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NUMERICAL EXPLORATIONS ON PLASTIC MATERIAL MODELS 

 
1. INTRODUCTION 
 
Before starting to talk within the technical jargon of “Solid Mechanics”, it is better to briefly 
explain some physical entities that will be used in this work. Then there will be a brief introduction 
to Plasticity. 

 
What is stress? 
The dictionary meaning of stress taken from Oxford English 
“A force acting on or within a body or structure and tending to deform it; now usu. the intensity of this, 
the force per unit area.” 
 
Mathematical definition of stress is: 

0
lim
A

F
A

σ
∆ →

∆
=

∆
 (1) 

 
What is strain? 
Strain is a dimensionless ratio for measuring the deformation with respect to an original configuration. 

0

0 0

L L L
L L

ε − ∆
= =  (2) 

There is a more general mathematical definition: 

0 0 0

1 ln ln 1
L

L

LdL
L L

ε
   ∆

= = = +  
  

∫
L

L




 (3) 

 
What is Plasticity? 
Any material body deforms when subjected to external forces. The deformation is called “elastic” if it 
is reversible and time independent, that is, if the deformation vanishes instantaneously as soon as 
forces are removed. A reversible but time-dependent deformation is known as “viscoelastic”; in this 
case the deformation increases with time after application of load and it decreases slowly after the load 
is removed. The deformation is called “plastic” if it is irreversible or permanent. 
 
The adjective “plastic” comes from the classical Greek verb πλασσειν (Plassing), meaning “to 
shape”; it thus describes materials, such as ductile metals, clay, which have the property that bodies 
made from them can have their shape easily changed by the application of appropriately directed 
forces, and retain their new shape upon removal of such forces.  
 
What does theory of plasticity deal with? 
 
The theory of plasticity deals with the stress-strain and load-deflection relationships for a plastically 
deforming “ductile” material or structure. The establishments of these relationships follows from 

� the experimental observations 
� the mathematical representation. 
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The stress states that are normally achieved in any experiment are simple and uniform, but the ultimate 
goal of any plasticity theory is a general mathematical formulation that can predict the plastic 
deformation of materials under complex loading and boundary conditions. 
 
History of Theory of Plasticity 
 
The history of plasticity theory dates back to 1864 when Tresca published his yield criterion based on 
his experimental results on punching and extrusion. Since then, tremendous progress has been made by 
many researchers, such as Saint-Venant, Levy, Von Mises, Hecky, Prandtl, and Taylor, who have 
established the cornerstones for the theory. Now developments in plasticity theory is an active field of 
mechanics.  
 
The theories of plasticity can be established into two categories: One group is known as mathematical 
theories of plasticity, and the other is physical theories of plasticity. Mathematical theories are 
formulated to represent the experimental observations as general mathematical formulations. The 
physical theories, on the other hand, attempt to quantify plastic deformation at the microscopic level 
and explain why and how the plastic deformation occurs.  
 
Introduction of the Numerical Analysis into Plasticity: “Computational Plasticity” 
 
Plasticity in the field of mechanics has evolved due to the need to accurately capture the real behavior 
of materials. Certain assumptions had to be made for the mathematical modeling of these materials. In 
the early phases, only the “continuum” forms of the models were used to solve the problems. The term 
continuum can be attributed for no numerical approximation.  
 
With the introduction of numerical analysis in the field of mechanics, a huge window for scientists and 
engineers has opened up.  
 
In numerical analysis, the algorithmic model is an approximation to the continuum model in the sense 
that when time step taken to advance the solution tends to zero, we should recover the continuum. So 
any other “finite” sized time step ∆  has an effect to all of the mathematical model. This can simply be 
explained through the inclusion of "  or differential operators instead of time derivatives of the 
mathematical models. This operator will create an extra dependency of our models with respect to step 
sizes. 

t
"∆

1 1 1

. .
( ) ( , )

( ) ( ) ( ( ), )n n n n

e g
y t f y t Continuum

y t y t t f y t t Numerical+ + +

= →
= + ∆ ⋅ →

  (4) 

 
 
Remark: References 1& 2 has been used to compile this introduction chapter. 
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2. MOTIVATION: One-Dimensional Plasticity 
 
To motivate the mathematical structure of classical rate-independent plasticity for three dimensional 
plasticity, we examine the mechanical response of the one dimensional frictional device. 
 
This device has a unit length(and unit area) and consists of a spring, with elastic constant E, and a 
Coulomb friction element, with constant 0yσ > . We let σ be the applied stress(force) and ε total 
strain(change in length) in the device. 
 
Local Governing Equations 
 

a) The total strain ε splits into a part εe on the spring with constant E, referred to as the elastic 
part, and a strain εp on the friction device referred to as the plastic part.  

 e pε ε ε= +  (5) 
 

b) By equilibrium considerations, the stress on the spring with constant E is σ, and we have the 
elastic relationship  

 ( )eE E pσ ε ε ε= = −  (6) 
 
 

Irreversible Frictional Response 
 Assume that ε,εp are functions of time in an interval [0 . In particular, we let , ]T ⊂

: [0, ]p Tε →  
and 

p p

t
ε ε∂

=
∂

 

 
Change in the configuration of the frictional device is possible only if , to characterize 

this change: 
0pε ≠

 
We make the physical assumptions: 

1) The stress σ in the frictional device can not be greater in absolute value than 0yσ >

,
. This 

means that the admissible stresses are constrained to lie in the closed interval [ ]y yσ σ− ⊂ . 
We introduce  

 
{ }| ( ) : 0yE fσ σ σ σ σ= ⊂ = − ≤  

to designate the set of admissible stresses. yσ is denoted as flow stress of the friction device. The 
function  defined as :f →

( ) : yf σ σ σ= −  
is referred to as yield function. 
 

2) If the absolute value σ of the applied stress is less than the flow stress yσ , no change in 
pε takes place, i.e.,  This condition implies  0.pε =

 3
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0 if ( ) : 0p

yfε σ σ σ= = − <  
 
(Fill in other equations) 
 
and the instantaneous response of the device if elastic with spring constant E. This motivates the 
denomination of elastic range given to the open set 

{ }int( ) | ( ) : 0yE fσ σ σ σ σ= ∈ = − <  

3) A change in pε can take place only if  
 

( ) 0yf σ σ σ= − =  
 
If the latter condition is met, the frictional device experiences slip in the direction of the applied stress 
σ , with constant slip rate. Let 0γ ≥ be the absolute value of the slip rate. Then the preceding physical 
assumption takes the form: 
 

0  if 0

0  if 0

p
y

p
y

ε γ σ σ

ε γ σ σ

= ≥ = >

= − ≤ = − <
 

 
Whether 0  or 0γ γ> = depends on further conditions involving the applied strain rate ε ,which are 
discussed below and are referred as loading/unloading conditions. For now (Eq.7) can be recast into 
the following single equation. 
 

( )  iff  ( ) : 0p
ysign fε γ σ σ σ σ= ⋅ = − =  

where 0γ ≥ . 
 
The boundary Eσ∂  of the convex set Eσ defined by  

{ }| ( ) 0yE fσ σ σ σ σ∂ = ∈ = − =  
is called the yield surface. 
 
In the present one dimensional model, the yield surface reduces to two points. 
 
To complete the description of the model at hand, it remains only to determine the slip rate 0γ ≥ . This 
involves the following essential conditions that embody the notion of irreversibility. 
 
Loading/Unloading Conditions: 
The evolution of can be completely described for any admissible stress state : [0, ]p Tε →

Eσσ ∈ with the single equation  
( )p signε γ σ= ⋅  

provided that γ and σ are restricted by certain unilateral constraints. 
First, we note that σ must be admissible, i.e., Eσσ ∈∂ by assumption 1, and γ must be 

nonnegative by assumption 3. 
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0

( ) 0
and
f

γ

σ

≥

≤
 

Second, by assumption 2, 0  if ( ) 0fγ σ= < . On the other hand, by assumption 3, 0pε ≠ ,and, 
therefore, 0γ >  only if ( ) 0.f σ = These observations imply the conditions 

( ) 0 0
0 ( )

f
f 0

σ γ
γ σ

< ⇒ =
> ⇒ =

 

 
It follows that we require 

( ) 0fγ σ =  
 
Conditions described in (Eq,….) express the physical requirement that the stress must be 

admissible and that the plastic flow, in the sense of nonzero frictional strain , can take place 
only on the yield surface 

0pε ≠
Eσ∂ . These conditions are known as Kuhn-Tucker conditions. 

