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The conjugate gradient method (CG) was developed independently by Hestenes and Stiefel [1] 

back in the 1950s and has enjoyed widespread use as robust method for solving linear systems and 
eigenvalue problems when the associated matrix is symmetric and positive definite. It was originally 
described as a direct method for the solution of linear systems because the method gave the exact answer 
when using exact arithmetic, however, in practice the CG method never converged to the correct value in 
the predicted dim(N) iterations. Engeli [8] noted this and classified the CG method as an iterative method. 
Later, this apparent discrepancy was discovered to be due to numerical error accrued during floating point 
arithmetic. This paper will focus on how the CG method is able to solve linear systems, but for a good 
explanation of the history behind the development of CG, the reader is referred to [7]. 

An easy method for understanding the CG method, is to reinterpret the linear system as a different 
problem in disguise[2][3]. It can be shown that the extremum of the quadratic equation 
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implying that Equation 1 has an extremum when 
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which for a symmetric matrix A, Equation 3 reduces to  
bAx =  

A necessary condition for an extremum to be a minimum, is for  

0>AxxT  
Thus, if the matrix A is positive definite, the solution to Ax=b will be a minimum of the quadratic function 
f(x). So, for a symmetric, positive definite matrix, the linear system Ax=b has been transformed into a 
minimization problem of an N dimensional surface. Figure 1* shows an example of a 2D quadratic surface.  

Given a starting value of x0, a direction must be chosen to move in the direction of the minimum. 
The most obvious direction to choose is the negative of the gradient of f(x), or the direction of steepest 
decent.  
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As shown above, this search direction corresponds to the residual of the linear system Ax=b. Stepping in 
this direction gives 
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where α is chosen to minimize the value of f(x) along the search direction, corresponding to a line search. It 
is easily shown that f(x) is minimized along this direction when the directional derivative is zero. 
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which corresponds to orthogonal residuals. Choosing α to satisfy orthogonal residuals gives the value 
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* All figures within this document borrowed from reference [2] 
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When α is chosen, the new residual will be orthogonal to the old residual and the process can be repeated 
until the value of x that minimizes f(x) is found (corresponding to the solution of Ax=b). 

Choosing the search direction as the negative of the residual is easy to implement, but this manner 
of searching can require a large number of iterations as the residuals zig zag towards the minimum value. 
For ill-conditioned matrices , as seen in Figure 2, the quadratic function can produce a trough-like 
topography that can require a large number of iterations to converge for a chosen x0, since the same 
directions are traversed multiple times on the path towards the minimum. A better choice of search 
directions is to choose directions that are orthogonal to the error, such that the N dimensional surface could 
be minimized in n iterations. It turns out that choosing the appropriate α to achieve this requires knowledge 
of the answer, which is not helpful. However, conjugate search directions can be chosen to achieve the 
same result of dim(N) convergence.  

Two vectors, x and y, are conjugate, or A-orthogonal, when 
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Choosing the search directions as conjugate vectors d, we have the two equations 

iiii dxx α+=+1         (5)
 

iiii dee α+=+1  (since ei=xi-x)      (6) 

 and it is easy to show that a line search minimizes f(x) when  
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Equation 7 shows that the search directions should be conjugate to the error, rather than orthogonal. 
Solving for α 
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Conjugate vectors are orthogonal in a stretched space, rather than the current space and can thus be used as 
a basis of search directions to achieve convergence in N iterations. To prove this, imagine that the initial 
error in x0 is a linear combination of these conjugate search directions 

 

(a) (b) 

Figure 1. (a) 3D plot of a typical quadratic function f(x), with a minimum at (2,-2). (b) A contour plot of the same 
quadratic function 
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where δj are the coefficients of the conjugate search directions dj. Multiplying on the left by dT
kA gives 
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Equation 8 and 10 show that δ = - α , meaning that stepping by α in the conjugate search directions is 
equivalent to removing all the error associated with that direction in the basis. This is more clearly 
understood by expressing the ith error using the recurrence relation from Equation 6: 
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This shows that the error in the ith iteration is a linear combination of unsearched directions. After stepping 
in N conjugate search directions, all of the error has been removed and the exact answer to Ax=b has been 

Figure 2. Residuals chosen as search directions (steepest decent method) can  require a large number of iterations to 
converge. 
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found. Thus, choosing conjugate directions will cause the method to cnverge to the exact solution in N 
iterations.  
 An additional property of choosing conjugate directions, is that the energy norm is minimized 
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This expression for the energy norm shows that the ith error is associated with directions not yet searched, 
showing that the energy norm has been optimally minimized based on the already searched directions.  

