we say that x  lies outside the domain of the definition of )(xf . Usually, they 
may stop and claim that there is no root, just because they encounter the out of 
domain problem. My_fzero can properly deal with that problem. 

 
5. They may simply return a root if they find one, or claim no root if they cannot find 

one. There isn’t much more information for the user. My_fzero will return an exit 
flag indicating why it stopped. The reason can be that it has found a root, or it has 
found two successive representable points where )(xf  reverses sign, or it has found 

a local minimum of )(xf , or it found not root, etc. This exit flag can help the user to 
decide what to do next, like re-write the function in another format to see whether it 
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will be easier to solve, try out different guesses, etc. The user can even write a 
program to deal with it automatically, based on the exit flag. My_fzero will also 
return the last two guesses and the function values for these two guesses. 

 
6. They may restrict )(xf . My_fzero has no requirement of what )(xf  is. )(xf  can be 

a build in function, an inline function, or in general a user provided function. 
 
How does My_fzero work? 
 
The method My_fzero employed is a combination of Bisection Method, modified Secant 
Method, Quadratic Method, and Brent’s Method, which itself is also a combination of 
several root finding methods including Bisection Method, False Position Method (it is 
also called Root Bracketing Method), and Inverse Quadratic Method. 
 
Fig.1 below shows the three blocks of My_fzero. First, My_fzero analyze the input 
arguments and initialize some variables, which include the search bounds with 

∞= -lowerbound  and ∞=upperbound . If it finds some syntax error, it will exit at that 
point. Then, My_fzero will try to obtain two valid initial guesses, which means the values 
of )(xf  at these two points are real and finite. The user of My_fzero can input one or 
two initial guesses. If the user provides two identical guesses, one of them will be 
discarded. If no guess the user provides is valid, My_fzero will display some message 
and exit. If the user provides two guesses, and they are all valid, the program will go on 
to the main loop for root finding. Otherwise, the user has provided only one valid guess, 
say, a . In this case, My_fzero will try to find another valid guess b  before it can actually 
begin to find a root. It will search the right side first to see whether it can find b . If 0=a , 
set 501=b , otherwise, set 50aab += . In this way, My_fzero will have another rough 
guess not far away from a . If )(xf  is out of domain at b , then use Bisection Method, 
i.e., let ( ) 2bab += . Any time )(xf  is out of domain at b , the search bound will be 
reset bupperbound = . This process will continue until a valid guess is found, or there 
isn’t any other machine representable point between a  and b . If the latter case happens, 
My_fzero will try to find a valid point in the left side of a . The process will be the same, 
except that b  will be initially set to -1/50 or 50aa − , and that blowebound =  if out of 
domain happens. 
 
If My_fzero has searched both sides and found no second valid point, it will return with 
an exitflag  indicating it cannot find a second valid point. Otherwise, it has successfully 
finished the initial guesses block. If My_fzero happens to meet a point where )(xf  
vanishes, which in fact seldom happens, it will luckily return with the root. Otherwise, it 
goes on to the main loop. 
 
Although this method for obtaining initial guesses is simple, it’s quite robust. Since we 
do not have much information up to this stage, Bisection Method is a reasonable choice. 
Other root finders might have some problem when trying to obtain two initial guesses. 
For example, the Matlab root finder, fzero, can also take one or two initial guesses. If two 
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guesses are provided, it insists that the function )(xf  must reverse sign at these two 
points, which in fact make it almost as difficult as finding the root itself. If only one 
guess is provided, fzero will try both side of a  alternatively, multiplying the distance 
between a  and the guess by a fix constant which is larger than 1, until it finds one b  that 

)(af  and )(bf  have different signs, or it meets an out of domain problem. However, this 
method is not trustworthy. For example, when )(xf  is computable anywhere and always 
has the same sign, given whatever single guess, fzero will run for ever, because it can 
never find two points where )(xf  reverses sign. 
 

Fig.1 Diagram of My_fzero 
 
Fig.2 shows the diagram for the main loop of My_fzero. For each loop, there must be two 
points a  and b , and )(bf  is always the best value, which means )()( afbf < . There 
may also be a third point, depending on the previous result, which will be explained later. 
As the methods used for the case where )(af  and )(bf  have the same sign and for the 
case where )(af  and )(bf  have different signs are quite different, first of all, My_fzero 
will select a processing block based on this information. In each of the two blocks, 
My_fzero will try to find a proper next point c  using the most suitable method, and 
calculate )(cf . When My_fzero reaches one of its exit conditions, (which means it 
successfully finds a root, or two successive machine representable points where )(xf  

reverses sign, or a local minimum of )(xf , or it concludes that it can not find a root.) 
My_fzero will prepare the output arguments and then return within the main loop. If 
My_fzero has not reach any exit condition, it will record some information, and update 
the current guesses a  and b , and also make sure that )()( afbf < . 
 
