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Summary: In this paper, the concept of meshless methods is introduced. In particular, the 
formulation of Reproducing Kernel Particle Methods(RKPM) is derived and discussed in 
detail. The error estimate of RKPM is also presented and it shows the convergence of the 
method.    

1.Introduction  

In the field of engineering computation, the Finite Element Method(FEM) has been 
the most widely used numerical method for many years. One of the key feature of FEM is 
the mesh, a topological map that connects the discretization of the continuum. Since 
mesh is an � artifactD, it often does not represent the real physical compatibility of the 
continuum. For example, in the simulation of manufacturing processes such as modling, 
the extremely large deformation involved will distort the mesh. As a result, frequent 
remeshing is needed during the computation. Such remeshing is time-consuming and 
sometimes can harm the computational accuracy. So it would be better if we discretize 
the continuum by only a set of particles. This is the motivation of Meshfree 
Methods(meshless methods, particle methods are other common names). Comparing to 
FEM, the key advantage of meshfree methods is they can easily handle very large 
deformations, since the connectivity among particles is generated as part of the 
computation and can change with time. Originated in the late seventies, the meshfree 
methods experienced fast development during the past ten years. Many different methods 
are proposed. For the reviewing of meshfree methods, please refer to [1] and [2]. 

The objective of this survey is to introduce the basic properties of meshfree 
methods and discuss the results of error estimates of meshfree methods. The organization 
is as following: Part 2 will discuss some general features of meshfree methods. 
Comparison with FEM is included. Part 3 will discuss one specific method, Reproducing 
Kernel Particle Method(RKPM) in detail. Part 4 will discuss the error estimate of RKPM. 
A short conclusion ends the whole survey.  
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2. Basic properties of meshfree methods  

2.1 Lebesgue space and Sobolev space 

For convenience, we list here the definitions of Lebesgue space and Sobolev space. 
Please refer to [3] for more formal discussion. 

DEFINITION 2.1. The Lebesgue space is defined as 

: : ,1P

p

L
L f f p

                 

(2.1) 

where the Lp norm is defined as: 
1

:    for 1

: sup :

p

p

p

L

L

f f x p

f f x x

               

(2.2) 

DEFINITION 2.2. The Sobolev space is defined as: 

1 : k
p

k
p loc W

W f L f

                     

(2.3) 

where 1
locL

 

is the set of locally integrable functions defined as: 

1 1: , compact interior locL f f L K K

    

(2.4) 

And the associated Sobolev norm is defined by: 
1

:
p

k p
p

p

wW L
k

f D f

                          

(2.5) 

Here + is a multi-index. k is a non-negative integer. 

Particularly, we denote 2
K kH W . 

2.2 Problem setting 

Before starting to discuss meshfree methods, we efine the model problem we are 
solving. Consider a boundary value problem: find u such that: 

0

0

            in 

             on 

           on 

u

t

Lu f

u u

u
t

n                               

(2.6) 

where L is a differential operator and ,t u t u . 

The variational weak formulation of this problem reads: 

find     such that    , ,    V a Vu u v f v v           (2.7) 
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where V is a sobolev space. a( , ) is a bilinear form. ( , ) is an inner product. 
For an example of (2.7), we consider the elasticity problem. In this case, we have 

K=1, p=2: 

1 1
2V W H

 

, : : :a dw u w C u                  (2.8) 

where C is the elastic moduli tensor. 
When we solve (2.7) numerically, we want its finite dimensional approximation. The 

approximate form of (2.7) reads: 

find     such that    , ,    h hS a Su u v f v v           (2.9) 

where S V

 

is a finite dimensional subspace of V and hu

 

is the approximation of u.  

2.3 Discretization 

Let/s first recall the discretization method used 
in FEM: the continuum is discretized to many 
elements. The discrete approximation is always 
defined inside an element. For the example shown in 
fig 2.1, the approximation of the function at point x is 
defined in the shaded element. Moreover, the 
approximation will be expressed as a linear 
combination of the function value at the nodes of the 
element(P1, P2, P3, P4 in fig 2.1). 

As mentioned before, meshfree methods use a 

set of particles to discretize the continuum. We 
then construct the discrete approximation of some 
unknown functions(e.g. displacement u in 
elasticity) based on those particles. And for 
meshfree methods, for each node we define a 
support. A support is the � influential area³ of that 
particle and is usually a circle or a rectangle. The 
supports can be different at nodes. Fig 2.2 shows a 
particle distribution with uniform circular 
supports. And to construct approximation at a 
spatial point x, we only use the particles whose 
support includes x. In fig 2.2, the point x is 
covered by 3 supports(highlighted), so we use 3 
particles to construct the approximation for x. 