Although conjugate search directions have been shown to converge in dim(N) iterations, the 
question remains how to obtain conjugate directions. Given a basis of vectors UN, the conjugate Gram-
Schmidt process can be used to make the basis conjugate. The Gram-Schmidt process uses the first vector 
in UN as the first conjugate direction. Each succeeding vector is conjugated to the all the previous search 
directions by subtracting out linear combinations of the previously conjugated search directions. The 
process is shown below without proof: 
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The result of repeatedly applying this process is to form a set of search vectors DN that are mutually 
conjugate. 

The method of conjugate gradients can now be formed by using the residuals not as search 
directions, as in the steepest decent method, but instead by using the residuals as a basis to form conjugate 
search directions . In this manner, the conjugated gradients (residuals) form a basis of search directions to 
minimize the quadratic function f(x). By choosing the residuals as the basis to conjugate, a few important 
property can be shown. First, all previous search directions will be orthogonal to newly calculated 
residuals. Multiply Equation 11 on the left by –dk

TA: 
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Another important property is that the residuals are conjugate to every other residual.  This can be shown 
by simply taking the inner product of Equation 14 with any residual: 
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which from Equation 15 reduces to: 
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Finally, one of the most important properties of the conjugate gradient method can be shown. Multiplying 
Equation 6 on the left by -rj

TA: 
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The left hand side can be identified as a portion of Equation 13 (since the residuals are the the vectors to 
conjugate), and with the knowledge from orthogonal residuals in Equation 16, the above equation can be 
reduced to: 
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This says that the coefficients used to conjugate new residuals for the creation of new search directions are 
all zero, except for the very last search direction. In other words, the residuals are already conjugate to 
every past search direction except for the immediate previous search direction. This is a fantastic result that 
allows the conjugate gradient method to enforce conjugacy of new search directions by only storing the 
previous search direction.  

The CG algorithm can be formulated as follows: 
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 The conjugate gradient method can also be understood by investigating the Lanczos Algorithm. 
The Lanczos Algorithm reduces a symmetric, positive, definite matrix A to a tridiagonal matrix T by 
producing an orthogonal similarity of A.  

AQQT T=
 

The column qk+1 of Q, is a vector that is parallel to the residual rk. For a proof of this, the reader is referred 
to [4]. In essence, the calculation of the kth residual in the conjugate gradient method, is actually 
calculating the qk+1 column of the matrix Q in the Lanczos Algorithm. More detailed information about the 
Lanczos Algorithm can be found in [3] and [4]. 

In principle, the CG algorithm converges to the exact solution in dim(N) steps, however, due to 
round off errors in the calculation, the residual can become inaccurate and the search directions will lose 
conjugacy. When dimensions are large, it is important to understand the convergence of the CG method 
since taking N steps can cause a large lose of conjugacy in the search directions. Since the search directions 
are all conjugated residuals, they span a Krylov sub-space: 
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The error in the ith step of the CG method can be expressed as a linear combination of the conjugated 
vectors: 
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Equation 9 shows this linear combination can be expressed as a polynomial of the matrix A multiplied by 
the initial error, assuming that Pi(0)=1. Furthermore, the initial error can be expressed as a linear 
combination of the eigenvectors of A. 
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From Equation 12, it is known that the CG method minimizes the energy norm of the ith error term, 
meaning that 
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Equation 20 has shown that the CG method minimizes this energy norm, which corresponds to minimizing 
the polynomial Pi(λ). A polynomial of degree N, constrained to have Pi(0)=1, can minimize N separate 
eigenvalues. This fact reinforces the knowledge the CG method will converge to the exact solution in N 
steps, since after N steps an N degree polynomial can be calculated to minimize the energy norm.  
 An alternative to minimizing the polynomial at specific λj, one can minimize the polynomial over 
the entire range of eigenvalues, [λmin, λmax].  This can be accomplished via Chebychev Polynomials: 
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Chebychev Polynomials have 1)( ≤ωiT  on the interval ]1,1[−∈ω , and rise quickly to 

∞=)(ωiT when outside the interval. The polynomial that minimizes Equation 12 over the interval [λmin, 

