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Abstract

The study of instabilities in a fluid flow is an important area of fluid dynamics. A linear stability analysis of
a typical fluid flow leads to the definition of an eigenvalue problem. The solution of the resulting eigenvalue
problem usually requires a numerical method. However, the numerical solution of these problems is often
fraught with difficulties that arise because an infinite dimensional operator is approximated by a finite dimen-
sional one and/or the inconsistent application of boundary conditions. Consequently, many of the eigenvalues
that are obtained from a numerical solution are spurious with no physical relevance. These eigenvalues have
to be identified effectively and efficiently.

In this paper we examine an eigenvalue problem associated with a quasi-geostrophic fluid flow. An effi-
cient numerical method is presented to solve such a problem. This method exploits the tridiagonal structure
associated with a finite difference representation of the operator involved. We show that it is efficient with
respect to required computations by comparing it with a method typically used for solving stability problems
of this nature.

1 Introduction: Physical Motivation

Under certain approximations, a fluid flow is governed by the 2-D Quasi-Geostrophic(QG) equations. The po-
tential vorticity q,

q = ∇2ψ− ψ
L2

r
+ βy

satisfies the equation
∂q
∂t

+(~v ·∇)q = 0 (1)

where ψ is the stream function,~v = ẑ×∇ψ is the velocity, ẑ is the vertical unit vector, β is the Coriolis parameter,
y is the north-south coordinate, and Lr is the Rossby deformation radius, a measure of the atmospheric stabil-
ity(see [2]).

Fluid flows governed by these equations occur in geophysical systems. In general, a given steady-state fluid
flow that satisfies these equations is not always stable. Random perturbations that exist in any real system are
liable to cause a particular steady-state solution to evolve into a new steady-state solution. They are also equally
likely to die away leaving the flow unaffected or simply remain in the flow without fundamentally changing it.
Of particular interest to fluid dynamicists is the nature of these instabilities. It is therefore desirable to quantify
these instabilities in order to study their evolution in time.
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2 Formulation of an Eigenvalue Problem

An eigenvalue problem is formulated by performing a linear stability analysis about a base flow that satisfies the
QG equation(1). The boundary conditions are periodic in x and periodic in y. The problem is then transformed
from the continuous space of x,y to collocation space by discretizing the domain of interest.

2.1 Linear Stability Analysis

The natural first step in examining the stability of any system is to consider infinitesimal disturbances, so that
all terms in the equations involving products of small perturbations may be neglected. This technique makes the
analysis simpler. One should keep in mind however, that there may also be instabilities that arise only if a certain
threshold disturbance amplitude is exceeded.

The deformation radius, Lr, and the Coriolis parameter, β, are functions of y alone. This and the fact that the
boundary conditions are periodic in x(and y) lead us to choose an initial steady-state fluid flow that is a function
of y alone and satisfies the QG equations:

q(y) = q̄(y), ~v(y) = U(y)x̂

where q̄ and U are periodic functions of y.

Consider a perturbation εq′(x,y, t) to this base state where ε is a small number. Substituting in the QG equation
(1) and retaining terms of order ε,

∂q′

∂t
+U(y)

∂q′

∂x
+ v′y

dq̄
dy

= 0 (2)

Representing q′(x,y, t) by a Fourier series in x,

q′(x,y, t) = ∑ q̂k(y)exp(ik(x− ckt)) (3)

where k is the wavenumber, real(ck) is the wave speed and img(ck) is called the growth rate.