 
The last condition will enable us to determine the actual value of 0γ ≥  at any given time and is 

referred to as the consistency requirement. We need further observation to come with the formulation 
for this. 

Let { }( ), ( )pt tε ε  be given at time [ ]0,t ∈ T , so that ( )tσ  is also known at time t by; 

( )e pE Eσ ε ε ε= = −  
 
Assume that we prescribe the total strain rate ( )tε  at time t. Further, consider the case where 

ˆ( ) ( ) : ( ( )) 0t E f t f tσσ σ∈∂ ⇔ = =  
at time t. 

Then, it is easily shown that , since should ˆ 0f ≤ f̂ be positive it would imply that 
 for some ,which violates the admissibility condition  ˆ ( )f t t+ ∆ > 0 0t∆ > 0.f ≤

 
Further, we specify that  

0γ >  only if f t , and  ˆ ( ) 0=

set 0γ =  if , and  ˆ ( ) 0f t =

0γ =  if f̂ t  ( ) 0<
 
that is , dropping the hat to simplify notation, we set: 

0 0

0 0

f

f

γ

γ

> ⇒ =

< ⇒ =
 

Therefore, we have the additional condition 
( ) 0fγ σ =  
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This equation is referred to as the persistency (consistency) condition, and corresponds to the physical 
requirement that for pε to be nonzero (i.e. 0γ > ) the stress point Eσσ ∈∂  must “persist” on Eσ∂  so 

that [ ]( ) 0f tσ =  
 
Frictional Slip 
 
For the physical condition at hand, we can write 

( ) ( ) ( )pf f f ff f f E E Esignσ σ ε ε ε γ
σ σ σ σ

∂ ∂ ∂ ∂
= ⇒ = = − = −

∂ ∂ ∂ ∂
σ  

: (y
ff s )ignσ σ σ
σ

∂
= − ⇒ =

∂
 

0 ( ( ) )f E signγ γ ε σ γ= ⇒ − = 0  

1 20, ( )signγ γ ε σ= =  
 
Now, let’s observe these two solutions: 

1For 0

0  no additional plastic strain occurs, unloadingp

γ γ

ε

= =

= ⇒
 

2For ( )

( ) Plastic Loading occursp

sign

sign

γ γ ε σ

ε γ σ

= =

= ⇒
 

 
A summary of the model is given below. 
 

i) Elastic stress-strain relationship
( )

ii) Flow rule
( )

iii) Yield condition
( ) : 0

iv) Kuhn-Tucker complementary condition
0, ( ) , ( ) 0

v) Consistency condition

( ) 0 (if ( )

p

p

y

E

sign

f

f f

f f

σ ε ε

ε γ σ

σ σ σ

γ σ γ σ

γ σ σ

= −

=

= − ≤

≥ ≤= =

= 0)=

 

 
This model is called perfect plasticity(rate independent). 
 
Remark: The flow rule is related to yield condition through the potential relationship. 
 

p fε γ
σ

∂
=

∂
 

where ( )f sign σ
σ

∂
=

∂
 for our simple 1-d model. 
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A simple extension of the model(Linear Isotropic Hardening Plasticity) 
 
We will simply summarize the equations related to this model: 
 
 

i) Elastic stress-strain relationship
( )

ii) Flow rule
( )

iii) Yield condition
( , ) : ( ) 0
:  strain like internal variable

iv) Kuhn-Tucker complementary condition
0, ( , ) ,

p

p

y

E

sign

f K

f f

σ ε ε

ε γ σ
α γ

σ α σ σ α

α

γ σ α γ

= −

=
=

= − + ≤

≥ ≤= ( , ) 0
v) Consistency condition

( , ) 0 (if ( , ) 0)f f

σ α

γ σ α σ α

=

= =
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3. GENERAL PLASTICITY MODELS & INTEGRATION OF THESE MODELS 
 
Numerical solution of nonlinear BVP in solid mechanics is based on an iterative solution of a 
discretized version of the momentum balance equations. Typically, the following steps are involved: 
 
Step 1) The discretized momentum equations generate incremental motions which, in turn, are used to 
calculate the incremental strain history by kinematic relationships. 
 
Step 2) For a given incremental strain history, new values of the state variables {σ,εp,q} are obtained 
by integrating the local constitutive equations with given initial conditions. 
 

:Stress Tensor
: Plastic Strain Tensor

 : Internal parameters

p

q

σ
ε  

 
Step 3) The (discrete) momentum balance equations is tested for the computed stresses and, if violated, 
the iteration is continued by returning to Step 1. 
 
Computational Architecture: Steps 1&3 are carried out at a global level by finite-element/finite-
difference procedures. Step 2 is regarded as the central problem of computational plasticity. From a 
computational standpoint, Step 2 is strain-driven in the sense that the state variables are computed for a 
given deformation history. 
 
¾ REMARK: In this work only Local Problem (Step 2) is dealt with.  

 
Basic Algorithmic Setup. Strain Driven Problem 
 
Let [0, ]T ⊂  be the time interval of interest. At time t [0, ]T∈ , we assume that the total and plastic 
strain fields and the internal variables are known, that is  
 { }, ,p

n n nqε ε   
are given data at tn and  

   
 , elastic strain tensor

( ) ,where W is stored energy function.

e p
n n n

e
n nW

= −

= ∇

ε ε ε

σ ε
 
Let ∆u be the incremental displacement field, which is assumed to be given. The dimension of the 
problem is three. 
 
So the basic problem is to update the fields  to tn+1 in a manner consistent with the elastoplastic 
constitutive equations. 

  (7) 

( )

: symmetric gradient operator

s

p

s

q
q q

γ
γ

= ∇ ∆

=
= −

∇

ε u
ε r(σ, )

h(σ, )
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subject to constraints(known as Kuhn-Tucker conditions) 

   

( ) 0
0

( ) 0
where ( ) :  yield function that defines the admissible state of stresses

f q

f q
f q

γ
γ

≤
≥

=

σ,

σ,
σ,

and the initial conditions are 
 { } { }, | , ,

n

p
t t n n nq = =ε,ε ε ε p q   

  
CASE: Associative Flow Rule 
 
The principle of maximum plastic dissipation leads to simplifications on the development of state 
variables. 

a. associativity of flow rule in stress space according to the relationship 
b.  

 
( )

where ( )

p

e

f q

W

γ ∂
=

∂
= ∇

σ,ε
σ

σ ε
  

 
c. associativity of the hardening law in stress space in the sense that 

 

 
( , )

where ( ), H is a potential function

f q
q

q H

α γ

α

∂
=

∂
= −∇

σ
  

 
Therefore we can use associativity to state the problem. 
 

 

2 ( )
( , )where 

q H
f q

q

α α

α γ

= −∇
∂

=
∂
σ   

 2: (D H )α= ∇   
 
With these notations, the associative version of Plasticity equations become 

 

( )
( , )

( , )

s

p f q

f q
q

γ

α γ

= ∇ ∆
∂

=
∂

∂
=

∂

ε u
σε
σ
σ

  

 
 
Before we proceed with the integration of these algorithms, let’s first write down a simple but yet very 
effective method for the solution of Initial Value Problem for ODEs. 
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The Generalized Midpoint Rule: 
Let  be a smooth function, and consider the IVP :f →

[ ]1

( ) ( ( ))
(0)

in ,
n

n n

x t f x t
x x

t t +

=
=  

⇓  

[ ]

1

1

( )
(1 )

0,1

n n n

n n

x x t f x

nx x x
θ

θ θ θ
θ

+ +

+ +

= + ∆ ⋅
= + −

∈

 

 
Here 1 (n n 1)x x t+ ≅ + ) denotes the algorithmic approximation to the exact value 1( nx t +  at time 

 1+ .n nt t t= + ∆
0  Forward (explicit) Euler
1/ 2 Midpoint rule

=1 Backward (implicit) Euler

θ
θ
θ

= ⇒
= ⇒

⇒
 

 
Second order accuracy is obtained only for 1/ 2θ = whereas unconditional (linearized) stability 
requires 1/ 2.θ ≥  For a more through explanation of accuracy and stability of these integration 
algorithms, the reader can skip to Chapter 5). 
 
