
Review on Storage and Ordering for

Large Sparse Matrix

(Final Project, Math221)

Wei He

(SID: 15763774)

Introduction
Many problems in science and engineering require the solution of a set of sparse
matrix equations of the form

[]{ } { }bxA = (1)

where []A is a known NN × matrix which is large and sparse, { }x is a vector of

unknowns of length N, and { }b is a known vector of length N. Especially for those

equations in the fields of structural engineering and mechanical engineering, some

special properties are often found to the matrix []A . For example, they are generally

symmetric and well diagonal blocked. It is well known that the storage of the
coefficient matrix is crucial in the procedure of solving this system of equations. A
reasonable scheme of storage not only saves memory and computing time, but also
makes some manipulations, e.g. the assembly of the matrix, easier. In addition, the way
the unknowns are ordered in the global vectors is equally important since
matrix-vector operations constitute the bulk of the work. The order of unknowns also
affects the shape of coefficient matrix and furthermore its storage structure. As a result,
storage and ordering for the coefficient matrix are two important topics for many years
and a large number of schemes have been developed. In this paper, several typical
storage structures and ordering algorithms related to large sparse matrix are reviewed.

Part I: Storage for large sparse matrix
Each data structure for a sparse matrix consists of storage for values of matrix elements
and storage for pointer, bounds, indices, etc. The total amount of storage needed should
be as low as possible without preventing an efficient use of the data structure. Data
structures for sparse matrices are designed to decrease the amount of storage for values
of matrix elements considerably at the expense of a small increase in administration.
Just as Laura C. Dutto, et al. said [1], ordinarily it is chosen to limit the number of
zeros in order to minimize the memory required and to avoid unnecessary operations
with zero values during subsequent numerical calculations. On the other hand, the data

structure must also be chosen so that the software can take advantage of hardware
features such as vector registers or parallel processing capabilities. Finally, the
software developer needs to be on the lookout for any regularities or patterns present in
the problem to solve.
For those sparse matrices especially related to structural engineering and mechanical
engineering, they generally have the following properties:
1. Often matrices are symmetric or have a symmetric sparsity pattern.
2. Several blocks of a matrix may be equal.
In this paper, several typical sparse matrix storage structures are briefly introduced.
First, for those symmetric matrices, three storage schemes are introduced and they are
2-D band storage structure with equal bandwidth, 1-D band storage structure with
varying bandwidth and element by element storage, respectively. These data structures
were developed very early and are widely applied in engineering. Then, three storage
structures for arbitrary sparsity patterns are presented and they are 3-tuple storage,
CSR storage and BSR storage, respectively.

I-1 Data structures for symmetric matrix

2-D band structure [2, 3]

Consider a sparse matrix ()T
nn KKK =× and assume its maximum half bandwidth

is D, then all non-zero entries in the upper triangular matrix fall into this band. A
doubly subscripted array is introduced to store the data in the band. Apparently, the
bound of this array is Dn × . The diagonal data in the original matrix constitute the
first column of the array, and the new row indices and column indices of data are
related to original ones by:

1+−=
=

∗

∗

ijj

ii
 �2�

where the superscript ∗ refer to new indices.
It can be seen that the zero entries outside the maximum bandwidth are all removed
and as a result, memory is greatly saved. However, those zero entries inside the band
are still stored. Therefore, this strategy is applicable for the case when the coefficient
matrix is well banded.

1-D band structure [3]

For this structure, the data inside the varying bandwidth are stored in a 1-D array in the
prescribed sequence. Unlike the 2-D band structure before, those zero elements outside
the varying bandwidth (not maximum bandwidth) will not enter into the array and the
storage is further reduced accordingly. In order to keep the shape of original sparse
matrix, another array is needed to store some additional information such as the
address of diagonal elements or the number of elements in each column.

Apparently, 1-D band structure needs less memory than 2-D structure. However, it is
more difficult to seek and locate elements. More complicated program has to be
carefully worked out and running code is time-consuming.
A simple example is presented below. The original matrix is stored in 2-D array and
1-D array, respectively. It can be seen that 1-D storage needs less memory, but requires
more complicated administrations.

