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Introduction 
Many problems in science and engineering require the solution of a set of sparse 
matrix equations of the form 

[ ]{ } { }bxA =                             (1) 

where [ ]A  is a known NN ×  matrix which is large and sparse, { }x  is a vector of 

unknowns of length N, and { }b  is a known vector of length N. Especially for those 

equations in the fields of structural engineering and mechanical engineering, some 

special properties are often found to the matrix [ ]A . For example, they are generally 

symmetric and well diagonal blocked. It is well known that the storage of the 
coefficient matrix is crucial in the procedure of solving this system of equations. A 
reasonable scheme of storage not only saves memory and computing time, but also 
makes some manipulations, e.g. the assembly of the matrix, easier. In addition, the way 
the unknowns are ordered in the global vectors is equally important since 
matrix-vector operations constitute the bulk of the work. The order of unknowns also 
affects the shape of coefficient matrix and furthermore its storage structure. As a result, 
storage and ordering for the coefficient matrix are two important topics for many years 
and a large number of schemes have been developed. In this paper, several typical 
storage structures and ordering algorithms related to large sparse matrix are reviewed.  
 

Part I:  Storage for large sparse matrix 
Each data structure for a sparse matrix consists of storage for values of matrix elements 
and storage for pointer, bounds, indices, etc. The total amount of storage needed should 
be as low as possible without preventing an efficient use of the data structure. Data 
structures for sparse matrices are designed to decrease the amount of storage for values 
of matrix elements considerably at the expense of a small increase in administration. 
Just as Laura C. Dutto, et al. said [1], ordinarily it is chosen to limit the number of 
zeros in order to minimize the memory required and to avoid unnecessary operations 
with zero values during subsequent numerical calculations. On the other hand, the data 



structure must also be chosen so that the software can take advantage of hardware 
features such as vector registers or parallel processing capabilities. Finally, the 
software developer needs to be on the lookout for any regularities or patterns present in 
the problem to solve.  
For those sparse matrices especially related to structural engineering and mechanical 
engineering, they generally have the following properties: 
1. Often matrices are symmetric or have a symmetric sparsity pattern. 
2. Several blocks of a matrix may be equal. 
In this paper, several typical sparse matrix storage structures are briefly introduced. 
First, for those symmetric matrices, three storage schemes are introduced and they are 
2-D band storage structure with equal bandwidth, 1-D band storage structure with 
varying bandwidth and element by element storage, respectively. These data structures 
were developed very early and are widely applied in engineering. Then, three storage 
structures for arbitrary sparsity patterns are presented and they are 3-tuple storage, 
CSR storage and BSR storage, respectively.  
 

I-1 Data structures for symmetric matrix 

2-D band structure [2, 3] 

Consider a sparse matrix ( )T
nn KKK =×  and assume its maximum half bandwidth 

is D, then all non-zero entries in the upper triangular matrix fall into this band. A 
doubly subscripted array is introduced to store the data in the band. Apparently, the 
bound of this array is Dn × . The diagonal data in the original matrix constitute the 
first column of the array, and the new row indices and column indices of data are 
related to original ones by: 
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where the superscript ∗  refer to new indices.  
It can be seen that the zero entries outside the maximum bandwidth are all removed 
and as a result, memory is greatly saved. However, those zero entries inside the band 
are still stored. Therefore, this strategy is applicable for the case when the coefficient 
matrix is well banded.  
 

1-D band structure [3] 

For this structure, the data inside the varying bandwidth are stored in a 1-D array in the 
prescribed sequence. Unlike the 2-D band structure before, those zero elements outside 
the varying bandwidth (not maximum bandwidth) will not enter into the array and the 
storage is further reduced accordingly. In order to keep the shape of original sparse 
matrix, another array is needed to store some additional information such as the 
address of diagonal elements or the number of elements in each column.  