Substituting the expression for q′ from (3) in the linearized QG equation (2) we obtain,

−ckq̂k +Uq̂k +
dq̄
dy

(
d2

dy2 − k2− 1
L2

r
)−1q̂k = 0 (4)

which is an eigenvalue problem. The eigenvalues are given by ck and the corresponding eigenfunctions are given
by q̂k(y). For a particular component of the perturbation given by its wavenumber k, if

1. img(ck) > 0, it will grow exponentially in time

2. img(ck) < 0, it will decay exponentially in time

3. img(ck) = 0, it will neither grow nor decay

In the linearized equation, feedback from the perturbation to the base state, as happens for the fully nonlinear
equations of motion, is suppressed. This is a detriment because it restricts the model to the early stages of
the instability when the perturbation is small. However, it is also a virtue. The linearized stability problem is
completely specified by the specification of the base state.
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2.2 Discretization of the Eigenvalue Problem

For most q̄(y) and U(y) that are physically interesting, it is not possible to obtain an analytic solution for the
eigenvalues and eigenfunctions. A numerical approach is required. (For comparison with the numerical solution,
an analytic solution which can be obtained under certain special circumstances is described in appendix A)

The domain of interest has length Lx and width Ly. It is discretized into Nx grid points along the x direction
and Ny grid points along the y direction. With a collocation space thus defined, the eigenvalue problem given by
equation(4)is transformed into a matrix problem,

[T ]ψ̂
k

= [D]ψ̂
k

(5)

[D] =




dq̄
dy (y1)

ck−U1
0 . . . 0

0
dq̄
dy (y2)

ck−U2
. . . 0

...
...

. . .
...

0 0 . . .
dq̄
dy (yNy )

ck−UNy




(6)

[T ] = [
d2

dy2 ]− (k2 +
1
L2

r
)[I] (7)

q̂
k

= [T ]ψ̂
k

(8)

where q̂
k

= [q̂k(y1), q̂k(y2), ..., q̂k(yNy)]
T , ψ̂

k
= [ψ̂k(y1), ψ̂k(y2), ..., ψ̂k(yNy)]

T , [T ] is a called a Helmholtz operator
and [I] is the Ny ∗Ny Identity Matrix.

2.3 Required Computations

In general, a subset of perturbation components, given by their wavenumbers k, is sought. The components in this
subset are the most unstable ones, i.e., they have eigenvalues with the largest growth rates. These components
are then added to the base state and used as the initial condition for an initial-value solver. Formally,

1. for k = 2πi
Lx

, (i = 1,2, ...., Nx
2 )

2. determine the set of eigenvalues {ci
1, ci

2, ...., ci
j....., ci

Ny
}

3. choose an eigenvalue ci
j from this set for which img(ci

j) ≥ img(ci
m), (m = 1,2, ....,Ny)

4. let the chosen ci
j be called σi

5. end for

Thus a set {σ1, σ2, ....., σ
Nx
2 } is determined corresponding to each value of k. Depending on the physical

requirements of the problem one or more components may be chosen. For example, choosing two components
ka, kb, corresponding to σa, σb where σa, σb are the two greatest σ values in the set yields the following initial
condition for an initial-value solver,

q(x,y, t = 0) = q̄(y)+ εaq̂ka exp(ikax)+ εbq̂kb exp(ikbx)
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2.4 A Note on Spurious Eigenvalues

An infinite-dimensional operator is characterized by a spectrum comprising a countably infinite number of dis-
crete eigenvalues and/or a continuous spectrum of eigenvalues. The spectrum of a finite-dimensional approxima-
tion to such an operator consists of a finite number of discrete eigenvalues. As the dimension of the approximation
is increased, one would expect its spectrum to tend more and more towards some portion of the discrete part of
the infinite-dimensional spectrum. However, at any given resolution, we would also expect the presence of spuri-
ous eigenvalues - eigenvalues that are unresolved by the resolution, eigenvalues that are attempting to mimic the
continuous part of the spectrum and eigenvalues that are a figment of incorrect boundary conditions. The issue
then is to be able to effectively and efficiently filter out these eigenvalues.

Eigenvalues that are unchanged on increasing the resolution can be considered well resolved eigenvalues that
belong to the discrete portion of the infinite-dimensional spectrum. It is also helpful to compute the corresponding
eigenvector and ensure that it is a smooth function of the collocation variable.