() ()

() () ()
() () ()

() () ()
() () ()

() () ()
() () ()

() ()
()

() ()storageDA

A

AA

AAAsymmetric

AAA

AAA

AAA

AAA

AAA

storageDmatrixoriginal

K

KK

KK

KKK

KKK

KKK

KK

KKK

K

KK

KKsymmetric

KKK

KKK

KKK

KK

KKK

−⇒

































⇓

−
































⇒

































121

18

1916

201712

2101310

0014116

0015074

0000852

00009031

2

0

0

0

0

00

0

0

0

00

000

00000

00000

88

7877

6766

585655

464544

363433

2322

141211

88

7877

6766

585655

464544

363433

2322

141211

Supplementary array recording the address of diagonal element:

[]22181612106421:M

Here the last element denotes the length of 1-D array plus one.

Element by element storage [4]

When solving partial differential equations with finite element method in structural
engineering or mechanical engineering, large sparse stiffness matrices are often stored
element by element. It is a good storage scheme for programmer when the field is
homogeneous and the elements are equally sized. For this case, the global stiffness
matrix is diagonal blocked and well banded. For example, for a 1-D problem, if the
field is homogeneous and discretized uniformly using 3 elements, the stiffness matrix
is generally as follows:



















+
+

←



















× 22,321,3

12,311,322,221,2

12,211,222,121,1

12,111,1

444443

343332

232221

1211

KK

KKKK

KKKK

KK

KK

KKK

KKK

KK

The matrix can be stored element by element with a 3-D array:

()

()

() 







=









=









=

22,321,3

12,311,3

22,221,2

12,211,2

22,121,1

12,111,1

::,,3

::,,2

::,,1

KK

KK
K

KK

KK
K

KK

KK
K

It can be seen that the first subscript basically indicates the address of block in diagonal
and it actually corresponds to the element number. With this storage scheme, it would
be very easy to assemble the global stiffness matrix. Also, the stiffness matrix for each
element is probably the same, so the work is greatly saved when writing code.

I-2 Data structures for arbitrary sparsity patterns

3-tuple format [5, 6]

A general data structure for this case was developed in 1970s, and was briefly
introduced by Veldhorst in [6]. In this structure, a matrix is viewed as a set of elements,
each one uniquely determined by two integers: the row index and the column index.
Each non-zero element is stored as a 3-tuple (its value, row index and column index)
and two pointers, one referring to the next non-zero element in the same row and the
other to the next non-zero element in the same column. It should be noted that this data
structure can be extended and adapted to make some important operations on sparse
matrices easier. For example, if diagonal access is needed, the data structure can be
easily extended by adding to each element a pointer to the next non-zero in the same
diagonal. The main disadvantage of this scheme is that the size of administration
overhead is very large. For example, it would require more time if we want to insert a
newly created non-zero elements in this restricted data structure.

Compressed Sparse Row (CSR) format [1, 7, 8]

If the matrix is sparse and not regularly structured, another two of the most common
storage schemes in use today are the Compressed Sparse Row (CSR) scheme and the
Block Sparse Row (BSR) format. Here the formats are presented, following the
description in [1, 7, 8]. The corresponding data structure in the CSR format consists of
three arrays:

1. A real array A containing the real values ija , stored row by row. The length of A is

NNZ, which is the number of non-zero coefficients of the matrix. In a finite element

context, the coefficient ija is (logically) nonzero if and only if the equation i is

connected with equation j . In this case, the coefficient is considered nonzero even if at

a given step of computation it is indeed (by chance) zero.

2. An integer array JA containing the column indices of the elements ija as stored in

the array A. The length of JA is also NNZ.
3. An integer array IA containing the pointers to the beginning of each row in the
arrays A and JA. Thus the content of IA(i) is the position in arrays A and JA where the
i th row starts. The length of IA is N+1 with IA(N+1) containing the number
IA(1)+NNZ, i.e., the address in A and JA of the beginning of a fictitious row N+1.
In addition, when incomplete LU factorizations of the system matrix are used for
preconditioning, it is crucial to be able to sweep across the rows in the lower and the
upper triangles of the matrix. While the lower part of the matrix is easily localized, a
search is required to locate the leading diagonal coefficient of the row in the upper
triangular part in order to sweep the coefficients in the reminder of the row. To avoid
repeated searches, a supplementary integer array IDIAG, of length N, points to the
position of each diagonal coefficient inside JA and A.
Still take the 44× matrix above as example. Though it is symmetric, the idea is
applicable for non-symmetric matrices. For this simple matrix, the according arrays
are:

