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Least Squares Constrained by a Linear Equation

 

Given matrices  F,  g,  C  and  d ,  we seek a vector  u  to minimize  ||F·u – g||

 

2

 

 = (F·u–g)

 

'

 

·(F·u–g)  
subject to the linear constraint  C·u = d .  By introducing a vector  v  of  

 

Lagrange Multipliers

 

  we 
find that the minimizing vector  u = û  must satisfy the linear equations

  ·  =  ;

 

i.e

 

.,   C·û = d   and  F

 

'

 

·(g – F·û) = C

 

'

 

·v .        (*)

We shall show first that these equations have at least one solution  û  provided the constraint  

C·u = d  is satisfiable,  second that any such solution does minimize   ||F·u – g||

 

2

 

 ,  and third that 

the solution  û  is unique just when the columns of    are linearly independent even if the rows 

of  

 

[C  d]

 

  are not.  Fourth,  we shall explore a way to compute  û  without solving equations  (*).  C  
will be assumed to have rather fewer rows than columns,  and  F  to have more rows than columns.

 

Existence

 

To show that a solution  û  exists we shall invoke one of  Fredholm’s  criteria:  A·x = b  has at least 
one solution  x  if and only if  w

 

'

 

·b = 0  whenever  w

 

'

 

·A = o

 

'

 

 .  To this end we suppose that  

[w

 

'

 

   y

 

'

 

]·  = [o

 

'

 

   o

 

'

 

] .  This means that  w

 

'

 

·F'·F + y

 

'

 

·C = o

 

'

 

  and  w

 

'

 

·C

 

'

 

 = o

 

'

 

 .  When the 

last equation is substituted into the second-last we find that  w

 

'

 

·F'·F·w = 0 ,  whence follows in 

turn that  w

 

'

 

·F

 

’

 

 = o

 

'

 

  and then  y

 

'

 

·C = o

 

'

 

 .  Consequently  [w

 

'

 

   y

 

'

 

]·  = w

 

'

 

·F

 

'

 

·g + y

 

'

 

·d = 0  

provided the constraint  d = C·u  is satisfiable.  Then equations  (*)  have at least one solution  û .

 

Minimization

 

Any solution  û  of  (*)  makes  ||F·û – g||

 

2

 

  no bigger than  ||F·u – g||

 

2

 

  for any  u  that satisfies the 
constraint  C·u = d .  Here is why:

||F·u – g||

 

2

 

 – ||F·û – g||

 

2

 

 = (F·(u–û) + F·û–g)

 

'

 

·(F·(u–û) + F·û–g) – (F·û–g)

 

'

 

·(F·û–g)

 = ||F·(u–û)||

 

2

 

 + 2(u–û)

 

'

 

·F

 

'

 

·(F·û–g) 

 = ||F·(u–û)||

 

2

 

 – 2(u–û)

 

'

 

·C

 

'

 

·v from  (*)

 = ||F·(u–û)||

 

2

 

 because  C·u = C·û = d
 

 

≥

 

 0 .

 

Uniqueness

 

If more than one solution  û  exists their nonzero difference  z  must satisfy    ·  = o  

which means  F

 

'

 

·F·z + C

 

'

 

·s = o  and  C·z = o .  As before,  this implies  z

 

'

 

·F

 

'

 

·F·z = 0 ,  whence 

follows  F·z = o  too,  which is impossible if the columns of    are linearly independent,  in 

which case solution  û  is determined uniquely by the linear equations  (*)  displayed above.
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The Solution  û  as a Limit

 

When unique,  this solution  û  turns out to be the limit,  as  

 

µ

 

 

 

→

 

 

 

∞

 

 ,  of the solution  u  of the 

unconstrained least-squares problem that chooses  u  to minimize  ||  ||

 

2

 

 .  This 

problem should be solved numerically by  QR  factorization after some suitably huge  

 

µ

 

  has been 
chosen.  However,  to prove that  u 

 

→

 

 û  as  

 

µ

 

 

 

→

 

 

 

∞

 

 ,  we shall use the numerically dubious closed-

form formula  u = ( 

 

µ

 

2

 

·C

 

'

 

·C + F

 

'

 

·F )

 

–1

 

·(

 

µ

 

2

 

·C

 

'

 

·d + F

 

'

 

·g)  obtained from this least-squares problem’s  

 

Normal Equations

 

.  By substitution from  (*)  we find that  u = û + ( 

 

µ

 

2

 

·C

 

'

 

·C + F

 

'

 

·F )

 

–1

 

·C

 

'

 

·v .  
Since  v  is determined by  (*),  though not uniquely if the rows of  C  are linearly dependent,  our 

objective will be attained when we show that  ||( 

 

µ

 

2

 

·C

 

'

 

·C + F

 

'

 

·F )

 

–1

 

·C

 

'

 

|| 

 

→

 

 0  as  

 

µ

 

 

 

→

 

 

 

∞

 

 .  This is 
barely unobvious enough to be worth proving thrice.