Fig 2.1 FEM discretization 

Fig 2.2 Meshfree discretization
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Based on this idea, we can define a local domain for x(the shaded circle in fig 2.2), which 
includes those 3 particles. In a general non-uniform particle distribution, the local domain 
of x may be irregular. We can view this local domain as the counterpart of the FEM 
element. But as we mentioned earlier, this support-based connectivity is far less strict 
than the mesh-based one and can change with time. 

If we write formally what we discussed above, we will have following form of 
meshfree discretization of an unknown function u: 

Ns

1

h M
j j

j

u x x u

                        

(2.10) 

where Ns is the number of points inside the local domain and ju

 

is the function value at 

those points. j x , usually called [shape functions³  are some known functions. 

We have the similar expression for FEM: 

Ne

1

h F
j j

j

u x x u

                             

(2.11) 

where Ne is the number of points of each element. 
While the discrete forms look same, there are differences between those two. In FEM, 

we always use simple polynomials(e.g. Lagragian polynomials) as the shape functions. 
But as we will see later, the meshfree shape functions will have more complicated 
expressions. Also, one key property of FEM shape functions is the so-called Kronecker 
delta property: 

F
i j ijx                                  (2.12) 

where ij

 

is the kronecker delta: 

1,    

0,    ij

i j

i j

                                 

(2.13) 

This will immediately gives us: 

h
i iu x u x

                            

(2.14) 

In meshfree case, this property no longer holds due to complicated shape functions. 
That means: 

M h
i j ij i iu ux x x

                     

(2.15) 

So the meshfree approximation is not an interpolation in the strict sense. The result is that 
in the meshfree formulation, we can not impose Dirichlet type boundary conditions 
directly. Special procedures are needed(e.g. [4]).  
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3. Reproducing kernel particle method(RKPM)  

In this section we consider a specific meshfree method proposed by Liu et al[5]. This 
method starts with the trivial identity:               

du x x y u y y

                    
(3.1) 

Where x

 

is the Dirac delta function. 

We want to use a finite-valued function to approximate x : 

d d x y
x y x y              (3.2) 

where 

 

is a tiny number and 

 

is a continuous function called window function. 

 

has the following properties: 

0      1

0      1

1             

for

for

d

x x

x x

x x                         

(3.3) 

There are many choices for the window function, e.g. cubic spline function(1-D 
case): 

2 32 1
3 2

2 34 4 1
3 3 2

4 4 ,            0

4 4 ,  1

0,                                      

 

1

z z z

z z z z z

z

                

(3.4) 

The higher dimensional window functions can be construct by either replace � | |_ 
above with distance in higher dimension or by product: 

izz                          (3.5) 

Fig. 3.1 is the plot of (3.4) and the corresponding 

 

with =0.3. 
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Substitute (3.2) back into (3.1), we have: 

,    d du x x y u y y x             (3.6) 

u

 

is called the mollification of u. Define: 

: ,x dist x , 0

 

Then we have the following theorem([3], appendix): 

THEOREM 3.1. If u is locally integrable and assume kCu , then 

1.   m mC if Cu 

2. ,    D D ku u 

This theorem justifies the convergence of the approximation (3.6) and shows the 

continuity of u

 

is determined by the window function. 

One basic requirement of the approximation is the consistency condition: if the weak 
form contains derivatives of order k, then the approximate solution must be able to 
exactly represent solutions with constant k-th order derivatives and below. That means 

Fig 3.1 The cubit spline window function
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our approximation must be able to exactly represents polynomials up to k-th order. Let 
2

1, ,u x y x y in (3.6), we then have a set of equations: 

1

0,

d

md

d

d m k

x y y

x y x y y                  
(3.7) 

Since 

 

is the approximation of Dirac delta function, (3.7) holds. 

If we use a set of particles to discretize the domain , we can write the discrete form 
of (3.6) as: 

1

n
h d

i i i
i

wu x x x u x                     (3.8) 

where iw

 

are the integral weights. 

Unfortunately, the discrete form of (3.7) does not hold, i.e. 