Fig.3 and Fig.4 show the diagram of processing blocks for the same sign case and 
different signs case individually. 
 
 

Initialize 

START 

Obtain two initial guesses 
 

Main loop 

END 
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Fig.2 Diagram for the main loop 

f(a) and f(b) have 
same sign? 

Find proper next point 
c for same sign case 

Find proper next point 
c for different signs 

case 

Update a and b 

No 

Yes 
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Fig.3 Diagram for the block dealing with the case where f(a) and f(b) have the same sign. 

Use modified Secant Method to 
find point c 

Search interval 
exhausted? 

Prepare output arguments 
and return 

No 

Yes 

f(c) out of domain? 

Reset search interval 

Use Bisection Method to find 
new c 

Search interval 
exhausted? 

Prepare output arguments 
and return 

Yes 

No 

f(b) and f(c) have the same 
sign & |f(c)|>=|f(b)|? 

Yes 

Quadratic Method 
already done? 

No 

No 

Yes 

Quadratic Method has 
been successively tried 20 

times? 

Reset quadratic 
counter 

Prepare output arguments 
and return 

Yes 

No 

Yes 

No 

Use Quadratic 
Method to find 

a new c 
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Fig.4 Diagram for the block dealing with the case where f(a) and f(b) have different signs. 
 
 
 
 

Reset search interval 

Brent’s Method 

Search interval 
exhausted? 

Separate the interval [a b] into two 
sub search intervals  

[a c) and (c b] 

 

Yes 

f(c) out of domain? 

Prepare output arguments 
and return 

No 

Yes 

Use Bisection Method to reduce the 
lengths of both sub search intervals 

 

Both sub intervals 
exhausted? 

Yes 

Prepare output arguments 
and return 

No 

At least one sub interval 
is valid, and f(x) reverses 

sign at this interval? 

No 

No 

Yes 
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l Root finding method when f(a) and f(b) have the same sign 
 
The basic method used for the case where )(af  and )(bf  have the same sign is modified 
Secant Method. Secant Method is a well-known powerful root finding method. Suppose 
we have the current two guesses a  and b . As illustrated in Fig.5, the straight line cross 
( ))(, afa  and ( ))(, bfb  will usually cut the x-axis at ( )0,c . The value of c  is given by 
the formula: 
 

( ))()()()( afbfbfabbc −⋅−−=     (6) 
 

If a  and b lie close enough to the root of )(xf  and the graph of )(xf  near the root is 
smooth enough, )(xf  is assumed to be approximately linear near the root, so we can see 
that c  is much closer to the root than a  and b . This means Secant Method can give a 
better approximation toward the root based on the current guesses. Furthermore, this 
approaching can be done in an iterative way, that is, each time let ba =  and cb = , and 
go on using Secant Method. In this way, the new guess will get closer and closer to the 
root until it finally reaches the root. 
 

 
Fig.5 Secant Method 

 
However, there are still some problems with Secant Method. When the difference 
between )(af  and )(bf  is relatively small, the next point c  may run far away from the 
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root, as illustrated in Fig.6. To avoid this problem, a constraint that c  cannot run too far 
away at a time was added. That is, when )()( bfaf =  or abbc −⋅>− 100 , let 

abbc −⋅=− 100 . 
 

 
Fig.6 Secant Method when different between f(a) and f(b) is small 

 
Another problem is that, when it happens that )(af  is much larger than )(bf , as 
illustrated in Fig.7, round off problem may make c  coincide with b . This may let Secant 
Method stop unsuccessfully. The modification used in My_fzero for this case is to let c  
be the next representable point of b . 
 