3 Numerical Method: Finite difference/Root finding

The numerical method described in this paper takes advantage of the sparse tridiagonal structure that is associated
with the Helmholtz operator when a finite differencing scheme is used to represent the second derivative operator.
A tridiagonal matrix has a number of properties that make it attractive from a computational perspective. Firstly,
its sparse nature implies less storage requirement. This means that computations run at certain resolutions will
benefit greatly from cache related speed up. For example, the Helmholtz operator for a 512*512 computation
involving doubly precise 8 byte floating point numbers would fit entirely into the cache of today’s computer. Sec-
ondly, the determinant of a tridiagonal operator can be cheaply computed with a three term recursion relationship.
We will show in section 3.2 how this is an important feature. Finally, its sparse banded structure enables cheap
computation of an eigenvector corresponding to a particular eigenvalue.

3.1 Representing the Helmholtz Operator

The second derivative operator in equation(7), [ d2

dy2 ], is represented using a second order accurate central differ-
encing scheme. This results in a tridiagonal structure for the Helmholtz operator [T ],

[T ] =
1

δy2




−2− (k2 + 1
L2

r
)δy2 1 0 . . . 0 1

1 −2− (k2 + 1
L2

r
)δy2 1 0 . . . 0

0
. . . . . . . . . . . .

...
...

...
. . . . . . . . . 0

0 . . . 0 1 −2− (k2 + 1
L2

r
)δy2 1

1 0 . . . 0 1 −2− (k2 + 1
L2

r
)δy2




where δy =
Ly
Ny
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3.2 Root Finding to Determine Eigenvalues

Once the Helmholtz operator [T ] has been represented by a tridiagonal matrix, from equation(5), for non-trivial
vectors ψ̂

k
, we require that,

f (ck) = det([T ]− [D]) = 0

where f (ck) is a rational function of ck with poles along the real axis given by {U1, U2, ..., UNy}

A root finding technique such as the Secant Method(see [5]) can be used to determine the complex roots of
this rational function.

cn+1
k = cn

k−
(cn

k− cn−1
k )

f (cn
k)− f (cn−1

k )
f (cn

k) (9)

The Secant method requires two initial guesses per eigenvalue. Note that in order for the iterations to converge to
a complex root, the initial guesses have to be complex. For the results presented in this paper, the initial guesses
are chosen such that their real parts lie between two consecutive poles on the real axis and their imaginary parts
are perturbed by a tiny number.

The value of the function f (cn
k) in (9) at each step of the iteration is computed with a three term recursion

relationship. For a general N ∗N tridiagonal matrix [ai j] without periodic boundary conditions, the determinant
can be computed with a three term recursion relationship

det0 = 1

det1 = aNN

det j = aN− j+1 ∗det j−1−aN− j+1,N− j+2 ∗aN− j+2,N− j+1 ∗det j−2 ( j = 2, ...,N)

For a N ∗N tridiagonal matrix with extra elements bc1 in the top right hand corner and bc2 in the bottom left hand
corner, corresponding to periodic boundary conditions, the determinant is computed as follows,

f (ck) = g(ck)+ bc1 ∗bc2 ∗h(ck)−bc1 ∗L−bc2 ∗U

U = ∏a j, j+1 ( j = 1, ...,N−1)

L = ∏a j+1, j ( j = 1, ...,N−1)

where g(ck) is the determinant of the tridiagonal matrix ignoring the extra elements, h(ck) is the determinant of
the tridiagonal submatrix obtained by omitting the first, last row and the first, last column. L is the product of
the elements on the subdiagonal and U is the product of the elements on the superdiagonal(See Appendix B for
a derivation of this recursion relationship).

Every f (cn
k) computation using the recursive relations requires o(N) operations. For convergence to a particu-

lar eigenvalue within a small tolerance of say, 10−16, the Secant Method requires order 10 iterations. Since N is
usually order 100 or greater, the total cost of computing an eigenvalue is o(N) operations.