[]
[]
[]
[]10741

119631

4343232121
44433433322322211211

=
=
=
=

IDIAG

IA

JA

KKKKKKKKKKA

where 10=NNZ

The Block Sparse Row (BSR) format [1, 7, 8]

The best way to describe block matrices is by viewing them as sparse matrices whose
nonzero entries are L-by-L dense blocks. Typically, for block matrices arising from the
discretization of partial differential equations, L is a small number, less than ten, equal
to the number of degrees of freedom per grid point, e.g., velocity, pressure, viscosity,
etc. The BSR format is a simple generalization of the CSR format, using the same data
structures A, IA, JA, and IDIAG�but where in this case the column pointers JA point
to L-by-L dense blocks. If there are zero elements within each block they are treated as
nonzero elements with the value zero.
The block dimension of the matrix A is LNNR /≈ , where the letter R stands for
“reduced”. The length of JA is NNZR, set to the number of nonzero blocks in A and

roughly equal to 2/ LNNZ . JA holds the actual column positions in the original matrix

of the first element of the nonzero blocks. Finally, the pointer array IA of NR+1
coefficients, points to the beginning of each block-row in A and JA. As in the previous
case, an additional vector IDIAG of length NR is used to point to the position of
diagonal blocks in A and JA.
Substantial memory savings over CSR result from the reduction of the matrix pointers
used in indirect addressing. For example, for L=4, the storage of JA is reduced by a
factor of 16 and the storage of IA reduced by a factor of 4. The storage of A is roughly
the same. Savings in execution time are also observed since shorter lists are being
scanned when searching for columns in a row. Since a binary search algorithm is used,

a reduction in size of JA by 16 for L=4 can give at best an 8-fold ()LL 2log speed-up

for the searches since the number of column pointers in a row is L times less, times the
L rows in the block.

Part II: Ordering schemes
It is well known that if we avoid operating on and storing zeros, the way we number or
order the unknowns of a sparse system of equations can drastically affect the amount
of computation and storage required for their solution [28]. Accordingly, many
bandwidth and profile reduction algorithms have been proposed [9-20]. The second
part of this paper introduces and compares several typical ordering algorithms.
Classical ordering strategies include bandwidth- and profile-reducing orderings, such
as reverse Cuthill-McKee [12, 21, 22, 24], Sloan’s ordering [22], and
Gibbs-Poole-Stockmeyer ordering [23]; Variants of the minimum degree ordering [25,
26, 27]; and nested dissection [28, 29]. In this paper, reverse Cuthill-McKee,
Gibbs-Poole-Stockmeyer ordering, and Sloan’s ordering will be introduced.

Some definitions about graph:

As discussed by Cuthill and McKee [12, 22], the derivation of an efficient ordering for
a sparse matrix is related to the labeling of an undirected graph. Some elementary
concepts from graph theory are useful in the development of heuristic labeling
strategies and it is appropriate to state some basic definitions. Here the description in
[22, 23] is followed.
A graph G is defined to be pair (N(G), E(G)) where N(G) is non-empty finite set of
members call nodes, and E(G) is a finite set of unordered pairs, comprised of distinct
members of N(G), called edges. A graph satisfying the above definition is said to be
undirected because E(G) is comprised of unordered pairs. The occurrence of loops (i.e.
edges which join nodes to themselves) and multiple edges (i.e. pairs of nodes which
are connected by more than one edge) is excluded.
The degree of a node i in G is defined as the number of edges incident to i. Two nodes i
and j in G are said to be adjacent if there is an edge joining them.

A path in G is defined by a sequence of edges such that consecutive edges share a
common node. Two nodes are said to be connected if there is a path joining them. A
graph G is connected if each pair of distinct nodes is connected.
The distance between nodes i and j in G is denoted d(i,j), and is defined as the number
of edges on the shortest path connecting them. The diameter of G is defined as the
maximum distance between any pair of nodes, i.e

() () (){ }GNjijidGD ∈= ,:,max (3)

Nodes which are at opposite ends of the diameter of G are known as peripheral nodes.