The first and shortest proof uses a  

 

Congruence

 

  to diagonalize the two positive (semi-)definite 

matrices  C

 

'

 

·C = L

 

–1

 

·M·L'–1  and  F'·F = L–1·W·L'–1  simultaneously.  Here  L  is some invertible 
matrix;  M  and  W  are nonnegative diagonal matrices whose respective elements’ ratios  mjj/wjj  
are generalized eigenvalues determined by a determinantal equation  det( wjj·C'·C – mjj·F'·F ) = 0  

in which every  mjj + wjj > 0  because the columns of    are linearly independent and therefore  

'·  = C'·C + F'·F = L–1·(M + W)·L'–1  must be positive definite.  Consequently

 ||( µ2·C'·C + F'·F )–1·C'||2  =  ||( µ2·C'·C + F'·F )–1·C'·C·( µ2·C'·C + F'·F )–1||

       =  ||L'·M·(µ2·M + W)–2·L||  → 0  as  µ → ∞
because every nonzero diagonal element  mjj/(µ2·mjj + wjj)

2 → 0 .  So ends the first proof.

A second proof starts from any orthogonalization of  = Q·R  in which  R  is invertible and the 

columns of  Q  provide an orthonormal basis  ( Q'·Q = I )  for  Range( ) .  This subspace is 

separated by angles  Θ  from  Range( )  in which the small identity matrix  I  and the diagonal 

square matrix  Θ  each has as many rows as  C  has,  and  0 ≤ Θ ≤ π/2 .

These angles  Θ  were exposed in  “Some New Bounds on Perturbations of Subspaces”  by  C. Davis and  W.M. 
Kahan  in  pp. 863-9  of  Bull. Amer. Math. Soc. 75 #4 (July 1969),  and explained in their  “The Rotation of 
Eigenvectors by a Perturbation. III”  in pp. 1-46 of  SIAM J. Numer. Anal. 7 #1 (March 1970).  C.C. Paige and M. Wei  
surveyed other applications in their  “History and Generality of the  CS Decomposition”,  pp. 303-326 in  Linear 
Algebra and Its Applications 108/109 (1994).  This second proof is an application instigated by  C.F. Van Loan  in  
“Generalizing the Singular Value Decomposition”, pp. 76-83 of SIAM J. Numer Anal. 13 (1976).

Aptly chosen orthogonal  P' = P–1 =   and  U' = U–1  turn  Q  into  P'·Q·U' =   

µ C⋅
F

u⋅ µ d⋅
g

–

C

F

C

F

C

F

C

F

C

F

I
O

P'C O

O P'F

cos Θ( ) O

sin Θ( ) O

O I

O O



File:  LcLstSqs                                                                                          version dated  January 29, 2006 5:49 am

Prof. W. Kahan                                                     for  Math. 221 and 128B                                                Page 3/10

and decompose  C = PC·[cos(Θ)  O]·U·R  and  F = PF· ·U·R .  Into the first proof we 

now substitute  L := U·R'–1 ,  M :=   and  W :=   to find as before that

 ||( µ2·C'·C + F'·F )–1·C'||2  =  ||L'·M·(µ2·M + W)–2·L||  → 0   as   µ → ∞
because every nonzero diagonal element  mjj/(µ2·mjj + wjj)

2 = ( sec(θj)/(µ2 + tan2(θj)) )2 → 0  at 
a rate determined by one of the angles  θj < π/2 .  So ends the second proof.  However,  what it 
tells us about how fast  u → û  involves an obscure dependence of  L  and  Θ  upon  C  and  F .  For 

instance,  replacing the constraint  C·u = d  by some equivalent constraint  B–1·C = B–1·d  for an 
invertible  B  alters  u,  L  and  Θ  without altering  û .