Apparently, 1-D band structure needs less memory than 2-D structure. However, it is 
more difficult to seek and locate elements. More complicated program has to be 
carefully worked out and running code is time-consuming.  
A simple example is presented below. The original matrix is stored in 2-D array and 
1-D array, respectively. It can be seen that 1-D storage needs less memory, but requires 
more complicated administrations.  
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Supplementary array recording the address of diagonal element: 

[ ]22181612106421:M  

Here the last element denotes the length of 1-D array plus one.  
 

Element by element storage [4] 

When solving partial differential equations with finite element method in structural 
engineering or mechanical engineering, large sparse stiffness matrices are often stored 
element by element. It is a good storage scheme for programmer when the field is 
homogeneous and the elements are equally sized. For this case, the global stiffness 
matrix is diagonal blocked and well banded. For example, for a 1-D problem, if the 
field is homogeneous and discretized uniformly using 3 elements, the stiffness matrix 
is generally as follows: 
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The matrix can be stored element by element with a 3-D array: 
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It can be seen that the first subscript basically indicates the address of block in diagonal 
and it actually corresponds to the element number. With this storage scheme, it would 
be very easy to assemble the global stiffness matrix. Also, the stiffness matrix for each 
element is probably the same, so the work is greatly saved when writing code.  
 

I-2 Data structures for arbitrary sparsity patterns 

3-tuple format [5, 6] 

A general data structure for this case was developed in 1970s, and was briefly 
introduced by Veldhorst in [6]. In this structure, a matrix is viewed as a set of elements, 
each one uniquely determined by two integers: the row index and the column index. 
Each non-zero element is stored as a 3-tuple (its value, row index and column index) 
and two pointers, one referring to the next non-zero element in the same row and the 
other to the next non-zero element in the same column. It should be noted that this data 
structure can be extended and adapted to make some important operations on sparse 
matrices easier. For example, if diagonal access is needed, the data structure can be 
easily extended by adding to each element a pointer to the next non-zero in the same 
diagonal. The main disadvantage of this scheme is that the size of administration 
overhead is very large. For example, it would require more time if we want to insert a 
newly created non-zero elements in this restricted data structure. 
 

Compressed Sparse Row (CSR) format [1, 7, 8] 

If the matrix is sparse and not regularly structured, another two of the most common 
storage schemes in use today are the Compressed Sparse Row (CSR) scheme and the 
Block Sparse Row (BSR) format. Here the formats are presented, following the 
description in [1, 7, 8]. The corresponding data structure in the CSR format consists of 
three arrays: 

1. A real array A containing the real values ija , stored row by row. The length of A is 



NNZ, which is the number of non-zero coefficients of the matrix. In a finite element 

context, the coefficient ija  is (logically) nonzero if and only if the equation i  is 

connected with equation j . In this case, the coefficient is considered nonzero even if at 

a given step of computation it is indeed (by chance) zero.  

2. An integer array JA containing the column indices of the elements ija  as stored in 

the array A. The length of JA is also NNZ. 
3. An integer array IA containing the pointers to the beginning of each row in the 
arrays A and JA. Thus the content of IA(i) is the position in arrays A and JA where the 
i th row starts. The length of IA is N+1 with IA(N+1) containing the number 
IA(1)+NNZ, i.e., the address in A and JA of the beginning of a fictitious row N+1.  
In addition, when incomplete LU factorizations of the system matrix are used for 
preconditioning, it is crucial to be able to sweep across the rows in the lower and the 
upper triangles of the matrix. While the lower part of the matrix is easily localized, a 
search is required to locate the leading diagonal coefficient of the row in the upper 
triangular part in order to sweep the coefficients in the reminder of the row. To avoid 
repeated searches, a supplementary integer array IDIAG, of length N, points to the 
position of each diagonal coefficient inside JA and A.  
Still take the 44×  matrix above as example. Though it is symmetric, the idea is 
applicable for non-symmetric matrices. For this simple matrix, the according arrays 
are: 

[ ]
[ ]
[ ]
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where 10=NNZ  
 

The Block Sparse Row (BSR) format [1, 7, 8] 