To find the root, Secant Method requires a  and b  to be close enough to the root, 
otherwise it may possibly run away from the root, and even may never come back. But 
finding guesses close to the root usually can take a long time. After Secant Method finds 
good guesses near the root, usually it will converge to it very fast. Then when )(xf  
becomes tiny, the rounding error becomes significant too. The relatively inaccurate )(af  
and )(bf  makes the quotient ( ))()()( afbfbf −  not very reliable. It’s worth to point out 
that if )(xf  has some level of uncertainty, that is to say there is some “noise” when 
calculating )(xf , it’s better for the user who defines )(xf  to make sure that )(xf  is 
forced to be 0 when the its absolute value is under the level of uncertainty. This is to 
make the root finding process more robust against no ise. 
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Fig.7 Round off problem makes Secant Method stop 

 
Another thing worth to mention is that, when the two guesses are very near to the roots, 

ab −  and )(bf  are both so small that when calculating formula (6), )()( bfab ⋅−  may 
be first rounded off to 0, then ( ))()()()( afbfbfab −⋅−  will also be 0 not matter how 
small )()( afbf −  is. To avoid this problem, parentheses should be added to the formula 
as: 
 

( )( ))()()()( afbfbfabbc −⋅−−=     (7) 
 

Sometimes Secant Method iteration cycles endlessly through estimations 
Λ,,,,,,,, dcbadcba , as illustrated in Fig.8 and Fig.9. My_fzero will not cycle like 

Fig.8, because when it finds two points where )(xf  reverses sign, it will give up Secant 
Method and begin to use Brent’s Method. To avoid cycling like Fig.9, when My_fzero 
finds )(cf  is larger than )(bf , it uses Quadratic Method, trying to find a local 

minimum of )(xf . Here Quadratic Method means interpolating a quadratic through the 

three points ( ))(, afa , ( ))(, bfb  and ( ))(, cfc , and set d  to the place where that  
quadratic’s derivative vanishes. In effect, d  is the highest or lowest point on the 
quadratic. Then, My_fzero will resume the Secant iteration using b  and d  as the next 
two guesses. At all times, b  and )(bf  records the smallest )(xf  calculated so far. 
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Fig.8 Cycling of Secant Method, (case 1) 

 
Quadratic Method can keep Secant Method from cycling around a relatively shallow 
minimum of )(xf , as illustrated in Fig.10, because it will usually look elsewhere for the 
root. But Quadratic Method still cannot prevent the searching from trapped near 
relatively deep minimum of )(xf . To solve this, My_fzero does not insist to find a root. 

If )(bf  has not decreased for Q  consecutive quadratic fits, My_fzero concludes that 

there is a local minimum of )(xf  at b , and stops searching. Q  is a constant number. 
The larger Q , the larger chance My_fzero will avoid being trapped near a local minimum 

of )(xf , or the larger chance it will find a more precise local minimum. However, the 
calculation increases with larger Q . In My_fzero, Q  is 20. 
 
The whole process of a root finding iteration when )(af  and )(bf  have the same sign is 
described below: 
 
First, use Secant Method to find next guess c . If abbc −⋅>− 100 , let 

)(100 bcsignabbc −⋅−⋅+= . If c  happens to coincide with b , let c  be the next 

representable point of b . If c  is out of search interval, let c  be ( ) 2lowerboundb +  or 
( ) 2upperboundb + , depending on to which side of the search interval c  locates. 
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Fig.9 Cycling of Secant Method, (case 2) 

 
Then, if the search interval has been exhausted, My_fzero meets its exit condition. It will 
decide whether that’s because it cannot find a root, or because it has expanded the 
searching to infinite. 
 
If the search interval has not been exhausted, My_fzero will calculate )(cf . If )(cf  is 
out of domain, Bisection Method will be used iteratively, reset the search interval and let 

2)( cbc +=  in each iteration. This will not stop until the search interval has been 
exhausted, or )(cf  is within domain. If the search interval has been exhausted, My_fzero 
has failed to find a root. Otherwise, My_fzero has found a valid c , and it will go on the 
following steps. 
 
If )(cf  and )(bf  have different signs, My_fzero will stop Secant Method and jump to 
the block which deal with the case that )(xf  reverses sign. Otherwise, My_fzero 

compares )(cf  and )(bf . If )()( bfcf < , Secant Method has found a better 

approximation to the root, so it will go on to the next iteration. If )()( bfcf ≥ , 
Quadratic Method is used, and c  is reset to the point where the derivation of the  
quadratic vanishes. Each time Quadratic Method is employed, a counter is decremented 
and tested. Each time Secant method finds )(cf  with decreasing magnitude, that counter 
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is reset to Q . When the decremented counter value is zero, My_fzero returns the last 

sample value as an approximate local minimum of )(xf . Otherwise, it will go on 
searching with the new guess c . However, this new c  is still possible to be out of 
domain, so My_fzero will go back to the place where it calculate )(cf  and see whether 

)(cf  is out of domain. So there is a loop within each iteration, as illustrated in Fig.3. If 

)(cf  is within the domain, then no matter )(cf  is less than )(bf  or not, My_fzero will 
take it and go on to the next iteration. 
 