A pseudo-diameter, ()Gδ , is defined by any pair of nodes i and j for which d(i,j) is

close to D(G). A pseudo-diameter may be slightly less than, or equal to, the true
diameter and is found by some approximate algorithm. Nodes which define a
pseudo-diameter are known as pseudo-peripheral nodes.
An important concept in the development of graph labeling algorithms is the rooted
level structure. A rooted level structure is defined as the partitioning of N(G) into

levels () () ()rlrlrl h...,,, 21 such that :

1. () { }rrl =1 where r is the root node of the level structure.

2. For ()rli i,1> is the set of all nodes, not yet assigned a level,

which are adjacent to nodes in ()rli 1− .

The level structure rooted at node r may be expressed as the set

() () () (){ }rlrlrlrL h...,,, 21= , where h is the total number of levels and is known as the

depth. The width of level i is defined by ()rli (i.e. the number of nodes on level i) and

the width of level structure is given as

(){ }rlw i
hi≤≤

=
1
max (4)

For example, consider the grid of two-dimensional finite elements shown below,

Fig. 1 Grid of four-noded quadrilaterals

2

1

4 6

3 5

Element 1 Element 2

2

1

4 6

3 5

 Fig. 2 Graph corresponding to grid of four-noded quadrilaterals

Fig. 3 A rooted level structure

Here, N(G) is the set { }6,5,4,3,2,1 , E(G) is the set

{ } { } { } { } { } { } { } { } { } { } { } 6,5,6,4,5,4,6,3,5,3,4,3,4,2,3,2,4,1,3,1,2,1 . D(G) is 2. The

rooted level structure (rooted at node one) may be expressed as

 () () () (){ }1,1,11 321 lllL = (5)

where () { } () { } () { }6,51,4,3,21,11 321 === lll . The width and depth for this level

structure both equal three.

The reverse Cuthill-McKee algorithm

One of the most widely used bandwidth and profile reduction algorithms is reverse
Cuthill-Mckee algorithm. For the reverse Cuthill-McKee algorithm, it is assumed that
the graph is connected. If not, the connected components are determined and the
algorithms applied to each component separately. The general procedure is as follows
[23, 21, 12]:

1.Generate the level structure rooted at each vertex of low degree, and compute its
width. Normally, low degree here means less than or equal to

(){ }{ }minminmax ,1,2/minmax dddd median −+ , although this can be controlled somewhat

by parameters.
2. For each rooted level structure of minimal width generated in step 1, number the

2

1

2 3

2 3

graph level by level with consecutive positive integers according to the following
procedure:

A. The rooted vertex is assigned the number 1. (If this is not the first component
of the original graph the root vertex is assigned the smallest unassigned
positive integer.)

B. For each successive level, beginning with level 2, first number the vertices
adjacent to the lowest numbered vertex of the preceding level, in order of
increasing degree. Ties are broken arbitrarily. The remaining vertices adjacent
to the next lowest numbered vertex of the preceding level are numbered next,
again in order of increasing degree. Continue the process until all vertices of
the current level are numbered, then begin again on the next level. The
procedure terminates when the vertices of all levels have been numbered.

3. For each numbering f produced in step 2.B, compute the corresponding

bandwidth ()Gfβ . Select the numbering which produces the smallest bandwidth.

4. The numbering is reversed by setting i to n-i+1, for i=1,2,…,n.

Step 4 was first suggested by George [21] after he observed that profile could
frequently be further reduced by numbering the vertices in decreasing order from n to 1
rather than increasing from 1 to n. It was proved that this modification can never
increase the profile, and of course it has no effect on bandwidth.
This algorithm has several shortcomings [23]. The first is that the algorithm is
inefficient because of the time consumed performing an exhaustive search to find
rooted level structures of minimal width. In the case that all vertices have the same
degree, a level structure must be generated from every vertex of the graph. A second
problem is that the graph is renumbered, and the corresponding bandwidth recomputed,
for every level structure found of minimal width. A third problem is that the bandwidth
obtained by a Cuthill-McKee numbering can never be less than the width of rooted
level structure used, although the (minimum) bandwidth of a graph can be
considerably less than the width of any rooted level structure.