Let’s Start INTEGRATING then: 
 
The integration of the constitutive law with an implicit rule results in a nonlinear problem. If the 
backward Euler ( 1)θ =  rule is used, the equations can be written: 
 

 

1 1 1 1 1

1 1 1

1 1 1

( )

( )

( , ) 0

p p
n n n n n n

n n n n

n n n

fW W

fq H H
q

f f q

γ

α α γ

+ + + + +

+ + +

+ + +

∂ = ∇ − = ∇ − − ∆ ∂ 
 ∂

= −∇ = −∇ + ∆ ∂ 
= =

σ ε ε ε ε
σ

σ

 (8) 

 
For very simple plasticity models, these equations can be effectively solved and coded into the 
computer in closed form.   
 

• One can find the consistency parameter in closed form and insert into above equations. The 
most popular of this kind of a solution is Radial Return Mapping Algorithm (Ref .4)): 

2( , ) ( )
3

( ) y i

f q

q H

α α

α σ α

= + ⋅

= +

dev

σ s : s

s = P :σ  
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Radial Return Mapping Algorithm: 

[ ]n+1 1 1

1 1

1 1

1

1 1

1

1) Compute trial elastic stress
1 ( )
3

2 ( )
2) Check yield condition

2 ( )
3

IF 0 THEN:

    SET ( ) ( ) &

3) Compute  and 

n n

trial p
n n n

trial trial
n n n

trial
n

trial
n n

n

tr

G

f K

f

EXIT
ENDIF

n

α

+ +

+ +

+ +

+

+ +

+

= −

= −

= −

≤

• = •

e ε ε I

s e e

s

[ ]

1
1 1

1

1

1

1 1

1 1 1 1

find 

12
3

2
3

4) Update stresses and plastic strains

2
5) Compute consistent elastoplastic 

trial
trial n

n n trial
n

trial
n

i

n n

p p
n n n

trial
n n n n

f

G H

K tr G

γ

γ

α α γ

γ

γ

+
+ +

+

+

+

+ +

+ + + +

∆

= =

∆ =
 + 
 

= + ∆

= + ∆

= ⋅ + − ∆

sn n
s

e e n

σ ε I s n

( )ep
1 1

1
1

1 1

tangent moduli
12 2
3

21

1 (1 )
1

3

n n

n trial
n

n n
i

K G G

G

H
G

θ θ

γθ

θ θ

1 1n n+ + + +

+
+

+ +

 = ⋅ ⊗ + ⋅ − ⊗ − ⋅ ⊗  
∆

= −

= − −
+

C I I II I I n

s

n

 

 
 

• In this work, we are going to follow to construct a numerical bases for the solution of any type 
of Plasticity Model (as long as it is smooth, uniquely differentiable at any point on the yield 
surface). 

 
Due to the non-linearity of our material relations, we need to iterate on our initial assumptions till an 
acceptable defined tolerance on the residual is reached. The Newton-Raphson method is maybe one the 
fastest converging numerical scheme for iterating. It converges quadratically as long as the initial 
solution is inside the “zone of attraction”. We will use this method in this work. 
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There are modified versions of Newton-Raphson Scheme that gives us a trade-off between speed, 
accuracy, storage and amount of calculations that may be performed for iterations. Modified Newton-
Raphson methods can be accelerated by “line search” techniques and this technique may even help to 
increase the radius of attraction for normal Newton-Raphson procedure for general problems (Ref. 3). 
 
Due to convex nature of the yield surface, our problem at hand is theoretically proven to converge. 
One can simply appreciate this due to Dissipative nature of the mathematical formulation. The material 
model does not create energy, and this helps us to converge. One may try to use above techniques 
depending on their own considerations. In this work, we will work with full Newton-Raphson type of 
iterations. 
Here is the plastic correction part of the General Closest Point Projection Method: 

1

1

1

1 1 1

1 1

1

1

 For the plastic corrector step(i.e. 0),define residuals

( , )
( )

 We want 

( ) : :

trial
n

n

n n

n n n

n n

n

n

f
f

fr
q

r f f q
q H

r
r for
r

σ

α

γ

σ

α

γ

γ

α γ α

α

α
γ

+

+

+

∆ + + +

+ +

+

+

∆

• >
∂

= + ∆ ⋅ −
∂

∂
= − ∆ ⋅ −

∂
= =

= −∇

•

   
   = =   
  ∆ 

trialr σ C σ
σ

σ

σ
r x x

(k)

( ) ( ) 2

( 1) ( ) 1 ( )

2 2

2

2 2

2

Consider Newton-Raphson Scheme to satisfy r(x)=0 around x

( ) ( ) ( ) ( ) 0

( )

1

1

0

k k

k k k

O h

d d

f f fH
q

f f fH
q q q

f fH
q

γ γ

γ γ

+ −




∂
= + ⋅ − + =

∂
= + → = −

 ∂ ∂ ∂
+ ∆ −∆ ⋅ ∂ ∂ ∂ ∂

 ∂ ∂ ∂
= −∆ + ∆ −

∂ ∂ ∂ ∂
∂ ∂

−
∂ ∂

rr x r x x x
x

x x x x J r x

C C C
σ σ σ

J
σ

σ
(k)

dim( ) dim( ) 1

 Iterate till ( )

 Calculate consistent elastoplastic tangent

where ,

ep

T
q

TOL

+








 
  



• <

•

=

 =  

T -1

σ

r x

C P J PC

P I 0
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As stated earlier partial derivatives of the yield surface with respect to stresses might become very 
cumbersome to get in closed form. Algebraic manipulators such as Maple or Mathematica can be a 
very effective tool for obtaining analytical derivatives. However even these software programs may not 
achieve our purpose (Ref.7). 
 
Consistent Tangent calculation expressed above is obtained by linearizing the equations to obtain the 
relation between . A simple way of doing it is used in this work (Ref.11). 1

ep
nd + =σ C ε 1nd +

 
To achieve quadratic convergence at the local and global levels, we need to obtain partial derivatives 
of yield surface correct enough. For this purpose, numerical differentiation is used to explore accuracy 
of the results for simple material models. For more complex models, one should look at Ref.7. 
 
Usually first partial derivatives of the yield surface are relatively much easier to obtain analytically 
than second partial derivatives, so to decrease the number of numerical differentiation, we will use 
these first derivatives to calculate second partial derivatives. 
 
Numerical Differentiation 
 
Let’s review some of the widely used numerical differentiation formulas, following with an 
unconventional one (Ref. 5). 
 

[ ]

[ ]

0 0
0 0

2
0 0

0 0

20
0 0

 Forward-difference 
( ) ( )( ) ( ) , ,

2
 Central-difference

( ) ( )( ) ( ) , ,
2 6

 Complex-difference(Ref.10)
Im( ( ))f (x ) ( ) / 3!

f x h f x hf x f x x h
h

f x h f x h h

0

0f x f
h

f x ih h f x
h

ξ ξ

ξ ξ

•
+ −′ ′′= − ∈ +

•

+ − −′ ′′′= − ∈

•
+′ ′′′= + +

x h x h− +
 

 
A particularly important subject in the study of numerical differentiation is the effect of round-off 
errors. Looking at central-difference scheme more closely: 

2
0 0

0
( ) ( )( ) ( )

2 6
f x h f x h hf x f

h
ξ+ − −′ ′′′= −  

 
Suppose that in evaluating 0( ) ( 0 )f x h and f x h+ −

0 )− 0 )

we encounter round-off errors 

. Then our computed values 0( ) (e x h and e x h+ 0( ) (f x h and f x h+ −  are related to the true 
values by  

0 0 0

0 0 0

( ) ( ) ( )

( ) ( ) ( )

f x h f x h e x h

f x h f x h e x h

+ = + + +

− = − + −
 

 
The total error in the approximation, 
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2
0 0 0 0

0
( ) ( ) ( ) ( )( ) (

2 2
f x h f x h e x h e x h hf x f

h h
)

6
ξ+ − − + − −′ ′′′− = −

)

 

will have a part due to round-off error and a part due to truncation error. If we assume that the round-
off errors  are bounded by some number 0(e x h± 0ε >  and that the third derivative of f is bounded by 
a number M>0, then 
 

2
0 0

0
( ) ( )( )

2 6
f x h f x h hf x M

h h
ε+ − −′ − ≤ +  

 
To reduce truncation error, , we must reduce h. But as h is reduced, the round-off error 2 / 6h M

/ hε grows. There are certain techniques to find an optimum h and we will briefly go over them. 
 