 
Fig.10 Quadratic Method 

 
 
l Root finding method when f(a) and f(b) have different signs 
 
The main method used in this block is Brent’s Method, also known as van Wijngaarden-
Deker-Brent Method.  
 
Although Secant Method and other methods like False Position Method usually converge 
faster than Bisection Method, we still often find cases for which Bisection converges 
more rapidly. Bisection Method always halves the interval, while Secant Method and 
False Position Method can sometimes spend many iterations trying to get near to the root. 
A better way to do root finding is to combine these methods together. We can use a 
usually fast method while keeping track of whether it is actually converging or not. If not, 
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Bisection Method will be used as a back up to make sure the program at least converges 
linearly. Brent ’s Method is an excellent algorithm that works in the above way. It is a 
combination of False Position, Bisection, and Inverse Quadratic Method. False Position is 
similar to Secant Method, and it only differs in that False Position retains the known 
smallest interval brackets the root. Inverse Quadratic Method is similar to the Quadratic 
Method. It uses three points to fit an inverse quadratic  function for which x is a quadratic 
function of y, as illustrated in Fig.11.  
 

 
Fig.11 Inverse Quadratic Method 

 
The function of the inverse quadratic can be written as:3 
 

b
afbfcfbf

afycfy

a
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c
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−⋅−
−⋅−

=
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 (8) 

 
The point where the inverse quadratic crosses x-axis is taken as the next guess. Setting y 
to zero gives this point, which can be written as: 
 

                                                 
3 William H. Press, “Numerical Recipes – the Art of Scientific Computing,” Page 252, Cambridge 
University Press 1986   
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QPbx +=       (9) 
Where, set: 
 

)()(,)()(,)()( cfafTafbfScfbfR ===   (10) 
 

And: 
 

)]()1()()([ abRbcTRTSP −⋅−−−⋅−⋅⋅=    (11) 
 

)1()1()1( −⋅−⋅−= SRTQ     (12) 
 

And b  and )(bf  records the smallest )(xf  calculated so far. Usually, QP  ought to be 
a small correction. However, Inverse Quadratic method is not very stable. It will give 
very bad guess. Brent ’s Method avoids this problem by maintaining brackets on the root 
and checking whether the new guess calculated using Inverse Quadratic Method or False 
Position Method is within the brackets and is converging rapidly enough. If not, it will 
use Bisection Method instead. Thus, Brent’s Method combines the robustness of 
Bisection Method with the higher speed of Inverse Quadratic Method and False Position 
Method. 
 
The whole process of a root finding iteration when )(af  and )(bf  have different signs is 
described below: 
 
First, reset the search interval which is known the smallest interval which brackets the 
root. That is, ),min(l baowerbound =  and ),max( baupperbound = . Then, if )(af  or 

)(bf  is infinite, use Bisection Method, otherwise use Brent ’s Method to find a new guess 
c . Brent’s Method will choose one out of the three methods: Bisection Method, False 
Position Method and Inverse Quadratic Method. If the search interval has been exhausted, 
My_fzero has successfully found two successive machine representable points which 
bracket the root. Otherwise, My_fzero calculate )(cf  and see whether )(cf  is out of 
domain. If not, My_fzero will go on to the next iteration. If )(cf  is out of domain, the 
search interval [ ]upperboundlowerbound  is divided into two sub intervals 
[ )1glowerbound  and ( ]upperboundg2 , where cgg == 21  initially. Then, these two sub 
intervals are halved alternatively and iteratively using Bisection Method. In each time, let 

2)( 1glowerboundc +=  first. If )(cf  is out of domain, then let cg =1 . Otherwise, if 
)(cf  and )(lowerboundf  have the same sign, let clowerbound = . Then the right sub 

interval is processed in the same way. This loop will continue until both sub intervals are 
exhausted; or My_fzero finds a sub interval which brackets the root. If the intervals are 
exhausted, My_fzero fails to find any root. If it’s the latter case, the sub interval which 
brackets the root will be kept, while the other sub interval will be discarded. Then 
My_fzero will resume root finding. 
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Examples and Comparison 
 
In order to test the performance of My_fzero, some examples are given in this chapter. 
Also, several other methods are used as comparison. These methods (or program) include 
fzero, Bisection Method, Secant Method, False Position Method and Brent’s Method. 
Because fzero uses Brent ’s Method after it finds two points where )(xf  reverses sign, 
the result of Brent ’s Method is the same as fzero if two initial guesses are provided. 
Consequently, it is not necessary to list Brent ’s Method in the tables. The program of 
fzero requires a tolerance, which is eps  in default. 
 
