
 
 

A Comparison of a Second-Order versus a Fourth-
Order Laplacian Operator in the Multigrid Algorithm 

 
Kaushik Datta (kdatta@cs.berkeley.edu) 

Math 221 Project 
May 19, 2003 

 
 
 

Abstract 
 
In this paper, the multigrid algorithm was used to solve Poisson’s equation for various 
right-hand sides.  However, in order to calculate the discretized laplacian value, both a 
second-order and a fourth-order laplacian operator was used.  The fourth-order laplacian 
operator achieves higher accuracy at the cost of more calculations and a longer execution 
time.  In order to compensate for this, the grid spacing for the fourth-order operator was 
doubled, and the convergence results with the second-order operator were compared for 
similar program running times. 
 

1. Preliminaries 

1.1 The Multigrid Algorithm 
 

Multigrid is an iterative algorithm that is generally used to solve elliptic partial 
differential equations.  In our case, it will be used to solve Poisson’s equation.  
Specifically, we seek the solution ϕ in the equation: 
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Convergence to a fixed error in multigrid takes O(log N) steps, where N is the number of 
variables in grid ϕ.  In addition, the algorithm operates in O(N) time since it can 
communicate data across many grid cells in one step.1 
 
The three main operators in the multigrid algorithm are restrict (coarsen), interpolate, and 
relax.  The restrict operation coarsens the grid to one with half the dimensions of the 
original grid.  In the three-dimensional case, each value in the smaller grid is a weighted 
average of the eight values in the original grid that correspond to that point.  Conversely, 
interpolation takes a coarse grid and distributes a weighted average of each value onto the 
eight corresponding points in the fine grid.  Thus, restriction and interpolation are 
complementary operations.  Finally, the relax operation is some iterative method that is 



effective in smoothing the current solution, usually by subtracting off a fraction of the 
residual.  Note that all three operators only do nearest-neighbor computations by 
averaging neighboring grid values.  However, since adjacent points in the coarsened grids 
represent points that are far away in the fine grids, information still moves quickly across 
the grid. 
 
Three-dimensional multigrid, in its simplest implementation, usually requires an equal, 
power-of-two number of cells in each dimension of the grid.  The base two logarithm of 
the number of cells in one dimension can be considered the level of that grid.  For 
instance, a 64 x 64 x 64 grid is a level 6 grid.  The coarsen operation lowers the grid level 
by one, while interpolate increases it by one.  The level of a grid is useful in 
understanding which phase of multigrid is being executed. 
 
The multigrid algorithm begins by calculating the residual associated with the current 
solution.  This residual is then iteratively refined using any relaxation operator, including 
Jacobi, Gauss-Seidel, and Gauss-Seidel red-black.  In our case, three iterations of a 
modified weighted Jacobi method were used.  To be precise, for the starting grid level l, 
each grid point in ϕ executed the following: 
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The calculation of the laplacian operator will be discussed later.  The quantity 

)( ),,(),,(
l

kji
l

kji ρϕ −∆ is the negative of the residual, so a fraction of the residual is being 

subtracted from the solution during each iteration.  The value of λ was chosen by using 
the rule-of-thumb formula 12/2h=λ , where h is the grid spacing.  After relaxing the 
solution, a new residual grid is computed for this level, and this grid is then coarsened 
through the restrict operator.  Mathematically, for each point in the coarsened residual 
grid R at level l, the following is performed: 
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The coarsened residual grid is recursively relaxed and coarsened is this manner until a 
level 0 grid is achieved.  At that point, the grid is again relaxed three times.  Then, the 
correction from this level 0 grid is interpolated onto the level 1 correction grid, which is 
initially all zeros.  In general, for each point in the coarsened correction grid δ at level l, 
interpolate does the following: 
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So, the correction from the grid at each level is interpolated onto the correction grid of 
the next higher level (initially all zeros).  The higher level grid is then relaxed by again 
performing three Jacobi iterations.  This is done for consecutively higher grid levels until 
the correction is interpolated onto the original solution grid.  After three more Jacobi 
iterations, one multigrid V-cycle is completed. 
 
The key to multigrid is having the relax operation effectively suppresses the high 
frequency (oscillatory) Fourier modes of the residual for that level.  By coarsening, the 
number of cells in each dimension is halved, so low frequency error becomes higher 
frequency error.  Performing relax operations should again suppress the higher Fourier 
modes in the error.  If this is executed over all grid levels, then multigrid should reduce 
error over all frequencies.2 
 

1.2 The Laplacian Operators 
 
In the multigrid algorithm, the laplacian value needs to be computed both in calculating 
the residual and in performing relaxes.  There are two different laplacian operators that 
were used in doing so.  Let us adopt the convention that for the 3 x 3 x 3 cube 
surrounding a given point in ϕ, then mϕ , fϕ , eϕ , cϕ  represent a middle, face-centered, 

edge-centered, and corner point respectively.  A similar convention holds for grid points 
in ρ.  Then, the laplacian for the first formula is calculated by: 
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This is a second-order formula.  The second formula is of fourth-order, and calculates the 
laplacian as follows: 
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The fourth-order formula should allow multigrid to converge more rapidly than the 
second-order formula.3  However, it will also take longer to execute a V-cycle since more 
calculations need to be performed.  As a result, we will compare whether using twice the 
grid spacing for the fourth-order formula will result in better convergence results than the 
second-order formula for a given program running time. 
 