Gibbs-Poole-Stockmeyer ordering

To resolve the three problems, Gibbs, et al presented an alternative algorithm. The first
two shortcomings are overcome by carefully selecting a starting vertex after generating
only a relatively small number of level structures. The graph is renumbered and
corresponding bandwidth and profile computed, only once. The third problem is
resolved by utilizing a more general type of level structure. Here only main features of
this algorithm are reiterated and detailed processes can be found in their paper [23].

1. Finding a starting vertex (Finding endpoints of a pseudo-diameter).
In their work, they found that level structures of small width are usually among those
of maximal depth. Clearly, increasing the number of levels always decreases the
average number of vertices in each level, and tends to reduce the width of the level

structures as well. Ideally, one would like to generate level structures rooted at
endpoints of a diameter. Since there is no known efficient procedure that always finds
such vertices, they employ an algorithm to find the endpoints of a pseudo-diameter,
that is, a pair of vertices that are at nearly maximal distance apart.
Procedure:
A. Pick an arbitrary vertex of minimal degree and call it v.
B. Generate a level structure Lv rooted at vertex v. Let S be the set of vertices which
are in the last level of Lv.
C. Generate level structures rooted at vertices Ss ∈ selected in order of increasing
degree. If for some Ss ∈ the depth of Ls is greater than the depth of Lv, then set

sv ← and return to step B.
D. Let u be the vertex of S whose associated level structure has smallest width, with
ties broken arbitrary. The algorithm terminates with u and v the endpoints of a
pseudo-diameter.

2. Minimizing level width.
In the process of finding a pseudo-diameter, level structures Lu and Lv rooted at the
endpoints u and v are constructed respectively. It is possible to combine these two level
structures into a new level structure whose width is usually less than that of either of
the original ones, using the algorithm described by Gibbs, et al.

3. Numbering.
The numbering procedure is similar to that of the reverse Cuthill-McKee algorithm in
that it assigns consecutive positive integers to the vertices of G level by level. A few
modifications were necessary, however, since the level structures obtained by
algorithm 2 are of a more general type than the rooted ones used in the reverse
Cuthill-McKee algorithm. When the resulting numbering is similar to that obtained by
the (forward) Cuthill-McKee algorithm, profile can be further reduced by using the
reverse numbering.

Sloan’s ordering

In Sloan’s paper [22], an algorithm for reducing the profile and wavefront of a sparse
matrix was described. The procedure is applicable to any sparse matrix with a
symmetric pattern of zeros and may be used to generate efficient labeling for finite
element grids. In particular, it may be used to provide efficient nodal numberings for
profile solution schemes, as well as efficient element numberings for frontal solution
schemes. Application of the algorithm to some test problems indicates that it is more
effective than the reverse Cuthill-McKee, Gibbs et al schemes. Detailed timing
comparisons indicate that the new algorithm is substantially faster, and requires less
storage too. In addition, one of major attractions of the proposed scheme is its
simplicity.
Once the graph that corresponds to the sparse matrix is established, the labeling
scheme is comprised of two distinct steps (following the description in [22]).

1. Selection of pseudo-peripheral nodes
It has been shown by Gibbs, et al. that pseudo-peripheral nodes make good starting
points for profile and wavefront reduction algorithms. Here is a method for locating a
pair of pseudo-peripheral nodes, which are endpoints of a pseudo-diameter:
A. (First guess for starting node) Scan all nodes in G and select a node s with the

smallest degree.
B. (Generate rooted level structure) Generate the level structure rooted at node s, i.e.

() () (){ }slslslsL h...,,)(21= .

C. (Sort the last level) Sort the nodes in ()slh in ascending sequence of degree. These

nodes are at maximum distance from s.

D. (Shrink the last level) Let m equal ()slh . Shrink the last level by forming a list Q

of the first () 2/2+m (the largest integer less than or equal to () 2/2+m)

entries in the sorted list ()slh .