The numbers listed in these tables may be cut short if they are too long to be put in the 
tables. Also, My_fzero may output an interval that brackets the root, so there may be two 
values listed in the “X” and “fval” row. If a method is not applied, it will be left empty. 
 
1. 2)exp()( −+= xxxf  

 
The function is shown in Fig.12.  

 
Fig.12 2)exp()( −+= xxxf  

 
The result is shown in Tab.1.  
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     Initial_Guess(es)        
Method                   -5 4 -5, 4 -5, -3 

X 0.44285440100239 0.44285440100239 0.44285440100239 0.44285440100239 

fval 0 0 0 0 
My_fzero 

steps 11 13 11 12 

X 0.44285440100239 0.44285440100239 0.44285440100239   

fval 0 0 0   
fzero 

steps 33 27 11   
X     0.44285440100239  0.44285440100239 

fval     0  0 Secant 
steps     14 12 
X     0.44285440100239   

fval     0   Bisection 
steps     58   
X     0.44285440100239   

fval     -3.1086244689e-015   False Position 
steps     207   

 
Tab.1 Comparison for 2)exp()( −+= xxxf  
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2. )4ln44(4)exp()( −−−= xxxf  
 

 
Fig.13 )4ln44(4)exp()( −−−= xxxf  

 
 
     Initial_Guess(es)        
Method                   -3 2 -3, 2 -3,-2 

X 1.38629435046769 1.38629437556774 1.38629435316725 1.38629434784790 

fval 0 0 0 0 
My_fzero 

steps 41 39 40 40 

X  NaN  NaN     

fval  NaN  NaN     
fzero 

steps 55 (Failed) 58 (Failed)     
X     1.38629437500115 1.38629434784790 

fval     0 0 Secant 
steps     40 40 

 
Tab.2 Comparison for )4ln44(4)exp()( −−−= xxxf  



 22

3. 9020)exp()( +−= xxxf  
 

 
Fig.14 9020)exp()( +−= xxxf  

 
 

     Initial_Guess(es)        
Method                   -4 5 -6, -4 -2, 5 

X 2.99380152969407 2.99452197374669 2.99573192325833 2.99175808342445 

fval 50.08539178265905 50.08536917126861 50.08535452892141 50.08551226176941 
My_fzero 

steps 42 (min) 43 (min) 47 (min) 44 (min) 

X NaN NaN     

fval NaN NaN     
fzero 

steps 53 (Failed) 52 (Failed)     
X     -4.73465295951742 4.74423859164874 

fval     184.7018446875744 110.0354990955713 Secant 
steps     33 (Wrong) 178 (Wrong) 

 
Tab.3 Comparison for 9020)exp()( +−= xxxf  
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4. 1)16exp()( 4 −−−= xxxf  

 
Fig.15 1)16exp()( 4 −−−= xxxf  

 
 

     Initial_Guess(es)      
Method                   -0.5 1 3 1, 3 

X 0.16679566609859 0.16679566609859 3.06000000000000 1.75777201824726 

fval 0 0 -1 0 
My_fzero 

steps 12 13 41 (Min) 14 

X 0.16679566609859 0.16679566609859 1.75777201824726 1.75777201824726 

fval 8.8817841970e-016 0 0 -1.776356839e-015 
fzero 

steps 36 29 27 16 
X      -Inf 

fval      -1 Secant 
steps      4 
X       1.7577720182472 

fval       0 Bisection 
steps       54 

False Position X       1.75777201824726 
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fval       -5.329070518e-015  
steps       183 

 
Tab.4 Comparison for 1)16exp()( 4 −−−= xxxf  

 
 
5. )6ln()( 4xxxf −=  

 
Fig.16 )6ln()( 4xxxf −=  

 
     Initial_Guess(es)        
Method                   1 0.1, 1 0.5, 1 0.1, 1.8 

X 0.16679566609859 0.16679566609859 0.16679566609859 0.16679566609859 

fval 0 0 0 0 
My_fzero 

steps 13 10 12 16 

X 0.16679566609859 0.16679566609859     

fval 0 0     
fzero 

steps 30 10     
X   NaN NaN NaN Secant 
fval   NaN NaN NaN 
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 steps   4 (Failed) 3 (Failed) 3 (Failed) 
X   0.16679566609859     