Error Analysis 
 
There is an optimal step size hopt that minimizes the summation of both round-off and truncation error. 
The optimal step size can be written as: 

{ }max ,opt opt
r xh h x typ=  

where is the optimal step size and typopt
rh x is a typical calue of x used to avoid choosing a null(or 

extremely small) hopt for null (or extremely small) x. Numerical experimentation shows that typx can be 
chosen in a rather arbitrary manner, because it has a very small influence on the results(select typx=1). 
The main idea is that is independent of x. This means that a constant value of  can be used all 
over the domain, for every load step, and all the stress components.  

opt
rh opt

rh

 
In general, h  is to be computed from the minimization of round-off and truncation errors and this is 
hard to calculate. Instead of that, here are some simplified values from literature: 

opt
r

2 3

1 ( ) :

1 ( ) :

opt
r

opt
r

ND O h h

ND O h h

η

η

− =

− =
 

and η  is the accuracy in the evaluation of f. 
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4. NUMERICAL SIMULATIONS 
 
Computer Codes to compare Numerical Solution Methods 
 
I will present the computer codes for J2 Plasticity Model written in two different formats, i.e. Radial 
Return Map(RRM) and General Closest Point Projection Method(GCPPM).  
 
RRM is actually the name given for the algorithm that integrates J2 Plasticity in closed form with 
Backward Euler Method.  
 
GCPPM is a main frame algorithm that will integrate any smooth plasticity model. When this method 
is asked to integrate J2 Plasticity, this should simply give the same result as RRM.  
 
Radial Return Map for this material model: 
 
function varargout = RRM(action,Mat_no,MatData,State,varargin) 
% RRM 3-D J-2 PLASTICITY MATERIAL (full stress and strain components) 
% Von Mises (J2) plasticity   
% 3-D plasticity with Linear Isotropic and Kinematic Hardening 
% function contributed by Afsin Saritas  
 
global IOW;       % output file number 
global HEAD_PR;   % header print indicator 
 
switch action 
case 'chec' 
   % not implemented yet   
   varargout = {MatData}; 
otherwise 
   % extract material properties 
   E      = MatData.E; % elastic modulus 
   nu     = MatData.nu; % Poisson's Ratio 
   Hi     = MatData.Hi; % Linear Isotropic Hardening 
   Hk     = MatData.Hk; % Kinematic Hardening Constant 
   sigmay = MatData.sigmay; 
   % calculate the variables needed 
   G = E/2/(1+nu); 
   K = E/3/(1-2*nu); 
   % define some useful matrices used in this function 
   I2  = [1 1 1 0 0 0]';   % 2nd order identity  
   m   = [1 1 1 0 0 0 0 0 0]'; 
   I4  = eye(6);           % 4th order identity 
   Id  = I4 - I2*I2'./3;   % deviatoric projection 
   I0  = eye(6); I0(4:6,4:6) = 0.5*eye(3);  
   P   = zeros(6,9);           %##################################################    
   P(1:3,1:3)=eye(3);          % P is used for the transformation between        %   
   j=4;                        % the nine and six component forms of strain      % 
   for i=4:2:8                 % and stresses.                                   % 
      P(j,i:i+1)=[0.5 0.5];    % Six component expressions will permit final     % 
      j=j+1;                   % expressions for strain and equilibrium to be    % 
   end                         % written in terms of B for a general FEM Program % 
   P = P';                     %################################################## 
end 
% material actions 
% ========================================================================= 
switch action 
   % implement this later 
% ========================================================================= 
case 'init'  
   % response history variables 
   sig = zeros(6,1); 
   State.sig = sig; 
   Ct  = K.*(I2*I2') + (2*G).*(I0-I2*I2'./3);  
   State.Ct = Ct; 
   State.Pres.sig   = sig;   
   State.Pres.Ct    = Ct;   % Elastic tangent moduli 
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   State.Pres.alpha = 0;    % equivalent plastic strain for isotropic hardening 
   State.Pres.epsP  = zeros(6,1);    % plastic strains 
   State.Pres.q     = zeros(9,1);    % initiliaze backstress in 9 comp (only affects deviatoric stress) 
   varargout = {State}; 
% ========================================================================= 
case{'stif','forc'} 
   % Retrieve history variables from Past 
   ePn    = P*State.Past.epsP ; % plastic strain from last converged (no volumetric plastic strain) 
   qn     = State.Past.q;     % back stress from last converged( already in 9 component form) 
   alphan = State.Past.alpha; % strain hardening from last converged  
    
   % update Strain Tensor. Compute Trial Elastic Stresses 
   en1    = P*(Id*State.eps(:,1));  % total deviatoric strain at n+1 
   epsV   = I2'*State.eps(:,1);     % volumetric strain at n+1  
   sn1Trial   = 2*G * ( en1 - ePn);   % trial deviatoric stress 
   ksin1Trial = sn1Trial - qn;      % subtract deviatoric backstress      
    
   % check yield condition 
   norm_ksin1Trial = sqrt(ksin1Trial'*ksin1Trial); 
   Yn = sigmay + Hi*alphan; 
   fn1Trial = norm_ksin1Trial - sqrt(2/3)*Yn; 
    
   if fn1Trial<=0 
      % elastic step 
      sn1  = sn1Trial; 
      ePn1 = ePn; 
      alphan1 = alphan; 
      qn1 = qn; 
      % algorithmic elastoplastic tangent 
      Ct  = K.*(I2*I2') + (2*G).*(I0-I2*I2'./3);  
   else 
      % plastic step 
      % 3) compute nn1 and dgamma 
      Gp = G + (Hi+Hk)/3; 
      dgamma = fn1Trial/(2*Gp);  % dgamma is found in closed form 
      nn1    = ksin1Trial ./norm_ksin1Trial;  % normal to the yield surface 
      % update stress,strain 
      alphan1 = alphan + sqrt(2/3)*dgamma; 
      ePn1    = ePn + dgamma*nn1; 
      ksin1   = ksin1Trial - (2*G+2/3*Hk)*dgamma.*nn1; 
      qn1     = qn + 2/3*Hk*dgamma.*nn1; 
      sn1     = ksin1+qn1; 
      % 4) calculate algorithmic elastoplastic tangent 
      theta = 2*G*dgamma/norm_ksin1Trial; 
      nn1   = P'*nn1;  % project normal to 6 component 
      Ct   = K .*(I2*I2') + (2*G).*((1-theta).*(I0-I2*I2'./3) - (G/Gp-theta).*(nn1*nn1')); 
   end 
    
   % update total stress and total plastic strain values and project to 6 component form 
   sign1 = P'*(sn1 + (K*epsV).*m);  
   epsPn1= I0 \ (P'*ePn1);    
    
   % update values in 
   State.sig = sign1; 
   State.Pres.sig   = sign1; 
   State.Pres.Ct    = Ct; 
   State.Pres.alpha = alphan1; 
   State.Pres.epsP  = epsPn1; 
   State.Pres.q     = qn1; 
    
   if action == 'stif' 
      State.Ct = Ct; 
   end 
   varargout = {State}; 
% ========================================================================= 
otherwise  
end 
 
GCPPM code: 
 
function varargout = GCPPM(action,Mat_no,MatData,State,varargin) 
% General Closest Point Projection Algorithm 
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% uses linear hardening material (Yield function and its derivatives can be modified) 
% Yield Surface :  f(sig,alpha) = PHI(sig) + q(alpha) 
% this function can be modified to include Non-associative hardening very easily 
 
 
global IOW;       % output file number 
global HEAD_PR;   % header print indicator 
TOL1 = 1e-12; 
TOL2 = 1e-12; 
 
switch action 
case 'chec' 
    % not implemented yet   
    varargout = {MatData}; 
otherwise 
    % extract material properties 
    E      = MatData.E; % elastic modulus 
    nu     = MatData.nu; % Poisson's Ratio 
    % material parameters 
    G = E/2/(1+nu); 
    K = E/3/(1-2*nu); 
    % define some useful matrices used in this function 
    I2  = [1 1 1 0 0 0]';   % 2nd order identity  
    m   = [1 1 1 0 0 0 0 0 0]'; 
    I4  = eye(6);           % 4th order identity 
    Id  = I4 - I2*I2'./3;   % deviatoric projection 
    I0  = eye(6); I0(4:6,4:6) = 0.5*eye(3);  
    P   = zeros(6,9);           %##################################################    
    P(1:3,1:3)=eye(3);          % P is used for the transformation between        %   
    j=4;                        % the nine and six component forms of strain      % 
    for i=4:2:8                 % and stresses.                                   % 
        P(j,i:i+1)=[0.5 0.5];    % Six component expressions will permit final     % 
        j=j+1;                   % expressions for strain and equilibrium to be    % 
    end                         % written in terms of B for a general FEM Program % 
    P = P';                     %################################################## 
     