E. (Initialize) Set ∞←minw and hh ←max .

F. (Test for termination) For each node Qi ∈ , in order of ascending degree, generate

() () (){ }ilililiL h...,,)(21= . If maxhh > and (){ } minmax wilw j <= , set is ← and

go to step 3. Else, if minww < , set ie ← and ww ←min .

G. (Exit) Exit with starting node s and end node e which define a pseudo-diameter.

The above algorithm is similar to the procedure given by Gibbs et al., but includes two
important modifications [22]. The first modification is the introduction of the
shrinking strategy in step D. This step significantly reduces the amount of computation
necessary to locate the pseudo-peripheral nodes, but at the same time ensures that their
rooted level structures are deep and narrow. It follows naturally from the empirical
observation that nodes with high degrees are not often selected as potential starting or
end nodes in step F.
The second modification occurs in step F and incorporates the ‘short circuiting’
strategy suggested by George and Liu. Inserting the condition that w must be less than
wmin permits the assembly of wide level structures to be aborted before completion and
often leads to considerable savings (especially for large graphs).
The above algorithm usually locates the pseudo-peripheral nodes in two or three
iterations, and is considered to be efficient. The pseudo-diameter produced is often a
true diameter, but there is no guarantee of this.

2. Node labeling algorithm
To begin the labeling procedure two pseudo-peripheral nodes, which define a
pseudo-diameter, are required. These serve as starting and end nodes for the labeling.
The algorithm relabels the starting node as node one and then forms a list of nodes that
are eligible to receive the next label. This list is comprised of all active and preactive
nodes, and is maintained as a priority queue. The node with the highest priority is
labeled next. The priority of each node in the queue is related to its current degree and
its distance from the end node. Nodes with low current degrees and large distances
from the end node assume the highest priority. Once a node is selected for labeling, it is
deleted from the queue and renumbered. The queue of eligible nodes is then updated
by using the connectivity information for the graph and the process is repeated until all
the nodes have been assigned new labels.
The detailed algorithm can be found in Sloan’s paper. The basic idea behind the
algorithm is that, during each stage of the labeling process, nodes with small current
degrees and long distances from the end node are labeled first. Selecting nodes with
small current degrees causes the current ‘front’ of active nodes to grow by a minimum
amount during each step, while selecting nodes with large distances from the end node
attempts to take the global structure of the graph into account.

This algorithm has been implemented in standard FORTRAN 77 and the performance
is tested. It can be concluded that the procedure is a substantial improvement on
previous algorithms since it is fast, reliable, requires little storage, and is simple to
implement.

Conclusions
This paper only deals with several classical schemes on the storage and ordering for
large sparse matrix. There are still many other papers on these two topics (e.g. [30-37]).
The researchers in different scientific or engineering fields would have matrices with
different properties. It is the key point to choose a proper algorithm for each linear
system according to its property and some special requirements, if any. For example,
for the storage of sparse matrix, some schemes are good at saving running time, while
some others are easy to administrate. One should balance different requirements and
choose the best data structure.

References
[1] Laura C. Dutto, et al, Effect of the storage format of sparse linear systems on
parallel CFD computations, Comput. Methods Appl. Mech. Engrg. 188, 441, 2000
[2] A. Jennings, A compact storage scheme for the solution of simultaneous equations,
Computer J., 9, 281-285,1966
[3] X. C. Wang, et al., Basic theory and numerical methods of FEM (Chinese version),
Tsinghua University, 1997
[4] T. I. Zohdi, A supplement to finite element class notes, Fall 2002