The best way to describe block matrices is by viewing them as sparse matrices whose 
nonzero entries are L-by-L dense blocks. Typically, for block matrices arising from the 
discretization of partial differential equations, L is a small number, less than ten, equal 
to the number of degrees of freedom per grid point, e.g., velocity, pressure, viscosity, 
etc. The BSR format is a simple generalization of the CSR format, using the same data 
structures A, IA, JA, and IDIAG�but where in this case the column pointers JA point 
to L-by-L dense blocks. If there are zero elements within each block they are treated as 
nonzero elements with the value zero.  
The block dimension of the matrix A is LNNR /≈ , where the letter R stands for 
“reduced”. The length of JA is NNZR, set to the number of nonzero blocks in A and 

roughly equal to 2/ LNNZ . JA holds the actual column positions in the original matrix 



of the first element of the nonzero blocks. Finally, the pointer array IA of NR+1 
coefficients, points to the beginning of each block-row in A and JA. As in the previous 
case, an additional vector IDIAG of length NR is used to point to the position of 
diagonal blocks in A and JA.  
Substantial memory savings over CSR result from the reduction of the matrix pointers 
used in indirect addressing. For example, for L=4, the storage of JA is reduced by a 
factor of 16 and the storage of IA reduced by a factor of 4. The storage of A is roughly 
the same. Savings in execution time are also observed since shorter lists are being 
scanned when searching for columns in a row. Since a binary search algorithm is used, 

a reduction in size of JA by 16 for L=4 can give at best an 8-fold ( )LL 2log  speed-up 

for the searches since the number of column pointers in a row is L times less, times the 
L rows in the block.  
 

 

Part II: Ordering schemes  
It is well known that if we avoid operating on and storing zeros, the way we number or 
order the unknowns of a sparse system of equations can drastically affect the amount 
of computation and storage required for their solution [28]. Accordingly, many 
bandwidth and profile reduction algorithms have been proposed [9-20]. The second 
part of this paper introduces and compares several typical ordering algorithms. 
Classical ordering strategies include bandwidth- and profile-reducing orderings, such 
as reverse Cuthill-McKee [12, 21, 22, 24], Sloan’s ordering [22], and 
Gibbs-Poole-Stockmeyer ordering [23]; Variants of the minimum degree ordering [25, 
26, 27]; and nested dissection [28, 29]. In this paper, reverse Cuthill-McKee, 
Gibbs-Poole-Stockmeyer ordering, and Sloan’s ordering will be introduced. 
 

Some definitions about graph: 

As discussed by Cuthill and McKee [12, 22], the derivation of an efficient ordering for 
a sparse matrix is related to the labeling of an undirected graph. Some elementary 
concepts from graph theory are useful in the development of heuristic labeling 
strategies and it is appropriate to state some basic definitions. Here the description in 
[22, 23] is followed. 
A graph G is defined to be pair (N(G), E(G)) where N(G) is non-empty finite set of 
members call nodes, and E(G) is a finite set of unordered pairs, comprised of distinct 
members of N(G), called edges. A graph satisfying the above definition is said to be 
undirected because E(G) is comprised of unordered pairs. The occurrence of loops (i.e. 
edges which join nodes to themselves) and multiple edges (i.e. pairs of nodes which 
are connected by more than one edge) is excluded. 
The degree of a node i in G is defined as the number of edges incident to i. Two nodes i 
and j in G are said to be adjacent if there is an edge joining them. 



A path in G is defined by a sequence of edges such that consecutive edges share a 
common node. Two nodes are said to be connected if there is a path joining them. A 
graph G is connected if each pair of distinct nodes is connected. 
The distance between nodes i and j in G is denoted d(i,j), and is defined as the number 
of edges on the shortest path connecting them. The diameter of G is defined as the 
maximum distance between any pair of nodes, i.e 

( ) ( ) ( ){ }GNjijidGD ∈= ,:,max                         (3) 

Nodes which are at opposite ends of the diameter of G are known as peripheral nodes. 