    Pvol = m*m'./3;             % volumetric projection in 9-d 
    Pdev = eye(9)-Pvol;       % deviatoric projection in 9-d 
    % calculate C 
    C  = 3*K.*Pvol + (2*G).*Pdev;  % 9-d form 
end 
 
% material actions 
% ========================================================================= 
switch action 
case 'data'   
    % implement this later 
     
% ========================================================================= 
case 'init'  
   % response history variables 
   sig = zeros(6,1); 
   Ct   = P'*C*P; 
   State.sig = sig; 
   State.Ct = Ct;  % project to 6-d 
   State.Pres.sig   = sig;   
   State.Pres.Ct    = Ct;             % Elastic tangent moduli 
   State.Pres.alpha = 0;             % equivalent plastic strain for isotropic hardening 
   State.Pres.epsP  = zeros(6,1);    % plastic strains 
   varargout = {State}; 
    
% ========================================================================= 
case{'stif','forc'} 
 
% retrieve history values 
epsP_n  = P*State.Past.epsP; 
alpha_n = State.Past.alpha; 
% exract current strain 
eps_n1  = P*State.eps;   % project to 9-d 
 
% 1) Initiliaze General Closest Point Projection Iterations 
epsP_n1  = epsP_n;     % project to 9-d 
alpha_n1 = alpha_n; 
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% 2) Calculate values at t_n1 
sig_n1Trial = C*(eps_n1 - epsP_n1); 
sig_n1      = sig_n1Trial; 
qPOT        = GradH(MatData,alpha_n1); 
q_n1        = -qPOT.DH; 
YieldFun    = Yield(sig_n1,q_n1,Pdev); 
f_n1Trial   = YieldFun.f; 
if f_n1Trial <=0 
    %elastic step, exit with current values 
    Ct     = P'*C*P;   % project to 6-d 
else 
    % plastic step, Start General Closest Projection Algorithm 
    k = 0; 
    Dgamma_n1 = 0; 
     
    % calculate derivatives 
    dfdsig   = YieldFun.dfdsig; 
    d2fdsig2 = YieldFun.d2fdsig2; 
    dfdq     = YieldFun.dfdq; 
    H        = qPOT.D2H;   % Current Plastic Modulus 
     
    r_sig    = zeros(9,1); 
    r_alpha  = 0; 
    r_Dgamma = f_n1Trial; 
    R = [r_sig;r_alpha;r_Dgamma]; 
     
    while sqrt(R'*R)>TOL2 
        %calculate components of the Jacobian 
        J = [  (eye(9)+Dgamma_n1*C*d2fdsig2)   zeros(9,1)       C*dfdsig; 
                      zeros(1,9)                  1              -dfdq ; 
                        dfdsig'                -H*dfdq'             0    ]; 
         
        % find update values 
        dr        = -J\R; 
        dsig      = dr(1:9,1); 
        dalpha    = dr(10,1); 
        dDgamma   = dr(11,1); 
        sig_n1    = sig_n1 + dsig; 
        alpha_n1  = alpha_n1 + dalpha; 
        Dgamma_n1 = Dgamma_n1 + dDgamma; 
         
        % calculate new derivatives 
        qPOT     = GradH(MatData,alpha_n1); 
        q_n1     = -qPOT.DH; 
        H        = qPOT.D2H; 
        YieldFun = Yield(sig_n1,q_n1,Pdev); 
        f_n1     = YieldFun.f; 
        dfdsig   = YieldFun.dfdsig; 
        d2fdsig2 = YieldFun.d2fdsig2; 
        dfdq     = YieldFun.dfdq; 
         
        % calculate residuals 
        r_sig     = sig_n1 + Dgamma_n1*C*dfdsig - sig_n1Trial; 
        r_alpha   = alpha_n1 - Dgamma_n1*dfdq - alpha_n; 
        r_Dgamma  = f_n1; 
        R = [r_sig;r_alpha;r_Dgamma]; 
    end 
    epsP_n1 = epsP_n + Dgamma_n1*dfdsig; 
    % calculate Elastoplastic tangent with Perez-Foguet Way 
    Pr = [   eye(9)    zeros(9,2)]';  % Projection Matrix onto Stress Space 
    Ct = (Pr'*(J\Pr))*C; 
    Ct = P'*Ct*P;   %project to 6-d 
    % calculate elastoplastic tangent with Simo-Hughes way 
    AM = inv(C)+Dgamma_n1*d2fdsig2; 
    AM = inv(AM); 
    N_n1 = dfdsig'*AM*dfdsig; 
    N_n1 = AM*dfdsig./N_n1; 
    Ct_SH = AM - N_n1*N_n1'; 
end 
 
sig_n1 = P'*sig_n1;         % project back to 6-d 
epsP_n1 = I0\(P'*epsP_n1);  % project back to 6-d 
% store output values 
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State.sig = sig_n1; 
State.Ct  = Ct; 
State.Pres.sig = sig_n1; 
State.Pres.alpha = alpha_n1; 
State.Pres.epsP = epsP_n1; 
State.Pres.Ct = Ct; 
 
varargout = {State}; 
end 
 
return 
 
%============================================================================= 
%============================================================================= 
function YF = Yield(sig,q,Pdev) 
sqrt23 = sqrt(2/3); 
s = Pdev*sig; % project to 9-d 
norms = sqrt(s'*s); 
f = norms + sqrt23*q; 
if norms ==0 
    norms = 1; 
end 
dfdsig = s./norms; 
d2fdsig2 = (Pdev - dfdsig*dfdsig')./norms; 
dfdq = sqrt23; 
YF.f = f; 
YF.dfdsig = dfdsig; 
YF.d2fdsig2 = d2fdsig2; 
YF.dfdq = dfdq; 
YF.d2fdq2 = 0;     
YF.d2fdsigdq = 0;   
 
% derivatives with numerical differentiation 
h = 1e-5; 
k=length(sig); 
imagine = sqrt(-1); 
for i=1:k 
    ei = zeros(9,1); 
    ei(i) = 1;     % disturb i-th component 
    YF1 = YieldSimple(sig+h*ei,q,Pdev); 
    YF2 = YieldSimple(sig-h*ei,q,Pdev); 
    Ndfdsig(i,1) = (YF1.f-YF2.f)/2/h; 
    Nd2fdsig2(:,i) = (YF1.dfdsig-YF2.dfdsig)/2/h;  
end 
 
for i=1:k 
    ei = zeros(9,1); 
    ei(i) = 1;     % disturb i-th component 
    YF1 = YieldSimple(sig+h*imagine*ei,q,Pdev); 
    Nidfdsig(i,1) = imag(YF1.f)/h; 
    Nid2fdsig2(:,i) = imag(YF1.dfdsig)/h; 
end 
 
YF1 = YieldSimple(sig,q+h,Pdev); 
YF2 = YieldSimple(sig,q-h,Pdev); 
Ndfdq = (YF1.f - YF2.f)/2/h 
%+++++++ SUB ROUTINE for the SUB ROUTINE 
function YF = YieldSimple(sig,q,Pdev) 
sqrt23 = sqrt(2/3); 
s = Pdev*sig; % project to 9-d 
norms = sqrt(s'*s); 
f = norms + sqrt23*q; 
if norms ==0 
    norms = 1; 
end 
dfdsig = s./norms; 
YF.f = f; 
YF.dfdsig = dfdsig; 
return 
%+++++++++++++++++++++++++++++++++++++++++++ 
return 
%=============================================================== 
%=============================================================== 
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%------------------------------- 
function qPOT = GradH(MatData,alpha) 
sigY = MatData.sigY; 
Hi= MatData.Hi; 
qPOT.DH = sigY + Hi*alpha; 
qPOT.D2H = Hi; 
return 
%-------------------------------- 
 
 
Saturation Hardening model (just change GradH to new one in GCPPM) 
%------------------------------- 
function qPOT = GradH(MatData,alpha) 
sigY = MatData.sigY; 
sigY_inf = MatData.sigY_inf; 
delta = MatData.delta; 
qPOT.DH = sigY+(sigY_inf-sigY)*(1-exp(-delta*alpha)); 
qPOT.D2H = (sigY_inf-sigY)*delta*exp(-delta*alpha); 
return 
%-------------------------------- 
 