1

0,

d
i i

i

md
i i i

i

w

w m k

x x

x x x x                
(3.9) 

So we need some adjustments for out approximation. Liu et al[5] added a correction 
function term to (3.6): 

,d C du x x y x x y u y y

             

(3.10) 

The correction function C is given by: 

,C x x y P x y b x

                    

(3.11) 

where 0 1, ,
T

pb b bb x x x x

 

is an unknown vector and vector function P has 

the form: 

0 1, , pP P PP x x x x

                  

(3.12) 

Where the length p equals the dimension of the k-th order polynomial space: 

k d
p

d
, d is the spatial dimension.             (3.13) 

The iP x

 

in (3.12) are chosen to be monomial functions. In 1-D case, we have: 

1, , px x xP                         (3.14) 
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Then the consistency condition for the modified continuous approximation becomes: 

? 0TM x b x P                       (3.15) 

where 

0 1,0, 0
TTP                        (3.16) 

? d T dM x x y P x y P x y y

           

(3.17) 

PROPOSITION 3.2.

 

?M

 

is positive definite. 

Proof. Consider the quadratic form: 

2

?( , )           

0

T d T T

d

Q d

d

x a a Ma x y a P x y P x y a y

x y P x y a y    
(3.18) 

In the case Q=0, since we have 0 , that means: 

0,    
k

a z z

                          

(3.19) 

Then a=0 follows. So Q>0, ?M

 

is positive definite. It is called moment matrix. 

So (3.15) has a unique solution b(x). 

Now we consider the discrete form of (3.10): 

1

,
n

dh
i ri i i i i

i

r C wu x x x x x x u x               (3.19) 

Here n is the number of particles in the domain. We replace 

 

with ir

 

by allowing 

different support sizes at different particles. Substitute (3.11) into (3.19): 

1

,
n

dh
i ri i i i i

i

r wu x x x P x x x b x u x

            

(3.20) 

by absorbing d
ir

 

and iw

 

into unknown vector b, we have: 

1

,
n

h
ri i i i

i

u x x x P x x x b x u x

               

(3.21) 

The consistency condition now becomes: 
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0TM x b x P                           (3.22) 

where 

1

, ,
n

T
ri i i i

i

M x x x P x x x P x x x

             
(3.23) 

M is the discrete moment matrix. Recall the expression of P (3.12), we can see M is the 

sum of some rank-one matrices. So for M to be nonsingular, we need at least p nonzero 

terms in the summation of (3.23), where p is defined by (3.13). In term of particle 

distribution, this means we need at least p particles whose 

 

does not equal zero at x. In 

other words, any point x must be in the support of at least p particles. To explore the 

sufficient condition, we look at the quadratic form of M: 

1

2

1

( , )           

0

n
T T T

ri i
i

n

ri i
i

Q i i

i

x a a Ma x x a P x x P x x a

x x P x x a       

(3.24) 

and: 

1

( , ) 0    0
n

i

Q ix a P x x a                 (3.25) 

For (3.25) to have only zero solution, we have: 

1

2

p

T

P x x

P x x

P x x 

is nonsingular.                  (3.26) 

(3.26) is the sufficient condition for (3.22) to have unique solution. 

Now re-write (3.21) in the form of (2.9): 

1

n
h

i i
i

u x x u x

                        

(3.27) 

where the shape functions has the form: 

,i ri i ix x x P x x x b x

                  

(3.28) 

In practical programming, at each spatial point x we first solve (3.22) to get the b 
vector. Then we plug b into (3.28) to get the shape function value at point x. 
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It can be easily shown that: 

 if  m m
i C Cx x                        (3.29) 

So it is easy to construct arbitrarily smooth shape functions. This will make it easy when 
solving higher order PDEs. 

It can also be shown[6] that 
1

n

i i

 

are independent. So our approximation (3.27) 

belongs to the space with 
1

n

i i

 

as basis. 

We end this section with several shape function plots. Fig 3.2 shows a set of 1-D 
RKPM shape functions. Fig 3.3 and fig 3.4 show a 2-D shape function and its derivative 
along x-direction. 
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Fig. 3.2 1D RKP shape functions

 

Fig. 3.2 2D RKP shape function

 

Fig. 3.4. x-derivative of 2D shape function
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4. Error estimates of RKPM  

We first try to get the interpolation error estimate, i.e. try to get a bound for 

hu x u x . 