λmax] is  
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 To prove this, assume there exists another polynomial of degree i, Qi, that is better at minimizing 
Equation 12 on the appropriate interval [λmin, λmax], such that Qi(0)=1. 
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The polynomial Pi-Qi, must have a zero at λ=0 and at the i zeros of the polynomials, meaning this 

polynomial must have i+1 zeros, which is a contradiction. Therefore, Pi must be the minimizing polynomial 

on the interval [λmin,λmax].  
 Plugging the polynomial Ti into Equation 12, we have 
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For large dimensional systems, i is very large and Equation 11 can be reduced to  

A

i

Ai ee 0)
1

1
(2

+
−≤

κ
κ

      (24) 
Equation 24 shows that the convergence of the CG method depends heavily on the condition number of the 
matrix, where κ = λmax / λmin is the condition number for the matrix A. Figure 3 plots the convergence of 

the CG method (ω multiplying 
A

e0 ) through condition number. 

From the above convergence analysis, it can be shown that the CG method can converge in a 
quicker time than dim(N) iterations. If the matrix A has duplicated eigenvalues, the CG method will 
converge quicker to the exact solution because there will be less search directions involved.  
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Additionally, if the eigenvalues are grouped close together, the polynomial chosen to minimize the energy 
norm could in fact satisfy the minimization requirements with a lower order polynomial. Also, the starting 
value of x0 could be a vector that is already conjugate to some of the search directions, resulting in reduced 
search directions needed to find the minimum. Each of these instances can cause the CG method to 
converge in a quicker time than the typical dim(N) convergence. Preconditioning schemes have been 
created to take advantage of the faster convergence properties by mapping the eigenvalues of A to either a 
smaller spread in their max and min values (smaller κ) or by grouping some of the eigenvalues closer 
together such that a lower order polynomial can minimize the grouped eigenvalues. Combinations of the 
above instances will further improve convergence. 

As already mentioned, the CG method would converge to the exact solution in dim(N) steps in the 
absence of round off errors. Due to round off errors, the CG method cannot give the exact answer and is 
therefore classified as an iterative method, where some tolerance is specified. The biggest threat to the CG 
method is a loss of conjugacy in the search vectors. Each new residual is conjugated with respect to the last 
search direction, and assumed to be conjugate to the previous search directions. This can reintroduce error 
along already searched directions, resulting in an answer that does not converge to the solution after dim(N) 
steps. One fix to this, is to reothogonalize the search directions after a few directions have been searched, 
enforcing conjugacy explicitly among the previously searched directions. This, however, is a poor fix since 
the computational cost of directly enforcing conjugacy would wipe out any gains made by using CG. 
Another fix is to periodically restart the CG method, allowing new search directions to be generated from a 
new residual. This allows the error accumulated from the previous starts, to be conjugate to the new 
vectors, allowing the removal of such errors as the method proceeds. Finally, performing the CG method in 
extra precision will help to ensure that the rounding errors generated in the calculation remain at a level that 
is inconsequential to your desired precision, without complicating the application of the method. 

Despite the predicted convergence rate of approximately dim(N) iterations, in general the 
conjugate gradient method converges much quicker than any of these analyses indicate. Kaniel [5] showed 
that the convergence of CG was determined solely by the eigenvalue spectrum, regardless of dimension of 
the matrix. In essence, the condition number of the matrix determined the rate of convergence and not its 
dimension. An important implication of Kaniel’s work is that the conjugate gradient method can be used on 
systems of equations that are so large, that even taking the dim(N) iterations would be much too long. This 
can be understood on the basis of the Chebychev polynomials discussed earlier. A Chebychev polynomial 
of certain order can minimize the energy norm based on the specific interval given ([λmin,λmax]), and adding 
more eigenvalues within the interval will generally not change the minimization properties. So the 
convergence properties of different dimensional matrices will be nearly the same if their condition numbers 
are all roughly equal. A review of Kaniel’s work can be seen in [6]. 

Figure 3. Convergence of the CG method as a function of the matrix condition number. 
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 The CG method can also be applied to non-linear problems, but with much less success since the 
non-linear functions have multiple minimums. The CG method will indeed find a minimum of such a non-
linear function, but it is in no way guaranteed to be a global minimum, or the minimum that is desired.  

The conjugate gradient method is great iterative method for solving large, sparse linear systems 
with a symmetric, positive, definite matrix. Floating point errors that accrue in its implementation 
drastically change its properties from those predicted in exact arithmetic, but it remains a powerful and 
robust iterative tool to solve linear systems.  
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