 
 
4.2 Numerical Examples 
 
Compare accuracy of GCPPM with RRM 
 
Here is some portion of the input script that defines the material parameters. We are going to run a 
Isotropic Linear Hardening Case in RRM and GCPPM. 
MatData.E = 10; 
MatData.nu = 0.2; 
MatData.sigmay = 20; 
MatData.Hi = 2; 
MatData.Hk = 0; 
 
% define time and strain 
tmax = 3; 
dt = 0.05; 
t = 0:dt:tmax; 
k = length(t); 
% create strain history to be applied 
for i=1:k 
   %epsilon(:,i) = (12*t(i)).*[1 1 1 0 0 0]' + (6*sin(t(i))).*[0 1 3/2 4 0 0]'; % engineering strains 
   epsilon(:,i) = (6*sin(t(i))).*[0 0 0 1 0 0]'; % engineering strains 
end 
 
Results 
 
At time t=  0.15 sec (RRM)  
--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
3.735953311840E+000  0.000000000000E+000  4.166666666667E+000  
 
At time t=  0.15 sec (GCPPM) 
--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
3.735953311840E+000  0.000000000000E+000  4.166666666667E+000 
  
At time t=  0.70 sec (RRM)  
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--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
1.217575528685E+001  5.445133886728E-001  5.747126436782E-001  
 
At time t=  0.70 sec (GCPPM) 
--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
1.217575528685E+001  5.445133886728E-001  5.747126436782E-001 
 
 
At time t=  1.45 sec (RRM)  
--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
1.337746323099E+001  1.585222996225E+000  5.747126436782E-001  
 
At time t=  1.45 sec (GCPPM) 
--------------------------------------------------------- 
     sigma(4)                  alpha           C1212      
--------------------------------------------------------- 
1.337746323099E+001  1.585222996225E+000  5.747126436782E-001  
 
 
So two methods give the same answer. However, there are a couple points that has been observed in 
the numerical runs. 
 
The way consistent elastoplastic tangent calculated in GCPPM is slightly influenced by: 
 
Ct = (Pr'*(J\Pr))*C;  (Better way to do) 
 
When instead of this  
Ct = (Pr'*inv(J)*Pr)*C;  (creates round off) 
 
However these small errors do not create a problem, because the elastoplastic tangent disturbed with 
errors is still algorithmicly more consistent than any other tangent. 
 
  
Numerical Assesment of the Local Convergence of GCPPM 
 
TOL=1e-12 
Performance of Newton Scheme in decreasing the residual for GCPPM  
 
At time t=  0.15 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
0.000000000000E+000   
 
At time t=  0.70 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
1.379964191411E+000   
1.526079710569E-002   
1.815880342093E-006   
2.842176364046E-014   
 
At time t=  1.45 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
2.567950570683E-001   
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2.406126075023E-004   
2.087894301894E-010   
3.552713678801E-015   
 
At time t=  2.20 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
0.000000000000E+000   
 
At time t=  2.70 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
0.000000000000E+000   
 
At time t=  3.00 sec 
---------------------------------- 
     NormR                         
---------------------------------- 
0.000000000000E+000   
 
Graphs from Test Run on GCPPM are attached at the end of the report.. 

• Time step does not have so significant effect on stress response of the material in terms of 
stability of the solution, however the consistent tangent changes significantly. Cep(1,1,1,1) 
stays almost constant for very small time steps, but for pretty large time steps, dt=1, Cep 
deviates. However this does not mean that this Cep is wrong. It just shows us that this is the 
tangent that is consistent with the time step.  

• We can clearly see the smooth hardening behavior of the material in stress-strain 
curves(Figure-4) 

• GCPPM bases its algorithm on Implicit Euler. We can see the strong stable behavior of the 
response for varying time step changes. 

 
 
Results from Numerical Differentiation 
 
Looking at Figure-5, we get very good and expected results from Central Difference method. It has an 
optimum step size 10-5 which is comparable with  

63 3 6 10opt
rh epsη −= = = ⋅  

 
Complex differentiation didn’t give satisfactory results. However in Ref.6, this method is shown to 
behave as good as central difference and even better.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 22



Math128B Term Project  Afsin Saritas 

5. ACCURACY & STABILITY OF INTEGRATION ALGORITHMS FOR 
ELASTOPLASTIC CONSTITUTIVE RELATIONS (Ref. 14) 

 
An acceptable integration algorithm for plasticity models has to satisfy three basic requirements a) 
consistency or first order accuracy; b) numerical stability; specific for this kind of problems c) 
incremental plastic consistency. A non-required but nevertheless desirable feature to add to the above 
list is: d) second order accuracy. 
 
Conditions (a) and (b) are needed to obtain convergence of the numerical solution as the time step 
becomes very small. Condition (c) is the algorithmic counterpart of the plastic consistency condition 
and requires that states of stress computed from the algorithm be contained within the elastic domain. 
 
Here are the equations that we are trying to solve: 

 
:

( , )
( , )

e p
ij ij ij

e
ij ijkl kl

p
ij ij

i i

C

r
q h

ε ε ε

σ ε

ε γ

γ

= +

=

=

=

σ q
σ q

 (9) 

 

 
( , ) 0

0
0

f

f
γ

γ

≤
≥

=

σ q
 (10) 

For  
 0 0( )f Elasticγ< ⇒ =  
  0 0 &f fγ > ⇒ = = 0
 

 

0

( , )

( , )

ij i ij ij i i
ij i

ij
ij

i
i

f ff q
q

f

f
q

σ η σ ξ
σ

η
σ

ξ

∂ ∂
= + = +

∂ ∂

∂
=

∂

∂
=

∂

σ q

σ q

q =

 (11) 

 
For a particular form of plasticity (associated plasticity), we have: 
 ij ijr η=  (12) 
Generalized Trapezoidal Rule: 
 
A class of algorithms for integration of Eq.9-11 can be written as: 
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The symbol signifies doubly contracted tensor product, e.g. ((:) : )ij ijkl klC Cε ε= , γ∆  is incremental 
plastic consistency parameter, and θ  ranges from 0 to 1. 
 
In Eq.13,  are the known strains, plastic strains, stress and plastic variables at time t, , ,p

n n n nε ε σ q

1 1, ,p
n n n+ +ε σ q

n, 
whereas are the corresponding unknown variables at time t1+ n+1. The updated strains 

1nε + are assumed given and one writes 
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Generalized Midpoint Rule: 
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where 
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Accuracy Analysis 
 
As mentioned in Chapter 3, we are going to deal with Step 2 of the solution of the Boundary Value 
Problem that is tried to be solved within the context of Finite Element Method Analysis. As a result, 
the updated strains  may be viewed as known functions of the step size h. The 
remaining update variables , as well as the incremental plastic parameter 

1 1( ) (n n nt t+ += = +ε ε ε

1 1 1, ,p
n n n+ + +σ ε q

)h
γ∆ , also 

become functions of h implicitly defined through relations (Eq.13-16). It is clear from these relations 
that as  and, hence, ε  the limiting values 0h → 1n n+ → ε
  (17) 1 1 1; ; ;p p

n n n n n n γ+ + +→ → → ∆σ σ ε ε q q 0→
 
are obtained. Furthermore, by implicit function theorem 1 1 1, ,p

n n n and γ+ + + ∆σ ε  are differentiable 
functions of h provided the functions r,h and f are sufficiently smooth. 

q

 
First-order accuracy or consistency of the algorithms Eq 13-16 with constitutive relations Eq.9 
necessitates that the numerically integrated variables 1 1, ,p

n n n 1+ + q +

1)n+

σ ε  agree with their exact values 
 to within second-order terms in h. An alternative statement requires that 1 1( ), ( ), (p

n nt t t+ +σ ε q
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γ γ
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∆ =

σ σ C ε ε

ε ε r

q q h

)

 (18) 

 
where plastic consistency parameter nγ  is determined with the aid of the plastic consistency condition 

 :n n n nf n= + ⋅η σ ξ q  (19) 
 
Let’s investigate whether or not Eq.18-19 are satisfied by Generalized Trapezoidal rule and 
Generalized Midpoint Rule: 
 
Generalized Trapezoidal Rule: 

 
[ ]

[ ]