fval   0     Bisection 
steps   56     
X   0.16679566609859     

fval   0     False Position 
steps   28     

 
Tab.5 Comparison for )6ln()( 4xxxf −=  

 
6. 1)1()( 2 −−= xxf  

 
Fig.17 1)1()( 2 −−= xxf  

 
     Initial_Guess(es)        
Method                   -1 1 -2, 1 1, 4 

X -9.073655918e-017 2 3.5343903075e-017 2 

fval 0 0 0 0 
My_fzero 

steps 9 9 11 11 

X -1.538729133e-017 -1.258661437e-017 3.5568126759e-017 2 
fzero 

fval 0 0 0 0 
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steps 31 32 11 11 
X     -7.073198405e-018 2 

fval     0 0 Secant 
steps     13 11 
X     -1.110223024e-016 2 

fval     0 0 Bisection 
steps     55 55 
X     3.7088953354e-018 2.00000000000000 

fval     0 -8.881784197e-016 False Position 
steps     57 54 

 
Tab.6 Comparison for 1)1()( 2 −−= xxf  

 
 
7. )1.0)exp(2sin()( 2 +−⋅= xxf π  

 
 

Fig.18 )1.0)exp(2sin()( 2 +−⋅= xxf π  
 
 
 
     Initial_Guess(es)        
Method                   -9 -0.5 -6, 0.5 0, 2 

My_fzero X -8.82000000000000 0.12666296163542,     -0.85176040584,    - 0.12666296163542, 
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  0.12666296163542 0.85176040584 0.12666296163542 

fval 0.09983341664683 -0.24492935e-15, 
0.643249059e-15 

0.1224646799e-15, -
0.3216245299e-15 

-0.2449293e-15, 
0.6432490e-15 

 

steps 41 (Min) 18 12 19 

X   -0.12666296163542 -0.85176040584857   

fval   -2.44929359e-016 1.2246467991e-016   
fzero 

steps Never Stop 31 14   
X         

fval         Secant 
steps     8 (Failed) 7 (Failed) 

X     
-0.8517604058485, -

0.8517604058485   

fval     
0.1224646799e-15, -
0.3216245299e-15   

Bisection 

steps     58   
X     -0.85176040584857   

fval     1.224646799e-016   False Position 
steps     21   

 
Tab.7 Comparison for )1.0)exp(2sin()( 2 +−⋅= xxf π  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. ( ) 05.0||exp||)( +−⋅= xxxf  
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Fig.19 ( ) 05.0||exp||)( +−⋅= xxxf  
 
     Initial_Guess(es)        
Method                   -4 -0.2 -4, -0.2 -0.2, -0.1 

X -315.704551030901 0.00019712926687 -212.35589595391 148.92040406551 

fval 0.05000000000000 0.05019709041075 0.05000000000000 0.05000000000000 
My_fzero 

steps 45 (Min) 50 (Min) 44 (Min) 44 (Min) 

X NaN NaN     

fval NaN NaN     
fzero 

steps 4111 (Failed) 4127 (Failed)     
X     NaN NaN 

fval     NaN NaN Secant 
steps     7 (Failed) 7 (Failed) 

 
Tab.8 Comparison for ( ) 05.0||exp||)( +−⋅= xxxf  

 
 

9. )sin(1)( xxf =  
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Fig.20 )sin(1)( xxf =  
 
 
 
 

     Initial_Guess(es)        
Method                   -2 3.5 -3,-0.2 2, 4 

X 0,    4.940656458e-
324 

6.28318530717959, 
6.28318530717959 

6.28318530717959, 
6.28318530717959 

3.14159265358979, 
3.14159265358979 

fval -Inf,Inf 0.6529855401e+15, -
4.0828098382e+15 

1.5546077909e+15, -
4.0828098382e+15 

-3.109215581e+15, 
8.1656196765e+15 

My_fzero 

steps 1371 73 69 67 

X -3.14159265358979 3.14159265358979   3.14159265358980 

fval -6.87411693e+014 -6.0463434e+014   -4.7664865e+014 
fzero 

steps 86 71   67 
X     7.15444238e+015 1.35452182e+029 

fval     -1.42857839908636 1.89740919371289 Secant 
steps     638 (Wrong) 974 (Wrong) 

Bisection X       
3.14159265358979, 
3.14159265358979 
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fval       
8.1656196765e+15, -

3.109215581e+15 
 

steps       54 
X       3.14159265358979 

fval       -1.30597108e+015 False Position 
steps       123 

 
Tab.9 Comparison for )sin(1)( xxf =  

 
 
 
 
10. ( ) ( )( )002.011)exp()()( 2 ++⋅−⋅−⋅= xxxxsignxf  

 
 

Fig.21 ( ) ( )( )002.011)exp()()( 2 ++⋅−⋅−⋅= xxxxsignxf  
 
 
 
 
 
 
 