A pseudo-diameter, ( )Gδ , is defined by any pair of nodes i and j for which d(i,j) is 

close to D(G). A pseudo-diameter may be slightly less than, or equal to, the true 
diameter and is found by some approximate algorithm. Nodes which define a 
pseudo-diameter are known as pseudo-peripheral nodes. 
An important concept in the development of graph labeling algorithms is the rooted 
level structure. A rooted level structure is defined as the partitioning of N(G) into 

levels ( ) ( ) ( )rlrlrl h...,,, 21  such that : 

1. ( ) { }rrl =1  where r is the root node of the level structure. 

2. For ( )rli i,1>  is the set of all nodes, not yet assigned a level, 

which are adjacent to nodes in ( )rli 1− . 

The level structure rooted at node r may be expressed as the set 

( ) ( ) ( ) ( ){ }rlrlrlrL h...,,, 21= , where h is the total number of levels and is known as the 

depth. The width of level i is defined by ( )rli (i.e. the number of nodes on level i) and 

the width of level structure is given as 

( ){ }rlw i
hi≤≤

=
1
max                              (4) 

For example, consider the grid of two-dimensional finite elements shown below,  
 
 
 
 
                                        
 
 
 

Fig. 1   Grid of four-noded quadrilaterals 
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             Fig. 2  Graph corresponding to grid of four-noded quadrilaterals 
 
 
 
 
 
 
                                        
 
 
 

Fig. 3  A rooted level structure  
 

Here, N(G) is the set { }6,5,4,3,2,1 , E(G) is the set 

{ } { } { } { } { } { } { } { } { } { } { } 6,5,6,4,5,4,6,3,5,3,4,3,4,2,3,2,4,1,3,1,2,1 . D(G) is 2. The 

rooted level structure (rooted at node one) may be expressed as 

                      ( ) ( ) ( ) ( ){ }1,1,11 321 lllL =                        (5) 

where ( ) { } ( ) { } ( ) { }6,51,4,3,21,11 321 === lll . The width and depth for this level 

structure both equal three. 
 

The reverse Cuthill-McKee algorithm 

One of the most widely used bandwidth and profile reduction algorithms is reverse 
Cuthill-Mckee algorithm. For the reverse Cuthill-McKee algorithm, it is assumed that 
the graph is connected. If not, the connected components are determined and the 
algorithms applied to each component separately. The general procedure is as follows 
[23, 21, 12]:  
 
1.Generate the level structure rooted at each vertex of low degree, and compute its 
width. Normally, low degree here means less than or equal to 

( ){ }{ }minminmax ,1,2/minmax dddd median −+ , although this can be controlled somewhat 

by parameters. 
2. For each rooted level structure of minimal width generated in step 1, number the 
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graph level by level with consecutive positive integers according to the following 
procedure: 

A. The rooted vertex is assigned the number 1. (If this is not the first component 
of the original graph the root vertex is assigned the smallest unassigned 
positive integer.) 

B. For each successive level, beginning with level 2, first number the vertices 
adjacent to the lowest numbered vertex of the preceding level, in order of 
increasing degree. Ties are broken arbitrarily. The remaining vertices adjacent 
to the next lowest numbered vertex of the preceding level are numbered next, 
again in order of increasing degree. Continue the process until all vertices of 
the current level are numbered, then begin again on the next level. The 
procedure terminates when the vertices of all levels have been numbered. 

3. For each numbering f  produced in step 2.B, compute the corresponding 

bandwidth ( )Gfβ . Select the numbering which produces the smallest bandwidth. 