1 1 1

1 1 1
1 1

1 1 1
1 1

:

( ) (1 ) : :

( ) (1 ) : :

0

p
n n n

p
n n n n

n n

n n n n
n n

d d d
dh dh dh

d d d d
dh dh dh dh

d d d d
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1
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+

  ∆ ∂ ∂ = − + + ⋅ ∆ +    ∂ ∂    
  ∆ ∂ ∂ = − + + ⋅ ∆ +    ∂ ∂    
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σ C ε ε

r rε r r σ q
σ q

h hq h h σ q
σ q

1 1 1 1 1:n n n n n
d df

dh dh dh+ + + + += + ⋅η σ ξ q

 (20) 

 
Taking the limit h  in these expressions and recalling Eq.17: 0→
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 = − 
 
∆ =  

 
∆ =  

 

= = + ⋅

σ C ε ε

ε r

q h

η σ ξ q

 (21) 

 

Comparing Eq.21 with Eq.18 it becomes apparent that 
0

( )
n

h

d
dh

γ γ
=

∆  = 
 

and, consequently the 

remaining consistency conditions in Eq.18 are also satisfied. 
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Taking the accuracy analysis a step further, second order accuracy of algorithm Eq.13-14 requires that 
the numerically integrated variables agree with their exact values to within third-order terms in h. In 
other words, in addition to Eq.18 it is now required  
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1 02
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2
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d
dh
d
dh

d
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d
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γ γ
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= = −

  ∂ ∂ = = + +    ∂ ∂    
  ∂ ∂ = = + +    ∂ ∂    

∆ =

σ σ C ε ε

r rε ε r σ q
σ q

h hq q h σ q
σ q

 (22) 

 
where nγ  is to be determined from imposing a second order oscillatory satisfaction of the plastic 
consistency condition f=0, i.e. 
 0 : :n n n n n n n nf= = + + ⋅ + ⋅η σ η σ nξ q ξ q  (23) 
 
To check whether this condition is satisfied, differentiating Eq.20 with respect to h and taking the limit 

it is obtained  0h →
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σ C ε ε

r rε r σ q
σ q

h hq h σ q
σ q
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2 2

1 0 1 0 1 02 2( ) : : ( ) ( )n h n n n n h n n n n h
d df
dh dh dh+ = + = + == = + + ⋅ + ⋅η σ η σ ξ q ξ q

2

2
d

 (24) 

 
 

Comparison of Eq.24 with Eq.22 and Eq.23 leads to the conclusion that 
2

2
0

( ) n
h

d
dh

γ γ
=

 
∆ = 

 
/ 2

and that 

second-order accuracy is achieved provided one chooses 2 1, . . 1i eθ θ= =  
 
A similar analysis leads to the same conclusions for the generalized midpoint rule, i.e. it is consistent 
for all θ and second-order accurate for 1/ 2θ = . 
 
From these results it is concluded that the choice of 1/ 2θ = leads to optimal accuracy for small strain 
increments. By contrast, the stability analysis carried out below indicate that larger values of θ may 
prove advantageous in terms accuracy and even necessary for stability in the realm of large time steps. 
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Numerical Stability 
 
The concept of numerical stability plays a central role in approximation theory for initial value 
problems. Its relevance stems largely from the fact that consistency and stability are necessary and 
sufficient conditions for convergence as time step size is allowed to tend to zero. In the context of 
linear analysis, the numerical stability of a time stepping algorithm can be characterized with the aid of 
suitably defined energy norms. By contrast, when the initial value problem under consideration is 
nonlinear it is not always clear from the structure of the governing equations how to characterize 
numerical stability.  
 
Large-scale and small-scale stability:  The purpose of the stability analysis that follows is to determine 
under what conditions finite perturbations in the initial stresses are attenuated by the algorithm, i.e.  
 
 ( ) ( )(2) (1) (2) (1)

1 1,n n n nd d+ + ≤σ σ σ σ,

nσ

 (25) 

where is some suitable distance to be defined on the yield surface and and are two sets 
of updated stresses corresponding to arbitrary initial values and σ respectively, all of which are 
assumed to lie on the yield surface. Stability in the sense of Eq.25 will be therefore referred to as 
‘large-scale’ stability. It has been shown in Reference 15 that for nonlinear IVP defined on Banach 
manifolds consistency and large-scale stability with respect to a complete metric are sufficient for 
convergence. 

( , )d ⋅ ⋅ (1)
1n+σ (2)

1n+σ
(1)
nσ

(2)
n

 
The stability analysis is significantly simplified, however, once it is recognized that attention can be 
confined to infinitesimal perturbations in the initial conditions of the type . This rests on 
the fact that attenuation by the algorithm of the infinitesimal perturbations, 

n n d→ +σ σ

 
 1nd d+ ≤σ nσ  (26) 

with respect to some suitable norm ⋅ , of ‘small-scale’ stability, implies large-scale stability in the 
sense in Eq.25. Let this norm be defined as the energy norm: 
 2

ij ijkl klDσ σ=σ  (27) 
where D=C-1, and let the distance on the yield surface be defined as 
 (1) (2)( , ) inf ( )d

λλ
′= ∫σ σ σ s ds  (28) 

where infimum is taken over all stress paths λ  on the yield surface joining σ and . (1) (2)σ
 
Consider next any two initial states of stress and for which the infimum in Eq.28 is attained. If (1)

nσ
(2)
nσ

nλ  is such curve, then by definition 
 
 (1) (2)( , ) ( )

n
n nd

λ
′= ∫σ σ σ s ds  (29) 

 
Let 1nλ + be the transform of nλ  by the algorithm. 1nλ +  lies on the yield surface and joins (1)

1n+σ and (2)
1n+σ . 

Then by definition it follows that 
 
 

1

(1) (2)
1 1( , ) ( )

n
n nd

λ +
+ + ′≤ ∫σ σ σ s ds  (30) 
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However under the assumption of small scale stability of the algorithm one has 
1 1( ) ( ) ( ) ( )n n ns ds d s d s s d+ +′ = ≤ =σ σ σ σ

n

n s′  for every pair of corresponding points sn and sn+1 and 
λ and 1nλ + respectively and hence 
 
 

1

( ) ( )
n n

s ds s ds
λ λ+

′ ′≤∫ ∫σ σ  (31) 

 
Combining Eq.29,30 and 31 it is concluded that 
  (32) (1) (2) (1) (2)

1 1( , ) ( ,n n n nd d+ + ≤σ σ σ σ )
which proves large scale stability. 
 
Conclusion: small-scale stability in the energy norm is equivalent to large-scale stability. 
 
This conclusion has a practical importance since it shows that stability analysis may be confined to the 
assessment of small-scale stability. Now let’s investigate this with our algorithms. 
 
Generalized Trapezoidal Rule 
 
To carry out a small-scale stability analysis of the generalized trapezoidal rule it is necessary to 
determine first how it propagates infinitesimal perturbations in the initial conditions. First differentiate 
Eq.13 
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 ∂ ∂   − = ∆ − + + ∆ − +    ∂ ∂    
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σ C ε σ C ε

r rε ε r r σ
σ σ

η σ

σ  (33) 

 
Introducing the notation 
 

 1; (1 )n nθ θ θ n+ +
∂

= = − +
∂

rB r r
σ

r  (34) 

Equations 33 can be simplified to read 
 

 1 1

1 1

( ) : ( (1 )
0 :

n n n n

n n

d d d
d

θ ) : nθ γ γ θ γ+ + +

+ +

+ ∆ = ∆ + − − ∆
=

D B σ r D B σ
η σ

 (35) 

Substituting 35a into 35b, the value of d γ∆ may be solved for, leading to 
 

 
1

1 1
1

1 1

: ( ) : ( (1 ) ) :
: ( ) :

n n n

n n n

dd
θ

θ γ θ γγ
θ γ

−
+ +

−
+ + +

+ ∆ − − ∆
∆ =

+ ∆
η D B D B σ

η D B r
n

n nd

 (36) 

 
Solving for and making use of Eq.36, 1nd +σ
 
  (37) 1

1 1: ( ) : ( (1 ) ) :n nd θ γ θ γ−
+ += + ∆ − − ∆σ P D B D B σ

where 
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: nθ θθ γ
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−
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⊗
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r ηP I
r η
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To derive small scale stability from Eq.37, we can define the energy norm of a matrix in the usual 
fashion: 
 

 sup
σ

≡
A :σ

A
σ

 (39) 

 
Taking the energy norm of Eq.37 and using the inequalities :A Aσ σ≤ ⋅  and 1 2 1 2:A A A A≤ ⋅ , 
finally it is obtained: 
 1

1 1( ) : ( (1 ) )n nd dθ γ θ γ−
+ +≤ ⋅ + ∆ − − ∆ ⋅σ P D B D B σn n  (40) 

 
Now we have to estimate the components of Eq.40. Concerning the norm of P it suffices to note that P 
defines an oblique projection along the direction ˆn θ+r  onto the hyperplane orthogonal to 

 and for every 1 ˆ, . . : 0n ni e θ+ + =η P r P :σ = σ σ  orthogonal to 1n+η . From these properties and the 
definition in Eq.39, it follows that 1=P . 
 