1.3 The Programming Language and Platform 
 
The multigrid code was written in the Titanium programming language.  Titanium is an 
object-oriented high performance Java dialect written at UC Berkeley.  To improve 
performance, Titanium code is first compiled to C, and then to native binary.  While 
Titanium can be used for parallel processing, all the results in this paper are serial.4 
 



This code was run on the distributed-memory IBM SP machine seaborg.nersc.gov.  Each 
node of seaborg contains 16 IBM Power3 processors, each of which has a peak flop rate 
of 1.5 GFlops.  In addition, each processor has two levels of cache.  The L1 cache has a 
data cache size of 64 KB, with a cache line size of 128 B and a latency of 1 cycle.  The 
L2 cache has a size of 8 MB with a cache line size of 128 B and a latency of 9 cycles.5 
 

2. The Test Functions 
There were four test functions used for the right-hand side that were solved using 
multigrid to compare the laplacian operators.  In order to simplify matters, periodic 
boundary conditions were implemented in all three dimensions, so the chosen functions 
needed to conform to this constraint. 
 
In addition, having functions with different Fourier modes would be useful in order to 
observe how well multigrid suppresses low, medium, and high frequency error.  
However, we need to make sure that the high frequency modes do not result in aliasing.  
Aliasing is a phenomenon where the wavelength of a Fourier mode is less than 2h.  The 
resulting wave appears to have a wavelength greater than 2h on the grid since there are 
too few grid points to represent the wave accurately. 
 
With these considerations in mind, the following four functions were chosen: 
 
Freq. ϕ (exact) ρ (Test Functions) Domain 
Low )2cos()2cos()2cos( zyx πππ  )2cos()2cos()2cos(12 2 zyx ππππ−  (-.5,-.5,-.5) 

to  
(.5, .5, .5) 

Med. )8cos()8cos()8cos( zyx πππ  )8cos()8cos()8cos(192 2 zyx ππππ−  (-.5,-.5,-.5) 
to  
(.5, .5, .5) 

High )26cos()26cos()26cos( zyx πππ  )26cos()26cos()26cos(2028 2 zyx ππππ−  (-.5,-.5,-.5) 
to  
(.5, .5, .5) 

All 

))26cos()26cos()26(cos(
676

1

))8cos()8cos()8(cos(
64

1

))2cos()2cos()2(cos(
4

1

zyx

zyx

zyx

πππ

πππ

πππ

+

+

 

))26cos()26cos()26cos(

)8cos()8cos()8cos(

)2cos()2cos()2(cos(3 2

zyx

zyx

zyx

πππ
πππ

ππππ
+

+−
 

(-.5,-.5,-.5) 
to  
(.5, .5, .5) 

 
Having the exact solution ϕ allows us to calculate the error directly rather than use the 
residual. 



3. Convergence Results 
 
The following results plot the base 10 log of the maximum error against the number of 
multigrid V-cycles executed (execution time is not yet included).  Examining the 
maximum error gives us a good sense of the worst-case convergence rate of multigrid.  
The four runs that are shown are for the second and fourth-order laplacian stencil being 
used for multigrid that begins on a level 7 grid and level 8 grid.  Note that starting at level 
7 results in twice the grid spacing as that of level 8. 

3.1 Low Frequency Data 
Here is the graph for low frequency data: 
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While all the runs seem to converge at a constant rate, the 4th order method that starts on 
a level 7 grid definitively outperforms the other runs. 
 

3.2 Medium Frequency Data 
Here is the graph for medium frequency data: 
 



Medium Frequency Data
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While the rates of convergence are faster than for the low frequency data, the fourth-
order laplacian operator that starts on a level 7 grid again outstrips the other runs. 
 

3.3 High Frequency Data 
Here is the same graph for high frequency data: 
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The suppression of the oscillatory Fourier modes, while converging at a relatively rapid 
constant rate for a number of V-cycles, seems to stop converging at a certain point.  This 
seems to indicate that while high-frequency error is quickly suppressed, it is difficult to 



completely eliminate.  Only the second-order laplacian operator that starts at level 8 
continues to converge at a constant rate for at least ten V-cycles, but it is also the slowest 
converging run. 
 

3.4 All Frequency Data 
Here is the graph for all frequency data: 
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Like the low and medium frequency data graphs, the fourth-order laplacian operator that 
starts on the level 7 grid seems to do better than the other runs. 
 

4. Analysis 
It is unnecessary to factor time into the analysis since the results seem to indicate that, for 
the same number of V-cycles, starting on a level 7 grid produces faster convergence than 
a level 8 grid.  This is a somewhat surprising result, and there are several possible 
explanations. 
 
First, the appropriate norm was not chosen for the problem at hand.  While this analysis 
uses the maximum error over the solution grid, it may have been better to choose the L2 
norm of the solution grid instead.  The L2 norm is a better indication of the error over the 
entire grid, and is more typically used in this type of analysis.  If there were a small area 
of the grid that produced unusually large error, the maximum error norm would be large, 
while the L2 norm would not increase significantly.  This type of error could possibly 
account for the results above. 
 
In addition, a good value for λ may not have been used for the level 8 grids.  While 

12/2h=λ  is typically a good value, a Fourier error analysis would have to be performed 



to make sure that the high-frequency error is being effectively damped at each level of 
multigrid. 
 
In addition, other test functions should be used.  While each function listed isolates a 
specific Fourier mode, it may be worthwhile to use non-trigonometric functions as the 
right-hand side, as they may exhibit different types of convergence. 
 
Finally, the condition number of the matrix needs to be accounted for.  In this case, 
starting at a level 7 grid produces faster convergence for both the second and fourth order 
laplacian operators than starting at a level 8 grid, so that still does not explain our results.  
However, it still needs to be factored into the analysis. 
 

5. Further Analysis 
As stated above, the analysis should be attempted first with the L2 norm, as that may 
explain why level 7 grids converge more rapidly than level 8 grids.  If that produces 
similar results, then the other options listed above should be tried.  Using a larger grid 
spacing should not result in faster convergence, as this would imply that, for the same 
number of V-cycles, using fewer mesh points would increase the rate of convergence. 
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