4. The numbering is reversed by setting i to n-i+1, for i=1,2,…,n.  
 
Step 4 was first suggested by George [21] after he observed that profile could 
frequently be further reduced by numbering the vertices in decreasing order from n to 1 
rather than increasing from 1 to n. It was proved that this modification can never 
increase the profile, and of course it has no effect on bandwidth.  
This algorithm has several shortcomings [23]. The first is that the algorithm is 
inefficient because of the time consumed performing an exhaustive search to find 
rooted level structures of minimal width. In the case that all vertices have the same 
degree, a level structure must be generated from every vertex of the graph. A second 
problem is that the graph is renumbered, and the corresponding bandwidth recomputed, 
for every level structure found of minimal width. A third problem is that the bandwidth 
obtained by a Cuthill-McKee numbering can never be less than the width of rooted 
level structure used, although the (minimum) bandwidth of a graph can be 
considerably less than the width of any rooted level structure. 
 

Gibbs-Poole-Stockmeyer ordering 

To resolve the three problems, Gibbs, et al presented an alternative algorithm. The first 
two shortcomings are overcome by carefully selecting a starting vertex after generating 
only a relatively small number of level structures. The graph is renumbered and 
corresponding bandwidth and profile computed, only once. The third problem is 
resolved by utilizing a more general type of level structure. Here only main features of 
this algorithm are reiterated and detailed processes can be found in their paper [23].  
 
1. Finding a starting vertex (Finding endpoints of a pseudo-diameter). 
In their work, they found that level structures of small width are usually among those 
of maximal depth. Clearly, increasing the number of levels always decreases the 
average number of vertices in each level, and tends to reduce the width of the level 



structures as well. Ideally, one would like to generate level structures rooted at 
endpoints of a diameter. Since there is no known efficient procedure that always finds 
such vertices, they employ an algorithm to find the endpoints of a pseudo-diameter, 
that is, a pair of vertices that are at nearly maximal distance apart.  
Procedure: 
A.  Pick an arbitrary vertex of minimal degree and call it v. 
B.  Generate a level structure Lv rooted at vertex v. Let S be the set of vertices which 
are in the last level of Lv. 
C.  Generate level structures rooted at vertices Ss ∈  selected in order of increasing 
degree. If for some Ss ∈  the depth of Ls is greater than the depth of Lv, then set 

sv ←  and return to step B. 
D.  Let u be the vertex of S whose associated level structure has smallest width, with 
ties broken arbitrary. The algorithm terminates with u and v the endpoints of a 
pseudo-diameter. 
 
2. Minimizing level width. 
In the process of finding a pseudo-diameter, level structures Lu and Lv rooted at the 
endpoints u and v are constructed respectively. It is possible to combine these two level 
structures into a new level structure whose width is usually less than that of either of 
the original ones, using the algorithm described by Gibbs, et al.  
 
3. Numbering. 
The numbering procedure is similar to that of the reverse Cuthill-McKee algorithm in 
that it assigns consecutive positive integers to the vertices of G level by level. A few 
modifications were necessary, however, since the level structures obtained by 
algorithm 2 are of a more general type than the rooted ones used in the reverse 
Cuthill-McKee algorithm. When the resulting numbering is similar to that obtained by 
the (forward) Cuthill-McKee algorithm, profile can be further reduced by using the 
reverse numbering.  
 

Sloan’s ordering 

In Sloan’s paper [22], an algorithm for reducing the profile and wavefront of a sparse 
matrix was described. The procedure is applicable to any sparse matrix with a 
symmetric pattern of zeros and may be used to generate efficient labeling for finite 
element grids. In particular, it may be used to provide efficient nodal numberings for 
profile solution schemes, as well as efficient element numberings for frontal solution 
schemes. Application of the algorithm to some test problems indicates that it is more 
effective than the reverse Cuthill-McKee, Gibbs et al schemes. Detailed timing 
comparisons indicate that the new algorithm is substantially faster, and requires less 
storage too.  In addition, one of major attractions of the proposed scheme is its 
simplicity. 
Once the graph that corresponds to the sparse matrix is established, the labeling 
scheme is comprised of two distinct steps (following the description in [22]).  