[5] D. E. Knuth, The art of computer programming, vol.1, fundamental algorithms,
Addison-Wesley, Reading, Mass., 1973
[6] M. Veldhorst, An analysis of sparse matrix storage schemes, Mathematical center
tracts 150, 1982
[7] M. A. Heroux, A proposal for a BLAS toolkit, SPARKER Working note 2,
CERFACS, TR/PA/92/90, Technical Report, 1992
[8] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations, Technical
Report 90-20, Research Inst. Adv. Comp. Science, NASA Ames Research Center,
Moffett Field, CA, USA 1990
[9] G. G. Alway, et al, An algorithm for reducing the bandwidth of a matrix of
symmetric configuration, Comput. J., 8, 264, 1965
[10] F. A. Akyuz, et al, An automatic relabeling scheme for bandwidth minimization of
stiffness matrices, J. Amer. Inst. Aeronaut. Astronaut, 6, 728, 1968
[11] R. Rosen, Matrix bandwidth minimization, Proc. ACM National Conference,
Brandon Systems Press, Princeton, N.J.; 585, 1968
[12] E. Cuthill, et al, Reducing the bandwidth of sparse symmetric matrices, Proc.
ACM National Conference, Association for Computing Machinery, New York, 157,
1969
[13] R. Levy, Resequencing of the structural stiffness matrix to improve computational
efficiency, Jet Propulsion Laboratory Tech. Rev., 1, 61, 1971
[14] I. P. King, An automatic reordering scheme for simultaneous equations derived
from network systems, Internat. J. Numer. Mech. Engrg., 2, 523, 1970
[15] I. Arany, et al, An improved method for reducing the bandwidth of sparse
symmetric matrices, Proc. IFIP Conference, North-Holland, Amsterdam, 1246, 1971
[16] H. R. Grooms, Algorithm for matrix bandwidth reduction, Amer. Soc. Civil Engrg.,
J. Struct. Div. 98, 203, ST1 1972
[17] E. Roberts, Relabeling of finite-element meshes using a random process,
TMX-2660, National Aeronautics and Space Administration, Lewis Research Center,
Cleveland, Ohio, 1972
[18] R. J. Collins, Bandwidth reduction by automatic renumbering, Internat J. Number.
Mech. Engrg., 6, 345, 1973
[19] P. T. R. Wang, Bandwidth minimization, reducibility, decomposition, and
triangularization of sparse matrices, Ph.D dissertatin, Ohio State University, Columbus,
1973
[20] K. Y. Cheng, Minimizing the bandwidth of sparse symmetric matrices, Computing,
11, 103, 1973
[21] A. George, Computer implementation of the finite element method,
STAN-CS-71-208, Computer Science Dept., Stanford Univ. Stanford, CA, 1971
[22] S. W. Sloan, An algorithm for profile and wavefront reduction of sparse matrices,
Int. J. Numer. Methods. Eng., 23, 239, 1986
[23] N. E. Gibbs, et al, An algorithm for reducing the bandwidth and profile of a sparse
matrix, SIAM J. Numer. Anal., 13, No.2, 236, 1976
[24] E. Cuthill, Several strategies for reducing the bandwidth of matrices, Sparse
matrices and their applications, 157, by D. J. Rose, et al (Plenum, New York, 1972)

[25] P. Amestoy, et al., An approximate minimum degree ordering algorithm, SIAM
J., Matrix Anal. Appl., 17, 886, 1996
[26] A. George, et al., The evolution of the minimum degree algorithm, SIAM Rev. 32,
1, 1989
[27] J. W. H. Liu, Modification of the minimum degree algorithm by multiple
elimination, ACM Trans. Math. Software, 11, 141, 1985
[28] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer
Anal., 10, 345, 1973
[29] R. J. Lipton, et al., Generalized nested dissection, SIAM J. Numer. Anal., 16,346,
1979

[30] N. Neu β , et al., A new sparse-matrix storage method for adaptively solving large

systems of reaction-diffusion-transport equations, Computing, 68, 19, 2002
[31] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comp.
Phys. 182, 418, 2002
[32] G. Manzini., Note on the ordering of sparse linear systems, Theoretical computer
science, 156, 301, 1996
[33] M. T. Heath, et al., Parallel algorithms for sparse linear systems, SIAM Review, 33
(3), 420, 1991
[34] K. V. Camarda, et al., Matrix ordering strategies for process engineering: graph
partitioning algorithms for parallel computation, Computers and chemical engineering,
23, 1063, 1999
[35] G. Karypis., et al., A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering, J. Parallel and Distributed Computing, 48, 71, 1998
[36] H.B. Gooi, et al., Efficient ordering algorithms for sparse matrix/vector methods,
Electrical Power & Energy Systems, 20, No1, 53, 1998
[37] W Y Lin, et al., Minimum communication cost reordering for parallel sparse
Cholesky factorization, Parallel Computing, 25, 943, 1999