Let the support sizes be quasi-uniform([7], 4.4), i.e. there exist constants c1, c2 and r 
such that: 

1 2     irc c i
r

                        

(4.1) 

Liu et al[8] showed the derivative of b vector is bounded by: 

D c rb x                        (4.2) 

Based on this result, we can get the bound of the shape function[6]: 

1max max ,    0i l il l

c
D l k

r

             

(4.3) 

Denote :i ri iB B x

 

as the ball centered at ix . Now we consider the averaged k-th 

order Taylor polynomial of u([7], 4.1) over Bi: 

i

k k
j yB

Q T du x u x y y

                   

(4.4) 

where 

 

is window function on iB . k
yT u x

 

is the Taylor polynomial at y: 

1

!
p

y
p

T Du x u y x y

                 

(4.5) 

Obviously k
jQ u x

 

is an approximation of u(x). We can define the remainder term: 

k k
j jR Qu x u x u x

                      

(4.6) 

We have the following lemma([7], 4.3): 

LEMMA 4.1.(Bramble-Hilbert).  

Let B be a ball in 

 

such that 

 

is star-shaped with respect to B and let mQ u

 

be the 

Taylor polynomial of degree m of u averaged over B where m
pWu and 1p . 

Then 
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0,1,mk
pp

k k p

WW
R c d p ku u              (4.7) 

where d is the diameter of the domain. 

Use this lemma, we have the results for each support Bi: 

, 0,1,kp
p jjl

k k p
j j W BW B

R c r p ku x u            (4.8) 

The difference between u(x) and its approximation: 

1

1 1

                    

n
h k k k k

j j j i j i i
i

n n
k k k k
j j i i j j i i

i i

Q R Q R

Q Q R R

u x u x u x u x u x u x x

u x u x x u x u x x

  

(4.9) 

Note that k is the highest order of derivative appeared in the weak form. We already 
showed our RKP approximation can exactly reproduce polynomials up to k-th order. And 

k
jQ u x

 

is a k-th order polynomial. So we have: 

1

n
k k
j i i j

i

Q Qu x x u x

                   

(4.10) 

Then (4.9) reduces to: 

1

n
h k k

j j i i
i

R Ru x u x u x u x x

             

(4.11) 

Take norm of both sides of (4.11) and use Cauchy-Schwarz inequality, we have: 

1
qq q q

jlj j jl l l

n
h k k

j j i i W BW B W B W B
i

R Ru x u x u x u x x (4.12) 

In (4.12), 1 q . Now plug (4.3) and (4.8) into the above inequality, we have: 

,0 ,1qq
jkjl

h k l
j W BW B

c r l k j nu x u x u      (4.13) 

Expand this result to the whole domain, we have the interpolation error estimates: 

,0 , 1,qq
kl

h k l

WW
c r l k qu x u x u      (4.14)    
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Now we can derive the error bound for approximate solutions obtained by RKPM. 
Now we revisit the BVP defined in the beginning of section 2. Since we did not discuss 
how to treat Dirichlet boundary condition, we assume for now our problem does not have 

Dirichlet b.c., i.e. u

 
in (2.6). The weak formulation using RKPM reads: 

find      such that    , ,    R R
R RV a Vu u v f v v        (4.15) 

where :1R iV span i nx is the space generated by RKP shape functions. 

By Lax-Milgram theorem([7], 2.7), the problem has a unique solution. Moreover, by 
C&aDs theorem([7], 2.8), we have the following inequality: 

min
R

R
v V VV

cu u u v

                     

(4.16) 

Since the RKP approximation hu

 

belongs to RV , replace v in (4.16) by hu

 

will not 

affect the inequality. Then we have: 

R h

V V
cu u u u

                        

(3.46) 

So the error estimates of the approximation is reduced to the error estimate of 
interpolation. Using the interpolation error bound we just got, we have the error estimate 
for the RKPM approximate solution[6]: 

kn

R k n

HH
c ru u u                       (3.47) 

In (3.47), n is the level of continuity of 

 

, n k

 

and k
lW

 

is replaced by kH . 

Han and Meng[6] showed this bound is still valid when considering Dirichlet 

boundary conditions. So the error of RKPM is in the order of p nO r . This bound has 

been verified by various numerical results[6],[8]. This error bound shows the approximate 

result will converge to the real solution as we decrease the size of the support(increase the 

number of particles in the meantime). 

5.Conclusion  

In this paper we discuss the mechanism of meshfree methods, in particular RKPM. By 
discussing the formulation of RKPM and some results of its error estimate, we have 
shown the validity of RKPM as a numerical method solving for PDEs. As for me, by 
studying the relative literature, I learned the basic methodology of error estimates. This 
will help me to justify the ideas when developing new numerical scheme. 
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