Every time a complex root is found, f (ck) can be deflated by the root and its complex conjugate. This forces
the root finder to look for roots other than the one just computed, preventing different initial guesses from con-
verging to the same root. This is likely to happen given the arbitrary nature of the initial guesses. Future work
would involve finding an analytic foundation for the initial guesses.
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If one is solely interested in complex(and hence unstable) eigenvalues, which is usually the case, a further op-
timization could be to discard eigenvalues which appear to be converging to eigenvalues with ”small” imaginary
parts after a certain number of iterations(”small” being decided by the user).

3.3 Determining an Eigenvector

For a particular eigenvalue, the corresponding eigenvector can be determined by Gaussian elimination. Partial
pivoting is required since the tridiagonal operator is not guaranteed to be diagonally dominant. Gaussian elimi-
nation with partial pivoting is o(N) operations when coded so as to exploit the tridiagonal structure of the matrix
operator. While the input matrix consists of a lower diagonal, main diagonal, upper diagonal and an extra block
for periodic boundary conditions, the upper triangular matrix obtained from Gaussian elimination consists only
of a main diagonal, two upper diagonals and some non-zero elements in the last column because of the peri-
odic boundary conditions. The eigenvector ψ̂

k
is obtained by backward solving. q̂

k
is obtained from ψ̂

k
using

equation(8).

3.4 Algorithm for Required Computations

We present an algorithm that uses this numerical method for the required computations described earlier. The
algorithm also filters undesirable spurious eigenvalues.

1. Choose a reference resolution, say N1, usually the resolution used by the initial-value solver

2. For a particular wavenumber k, compute all the eigenvalues using suitable initial guesses. Discard all
eigenvalues with very small or negative imaginary parts

3. Change the resolution to N2, where N2 > N1

4. Use the previously retained eigenvalues as initial guesses. Keep converged eigenvalues that agree with the
initial guesses within a user defined tolerance

5. Repeat step 4 for successively higher resolutions Ni > ..... > N3 > N2 > N1

6. After several resolution increases, the set of chosen eigenvalues are most likely to be ”real” eigenvalues
that belong to the spectrum of the infinite dimensional operator

7. Compute eigenvectors corresponding to these ”real” eigenvalues at the reference resolution

8. Repeat the above steps for different wavenumbers, k, to determine the most unstable components for use
in an initial-value based time evolution

3.5 An Example Computation using the Algorithm

The base states q̄(y) and U(y) to be used for this computation are shown in figure(1) and figure(2) respectively.
Let N1 = 256 be the reference resolution. As described in section 2.3, we are interested in eigenvalues with
the largest imaginary parts that are well resolved at this resolution. In order to determine if the candidate eigen-
values are well resolved, i.e. not spurious, it is necessary to ”track” them over successively increasing resolutions.
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Figure 1: base state potential vorticity q̄(y)

−0.015 −0.01 −0.005 0 0.005 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U(y)

y

Figure 2: base state velocity U(y)
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Figure 3: Eigenvalue spectrum at each resolution

To this end, let our ”filtering” resolutions be N2 = 512 and N3 = 1024. The wavenumber k = 6 ∗ 2π
Lx

. The
spectrum for each resolution is plotted on the same figure(3). This gives us an an eye-ball estimate for the vari-
ation in eigenvalues as the resolution is increased. For this particular computation, the spectrum is characterized
by a stretch of eigenvalues on the real axis and a single discrete complex eigenvalue. Moreover, this discrete
eigenvalue changes by less than 0.001% with increasing resolution(see table below). The eigenvector corre-
sponding to this eigenvalue at each resolution is shown in figures (4), (5) and (6). The eigenvectors are similar
and smooth(because the Fourier coefficients fall off rapidly with increasing wavenumber). We therefore conclude
that the eigenvalue is ”real” and that it belongs to the spectrum of the infinite-dimensional operator.