     Initial_Guess(es)        
Method                   -2 -8 -2, -8 -2, 3 
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X -1, 1 -1, 1 -1, 1 -1, 1 

fval -0.00200000000, 
0.00200000000 

-0.00200000000, 
0.00200000000 

-0.00200000000, 
0.00200000000 

-0.00200000000, 
0.00200000000 

My_fzero 

steps 140 116 117 112 

X NaN NaN   -0.529 - 0.034i 

fval NaN NaN   -0.000 - 0.642i 
fzero 

steps 19 (Failed) 21 (Failed)   57 (Wrong) 
X     NaN NaN 

fval     NaN NaN Secant 
steps     4 (Failed) 8 (Failed) 
X       NaN 

fval       NaN Bisection 
steps       3 (Failed) 
X       NaN 

fval       NaN False Position 
steps       5 (Failed) 

 
Tab.10 Comparison for ( ) ( )( )002.011)exp()()( 2 ++⋅−⋅−⋅= xxxxsignxf  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. )1()exp()( 2 epsxxf +−=  
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Fig.22 )1()exp()( 2 epsxxf +−=  

 
     Initial_Guess(es)        
Method                   1 10 -4, 5 26, 26.64 

X 1.648771146e-008 1.48799085e-008 -1.58398597e-008 1.61566267e-008 

fval 0 0 0 0 
My_fzero 

steps 41 187 66 1024 

X NaN NaN     

fval NaN NaN     
fzero 

steps 41 (Failed) 26 (Failed)     
X     NaN 26 

fval     NaN 3.82886246e+293 Secant 
steps     68 (Failed) 2 (Wrong) 

 
Tab.11 Comparison for )1()exp()( 2 epsxxf +−=  

 
 
12. 4)( −= xxf  
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Fig.23 4)( −= xxf  
 
     Initial_Guess(es)        
Method                   0.5 777 0.5, 40 20, 30 

X 16 16.00000000000000 16 16.00000000000000 

fval 0 0 0 0 
My_fzero 

steps 11 13 4 8 

X NaN NaN 16.00000000000000   

fval NaN NaN 0   
fzero 

steps 23 (Failed) 23 (Failed) 4   
X     16.00000000000000 16.00000000000000 

fval     0 0 Secant 
steps     9 8 
X     16   

fval     0   Bisection 
steps     55   
X     16.00000000000000   False Position 
fval     0   
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 steps     43   
 

Tab.12 Comparison for 4)( −= xxf  
 
 

13. ( )101.0)( 2 −−⋅= xxxf  
 

 
Fig.24 ( )101.0)( 2 −−⋅= xxxf  

 
 
 
 
 
 
     Initial_Guess(es)        
Method                   -8 -50 -50, -8 -11, 10 

X -1.0000499987500, -
1.0000499987500 

-1.0000499987500, -
1.0000499987500 

-1.0000499987500, -
1.0000499987500 

-1.0000499987500, -
1.0000499987500 

fval 0.105511156e-13, -
0.116544549e-13 

0.105511156e-13, -
0.116544549e-13 

0.105511156e-13, -
0.116544549e-13 

0.105511156e-13, -
0.116544549e-13 

My_fzero 

steps 58 62 54 73 
fzero 

X NaN 0.9471 - 0.0038i   0.7322 + 0.0978i 
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fval NaN -0.0000 + 0.3041i   -0.0000 - 0.5185i 
 

steps 21 83 (Wrong)   61 (Wrong) 
X     NaN NaN 

fval     NaN NaN Secant 
steps     8 (Failed) 3 (Failed) 
X       NaN 

fval       NaN Bisection 
steps       3 (Failed) 
X       NaN 

fval       NaN False Position 
steps       3 (Failed) 

 

Tab.13 Comparison for ( )101.0)( 2 −−⋅= xxxf  
 
 
 
Conclusion 
 
In this report, a robust and efficient real root finder My_fzero for one variable equation 

0)( =xf  is introduced. It uses a combination of many root finding methods: Bisection 
Method, modified Secant Method, Quadratic Method, and finally Brent’s Method, which 
itself is also a combination of several root finding methods including Bisection Method, 
False Position Method and Inverse Quadratic Method. My_fzero automatically selects 
one of the methods which it considers to be the best for the current searching situation. It 
can also deal with out of domain problem, which makes it even robust. 
 
My_fzero tries to find a root, beginning from one or two initial guesses provided by the 
user. Usually, it will find it quickly if such a root exists. Sometimes round off problem 
makes )(xf  never vanish. In this case, My_fzero tries to approach to the root as precise 
as possible. That is to say, it finds two successive machine representable points where 

)(xf  reverses sign. 
 