Assuming that the flow direction r derives from a convex potential or loading function which is a 

common assumption made in many plasticity models, we get ∂
=

∂
rB
σ

 symmetric and positive definite 

everywhere on the yield surface. 
 
Under these assumptions, we get: 
 

 1 max max
1 1

max 1 max

: ( (1 ) ) :( ) : ( (1 ) )
: ( ) :

n
n n

n

θ γθ γ θ γ
θ γ

−
+ −

+

− − ∆
+ ∆ − − ∆ =

+ ∆
δ D B δD B D B
δ D B δ

 (41) 

where maxδ  is the eigenvector corresponding to the maximum eigenvalue of the eigenproblem  
 
  (42) 1

1( (1 ) ) ( ) :n nθ γ µ θ γ −
+ − − ∆ − + ∆ = D B D B δ 0

which may be normalized to satisfy 
 2

max max max: : 1= =δ δ D δ  (43) 
 
Denoting  
 max max 1 max 1 max: : ; : :n n n nβ β + += =δ B δ δ B δ  (44) 
and making use of the Eq.43, 41 reduces to 

 1
1

1

1 (1 )( ) : ( (1 ) )
1

n
n n

n

θ γβθ γ θ γ
θ γβ

−
+

+

− − ∆
+ ∆ − − ∆ =

+ ∆
D B D B  (45) 

which substituted into Eq.40, 
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 1
1

1 (1 )
1

n
n

n

d θ γβ
θ γβ+

+

− − ∆
≤

+ ∆
σ ndσ

n

 (46) 

 
1n andβ β + are positive scalars due to the symmetry and positive definiteness of B. We can say that 

 

 
1 1

1 (1 ) 1 ,0 1
1

n n

n n

θ γβ θ β θ
θ γβ θ β+ +

− − ∆ −
≤ ≤ ≤

+ ∆
 (47) 

 
To find an upper bound for this, we can define the quantity 

 sups = 1

2

δ : B : δ
δ : B : δ

 (48) 

where B1 and B2 are evaluated at arbitrary points 1σ  and 2σ . For reasons that are clarified below, s 
will be referred to as the distortion index of the loading surface. From Eq.48,  
 

 
1

n

n

sβ
β +

≤  (49) 

which in combination with 46 and 47 yields 
 

 1
1 ,0 1n n nd s d c dθ θ

θ+
−

≤ =σ σ σ ≤ ≤  (50) 

where one writes 
 

 1c sθ
θ
−

≡  (51) 

Unconditional stability requires  which in view of Eq.51 gives us, 1c ≤

 min1
s

s
θ θ≥ ≡

−
 (52) 

 
As discussed below, it follows from definition in Eq.48 that the distortion index s ranges from 1 for 
loading functions of constant curvature such as J2 Plasticity to infinity for loading surfaces with 
corners. As a consequence, the minimum value of minθ of θ to achieve unconditional stability ranges 
from ½ for s=1 to 1 for  s = ∞
 
For minθ θ< stability is conditional. A little reflection soon leads to the condition that 
 

 
1

1 (1 ) 1
1

n

n

θ γβ
θ γβ +

− − ∆
≤

+ ∆
 (53) 

if and only if γ∆ is confined to be 

 max
min

2 / ,
(1 ) crits s

βγ γ θ θ
θ

∆ ≤ = ∆ <
− +

 (54) 
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where maxβ is the maximum eigenvalue among all tensors B over the yield surface. For minθ θ= , the 
critical value critγ∆ of the incremental plastic parameter becomes infinity and unconditional stability is 
recovered. 
 
Remarks: 

(1) Under the assumption of a loading function ψ acting as a potential for the plastic flow direction 
ψ∂

=
∂

r
σ

, one has 
2

2

ψ∂
=

∂
B

σ
, i.e. tensor B coincides with the Hessian of ψ . Thus B determines 

how the normal r to the loading surfaces constψ =  varies over neighboring points, i.e. it is a 
measure of the curvature of the loading surface. 

(2) Let B1 and B2 be evaluated at two arbitrary points and σ on the yield surface. Then the 
scalar  

1σ 2

 ( ) sups
δ

= 1
1 2

2

δ : B :δσ ,σ
δ : B :δ

 (55) 

where supremum is taken over all incremental stresses δ , is a measure of the curvature of the 
loading surface at point relative to that at point . From this perspective, 1σ 2σ

 
1 2,

sup ( )s s
σ σ

= 1 2σ ,σ  (56) 

where supremum is taken over all pairs of stress point 1σ  and 2σ  on the yield surface, gives an 
idea of the extent of variation of the curvature of the loading surface over points of the yield 
surface. This provides the reason for calling s the distortion index of the loading surface. 

 
(3) The shape of the loading surface strongly influences the stability properties of the generalized 

trapezoidal rule.  
 
Generalized Midpoint Rule 
 
En entirely similar analysis leads to the following estimate for generalized midpoint rule: 
 

 1
1 (1 )

1
n

n
n

d θ

θ

θ γβ
θ γβ

+
+

+

− − ∆
≤

+ ∆
σ ndσ  (57) 

 
where now n θβ + is the maximum eigenvalue of the tensor nB θ+ . Making use of Eq.47 and 57 can be 
written 
 

 1
1

n nd dθ
θ+
−

≤ =σ σ nc dσ  (58) 

 1c θ
θ
−

≡  (59) 

 
Unconditional stability requires  which in view of 59 implies 1c ≤

 min
1
2

θ θ≥ =  (60) 
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In conclusion, generalized midpoint rule is unconditionally stable for 1/ 2θ ≥ , regardless of the choice 
of the loading potential. This is completely in sharp contrast with the generalized trapezoidal rule for 
which stability has been shown to be strongly dependent on the shape of the loading surface. 
 
For 1/ 2θ <  the stability of generalized midpoint rule is only conditional. Making use of Eq.53 and 54,  
 

 max2 / , 1/
1 2 crit 2βγ γ θ

θ
∆ ≤ = ∆ <

−
 (61) 

which is unlike 54 is independent of the choice of loading potential. For 1/ 2θ = , we recover 
unconditional stability again. 
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6. CONCLUSION & DISCUSSION 
 
It has been studied that numerical analysis has a very big potential application in calculation of 
response of Plastic Materials. Among integration schemes, Implicit Euler method is the most widely 
and successfully used one. For the integration with this method, we needed to calculate partial 
derivatives of yield function with respect to stress like variables. GCPPM has been shown to be very 
easily extensible to other type of yield functions and hardening types. In conjunction with GCPPM, 
numerical differentiation resulted in very satisfactory results.  
 
GCPPM is shown to give quadratic convergence at the local level. The elastoplastic tangent resulted 
from this method is compared with RRM and they matched, and this suggests that GCPPM will 
provide us quadratic convergence in Global, as well. 
 
The next level of application that the author suggests is Multi-surface plasticity with GCPPM and 
using numerical differentiation. However, as shown in Ref.7, smoothening out the yield surface speeds 
up singular points on the yield surface and thus reduces the cost. 
 
In Chapter-5, two families of algorithms have been presented. It is observed that the stability properties 
of the generalized trapezoidal rule are very sensitive to the degree of distortion of the loading surface. 
In particular, in the presence of corners, stability of the trapezoidal rule requires 1θ = ,which 
corresponds to the closest point procedure. By contrast, the generalized midpoint rule is 
unconditionally stable for 1/ 2θ ≥ , regardless of the choice of loading surface. This remarkable fact 
would appear to point to the generalized midpoint rule as preferable to the generalized trapezoidal rule, 
apart from simple cases such as the J2 model for which both integration rules coincide (since J2 model 
has constant curvature). 
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