N Eigenvalue
256 -0.00532276+i0.00167384
512 -0.00533049+i0.00167885
1024 -0.00533358+i0.00167656
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Figure 4: Eigenvector q̂
k
(y) at N1 = 256
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Figure 5: Eigenvector q̂
k
(y) at N2 = 512
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Figure 6: Eigenvector q̂

k
(y) at N3 = 1024

4 Alternative Numerical Method: Spectral method/QR iteration

A method typically used for solving stability problems of this nature uses a spectral representation for the
Helmholtz operator [T ](see [3]). The resulting operator is a full matrix and all the eigenvalues and the corre-
sponding eigenvectors are determined by the QR iteration. A spectral representation would accurately resolve a
greater number of modes than a finite difference representation, for the same number of grid points. However,
the QR iteration is relatively expensive requiring o(N3) operations per iteration(see [1], [4]). This coupled with
the fact that it would have to be run at increasing resolutions in order to identify spurious eigenvalues implies
that it would be well worth ones while to investigate the possibility of using an alternative approach such as the
one described in this paper.

4.1 Comparison of the Finite difference/Root finding method with the Spectral/QR method

For the particular base state used to obtain the results in this paper, the infinite-dimensional spectrum appears to
be characterized by a continuous region along the real axis and a single, discrete, complex eigenvalue. The finite-
dimensional approximation did just as well as the spectral representation in resolving this isolated eigenvalue for
the same number of grid points. It should be noted that such spectra are by no means exclusive to this problem.
There are a number of fluid flow instabilities that are characterized by a similar spectrum.

If the required computations are performed at resolutions N1 < N2 < N3, the number of computations re-
quired by the algorithm described in section 3.4 for a finite difference/root finding method, is approximately
o(N2

1 ) + o(N2) + o(N3) per wavenumber k. An equivalent algorithm for a spectral method /QR iteration based
numerical method would require approximately o(N3

1 ) + o(N3
2 ) + o(N3

3 ) operations per wavenumber k. This is
without taking into account the cache related speed increase that would characterize a finite difference/root find-
ing method for most resolutions of interest.
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Figure 7: The eigenvalue spectrum of each method, N1 = 512

A computation was carried out using each numerical method for the base state described in section 3.5, with
reference resolution N1 = 512 and filtering resolutions N2 = 1024 and N3 = 2048. The table below indicates the
time2 taken by each method for a single value of k = 6∗ 2π

Lx
as per the algorithm described in section 3.4.

Res Spectral Time Finite Diff Time
(secs) (secs)

N1 = 512 45 30
N2 = 1024 300 0.1
N3 = 2048 2000 0.2
Total time 2345 30.3

The spectrum obtained by the spectral/QR method and the spectrum obtained by the finite difference/root
finding method, for the reference resolution, are shown in figure(7). The corresponding eigenvectors for each
method are shown in figure(8) and figure(9).

2calculated using MATLAB’s cputime function
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Figure 8: spectral/QR eigenvector q̂
k
(y) at N1 = 512
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Figure 9: finite difference/root finding eigenvector q̂
k
(y) at N1 = 512
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5 Future Work

There are several unresolved problems with the proposed numerical method. The dependence of the root finder
on initial guesses implies that it is possible for some eigenvalues that are resolved by the finite difference repre-
sentation to go undetected. For the example considered however, the initial guesses proved sufficient to recover
all the discrete eigenvalues that a spectral representation recovered at the same resolution. Future work would
involve an analytic backing for the initial guesses. The convergence properties of the root finding iteration can
be improved by using a higher order Hyperbolic method.

Note that the algorithm described in section 3.4 does not consider ”real” eigenvalues that may appear at resolu-
tion N2 but were absent in the reference resolution. The algorithm can easily be modified to take this into account.
For the time being, we are only interested in eigenvalues that are well resolved at the reference resolution, so that
a corresponding eigenvector can be used in an inital value solver running at this resolution.

Higher order accuracy can be obtained by representing the Helmholtz operator using a 4th order accurate
Numerov scheme. This scheme would preserve the tridiagonal structure of the operator. Convergence properties
of the finite-dimensional spectrum to the infinite-dimensional spectrum can be studied for this class of stability
problems. An error analysis can be performed to determine the effect of round-off for this numerical method.
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