However, My_fzero does not insist to find a root. This is mainly because a root does not 
always exist. When My_fzero can not find two points where )(xf  reverses sign, and can 
not find a point with decreasing magnitude of )(xf  for a number of successive iterations, 

it assumes it has found a local minimum of )(xf . This method prevents My_fzero from 
searching forever, when a root does not exist, or when My_fzero is dithering near a local 
minimum. But the cost is that My_fzero becomes more ready to stop near a local 
minimum, even if there is a root. 
 
My_fzero does not require a tolerance. It tries to find the root as precise as possible. 
Although this is usually beneficial for the user, sometimes it will become slow, especially 
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when the root is 0 or infinite. Take xxf 1)( =  as an example, given the initial guess 1, 
My_fzero iterates 1477 times before it finds the root at infinite. Another example is 

2)( xxf = . Given the initial guess 1, it needs 776 iterations before it finds that )(xf  
vanishes at 1.570382273913005e-162. 
 
Future work may be directed to improving My_fzero for some cases where My_fzero is 
not efficient. For example, when solving 2)( xxf = , My_fzero uses Secant Method, 
while Secant Method converges slowly for this case. Also, more examples are necessary 
to test My_fzero for further improvement.  
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Appendix 
 
Syntax 
 x = My_fzero(fun, x0) 
 x = My_fzero(fun, x0, trace_level) 
 x = My_fzero(fun, x0, trace_level, p1, p2 …) 
 [x, fval] = My_fzero(…) 
 [x, fval, exitflag] = My_fzero(…) 
 [x, fval, exitflag, fcount] = My_fzero(…) 
 
Description 

x = My_fzero(fun, x0) tries to find a zero using the initial guess(es) x0. x0 can be 
a scalar or a vector of length two, which means My_fzero can have one or two 
initial guesses. 
 
The value x is a root if My_fzero finds one, or x(1) and x(2) are two successive 
machine representable points where fun reverses sign, or x is a local minimum of 
|f(x)|, or x is the last point before My_fzero claims no root has been found. 
Usually, x(2) will keep the second latest point of guess. The meaning of x is 
indicated by exitflag. 
 
x = My_fzero(fun, x0, trace_level) displays information according to trace_level: 
 
x = My_fzero(fun, x0, trace_level, p1, p2 …) provides for additional arguments, 
p1, p2, etc., which passed to the objective function, fun. 
 
[x, fval] = My_fzero(…) returns the value of the objective function fun at the 
solution. 
 
[x, fval, exitflag] = My_fzero(…) returns a value exitflag that describes the exit 
condition, thus the meaning of x. 
 
[x, fval, exitflag, fcount] = My_fzero(…) returns a fcount which indicates how 
many times the function fun has been executed. 
 

Arguments 
 Input Argument: 
  

fun The function whose zero is to be searched. fun is a function that accepts a 
scalar x and returns a scalar f, the objective function evaluated at x. The 
function fun can be specified as a function object: 

  x = My_fzero(‘Anyfun’, x0) 
 where Anyfun is a Matlab function. 
 Fun can also be an inline function: 
  x = My_fzero(inline(‘exp(x)-3’), x0) 
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x0 Initial guess or guesses 
 
trace_level 

 trace_level indicates what information to display. The value of trace_level 
can be: 
0 no display. 
1 display the final message (find a root, minimum, no root or error, 

etc.) 
2 display information for each iteration. 

  
 p1, p2, … 
  Additional arguments for function fun. 
 
 Output Argument: 
  

x Root or two successive representable points where fun reverses sign or 
local minimum of |fun| or the last point before exit. 

    
 fval The value of the function fun at x. 
  
 exitflag 
  A value indicates the exit condition. It can be: 
  0 Root found successfully. 
  1 Arguments error. 
  2 Second argument must be of length 1 or 2. 
  3 The input function failed. 
  4 All guess(s) is/are not valid or out of domain. 
  5 One guess is valid, but cannot find any other valid point near it. 

6 Search already extended to +/-Inf. But the value of FunFcnIn at 
that infinite point is not a number. There might be a limit. 

7 Search already extended to +/-Inf. There might be a limit. 
8 Search interval exhausted during Secant extrapolation. 
9 There might be a minimum magnitude. 
10 Found an interval where the function reverses sign. 
11 Search interval whether the function reverses sign exhausted 

during Bisection method. 
  
 Fcount 
  Number of times the function fun has been executed. 
 
Algorithm 
 Please refer to the body of this report. 
 