 
1. Selection of pseudo-peripheral nodes 
It has been shown by Gibbs, et al. that pseudo-peripheral nodes make good starting 
points for profile and wavefront reduction algorithms. Here is a method for locating a 
pair of pseudo-peripheral nodes, which are endpoints of a pseudo-diameter: 
A. (First guess for starting node) Scan all nodes in G and select a node s with the 

smallest degree. 
B. (Generate rooted level structure) Generate the level structure rooted at node s, i.e. 

( ) ( ) ( ){ }slslslsL h...,,)( 21= . 

C. (Sort the last level) Sort the nodes in ( )slh  in ascending sequence of degree. These 

nodes are at maximum distance from s. 

D. (Shrink the last level) Let m equal ( )slh . Shrink the last level by forming a list Q 

of the first ( ) 2/2+m  (the largest integer less than or equal to ( ) 2/2+m ) 

entries in the sorted list ( )slh . 

E. (Initialize) Set ∞←minw  and hh ←max . 

F. (Test for termination) For each node Qi ∈ , in order of ascending degree, generate 

( ) ( ) ( ){ }ilililiL h...,,)( 21= . If maxhh >  and ( ){ } minmax wilw j <= , set is ←  and 

go to step 3. Else, if minww < , set ie ←  and ww ←min . 

G. (Exit) Exit with starting node s and end node e which define a pseudo-diameter. 
 
The above algorithm is similar to the procedure given by Gibbs et al., but includes two 
important modifications [22]. The first modification is the introduction of the 
shrinking strategy in step D. This step significantly reduces the amount of computation 
necessary to locate the pseudo-peripheral nodes, but at the same time ensures that their 
rooted level structures are deep and narrow. It follows naturally from the empirical 
observation that nodes with high degrees are not often selected as potential starting or 
end nodes in step F.  
The second modification occurs in step F and incorporates the ‘short circuiting’ 
strategy suggested by George and Liu. Inserting the condition that w must be less than 
wmin permits the assembly of wide level structures to be aborted before completion and 
often leads to considerable savings (especially for large graphs).  
The above algorithm usually locates the pseudo-peripheral nodes in two or three 
iterations, and is considered to be efficient. The pseudo-diameter produced is often a 
true diameter, but there is no guarantee of this. 
 



2. Node labeling algorithm 
To begin the labeling procedure two pseudo-peripheral nodes, which define a 
pseudo-diameter, are required. These serve as starting and end nodes for the labeling. 
The algorithm relabels the starting node as node one and then forms a list of nodes that 
are eligible to receive the next label. This list is comprised of all active and preactive 
nodes, and is maintained as a priority queue. The node with the highest priority is 
labeled next. The priority of each node in the queue is related to its current degree and 
its distance from the end node. Nodes with low current degrees and large distances 
from the end node assume the highest priority. Once a node is selected for labeling, it is 
deleted from the queue and renumbered. The queue of eligible nodes is then updated 
by using the connectivity information for the graph and the process is repeated until all 
the nodes have been assigned new labels. 
The detailed algorithm can be found in Sloan’s paper. The basic idea behind the 
algorithm is that, during each stage of the labeling process, nodes with small current 
degrees and long distances from the end node are labeled first. Selecting nodes with 
small current degrees causes the current ‘front’ of active nodes to grow by a minimum 
amount during each step, while selecting nodes with large distances from the end node 
attempts to take the global structure of the graph into account.  
 
This algorithm has been implemented in standard FORTRAN 77 and the performance 
is tested. It can be concluded that the procedure is a substantial improvement on 
previous algorithms since it is fast, reliable, requires little storage, and is simple to 
implement.  
 

Conclusions 
This paper only deals with several classical schemes on the storage and ordering for 
large sparse matrix. There are still many other papers on these two topics (e.g. [30-37]). 
The researchers in different scientific or engineering fields would have matrices with 
different properties. It is the key point to choose a proper algorithm for each linear 
system according to its property and some special requirements, if any. For example, 
for the storage of sparse matrix, some schemes are good at saving running time, while 
some others are easy to administrate. One should balance different requirements and 
choose the best data structure.  
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