Though more computational,  the third proof will help us assess how fast  u → û  as  µ → ∞ .  Let  

æ := 1/µ2 → 0+  as  µ → ∞ .  Then  ||( µ2·C'·C + F'·F )–1·C'|| = æ·||( C'·C + æ·F'·F )–1·C'|| ,  so our 

objective will be attained when we have shown that  ||( C'·C + æ·F'·F )–1·C'||  stays bounded as  
æ → 0+ .  Since the biggest-singular-value norm  ||…||  is unitarily invariant,  it is not changed 
after premultiplication and postmultiplication by orthogonal matrices that exhibit the singular 

value decomposition of  C  as    in which  V  is a square strictly positive diagonal matrix of 

the nonzero singular values of  C .  The second row  [O   O]  is empty when the rows of  C  are 
linearly independent.  After the same postmultiplication,  F  partitions into  [E, K]  conformal with 

the partition of the columns of   .  Because the columns of    are linearly independent,  so 

are the columns of    and then of  K ,  whose pseudo-inverse is  K† = (K'·K)–1·K' .  Then  

C'·C + æ·F'·F  becomes  .  Approximately    is its 

inverse because their product differs from an identity matrix by terms of order  æ  as  æ → 0+ .  

Then  ( C'·C + æ·F'·F )–1·C'  becomes approximately    to within terms of 

order  æ  as  æ → 0+ .  This stays bounded,  as was asserted earlier.  So ends the third proof.

Thus we see why  u – û = O(1/µ2)  as  µ → ∞  whenever equation  (*)  determines  û  uniquely.

The third proof revealed something worth knowing about how the constant implicit in  O(1/µ2)  
depends upon the matrices  C  and  F  through  V,  E  and  K .  That constant can be huge only if  

||V–1||  and/or  ||K†·E||  is huge.  This can’t happen unless the rows of  C  and/or the columns of    

are too nearly linearly dependent.  In such cases the computation of  u  for ever increasing values 
of  µ  can appear to converge over a wide range of big values  µ  although the true limit  û  is not 

sin Θ( ) O

O I

O O

cos
2 Θ( ) O

O O

sin
2 Θ( ) O

O I

V O

O O

V O

O O

C

F

V O

O O

E K

V
2

æ E' E⋅ ⋅+ æ E' K⋅ ⋅
æ K' E⋅ ⋅ æ K' K⋅ ⋅

V
2–

V–
2–

E' K'
†⋅ ⋅

K–
†

E V
2–⋅ ⋅ K

†
K'

†
æ⁄⋅

V
1–

O

K–
†

E V
1–⋅ ⋅ O

C

F



File:  LcLstSqs                                                                                          version dated  January 29, 2006 5:49 am

Prof. W. Kahan                                                     for  Math. 221 and 128B                                                Page 4/10

approached until  µ  gets very much bigger.  In such cases a numerically satisfactory choice for  µ  
can be difficult to ascertain.  Here are examples:

Example 1:  C  has nearly linearly dependent rows.

Let  C := ,  d := ,  F' :=   and  g' := [3  1  1  99  99] .  Now  û = [0  0  1]'  but as  µ → ∞  

the error  û – u = [0  –2  1]'/(1 + 2η2·µ2/3) → o  at a rate determined by a parameter  η ≠ 0  that tells 
how near to linearly dependent the rows of  C  are.  When  η  is very tiny the computed vector  
u ≈ [0  2  0]'  for a wide range of huge values  µ << 1/η .  To prevent acceptance of this plausible  u  
in place of  û  we must know enough about  η  to choose  µ >> 1/η .  Examples like this are 
vexatious also because a small change in data can alter the solution  û  drastically;  for instance,  
changing  d  slightly from  [0  0]'  to  [0  η]'  alters  û  from  [0  0  1]'  to  [0  1  1/2]'  and alters the error 

to  û – u = [0  –1  1/2]'/(1 + 2η2·µ2/3) .  Changing  η  to  0  makes  û = u = [0  2  0]' .  Examples like 
this will motivate remedial action against constraints  [C  d]  with nearly linearly dependent rows  
when their near-redundancy is an accident due to a mathematical mishap easily dispelled.

Example 2:    has nearly linearly dependent columns.

Let  C := ,  d = ,  F' :=   and  g' := [ξ  3  1  η  99] .  Now  û = [0  0  1  1]'  but as  

µ → ∞  the error  û – u = [–ξ  –3  0  ξ/η]'/(1 + µ2) → o  at a rate determined by two parameters:  One 
is  η ≠ 0  that tells how near to linearly dependent the columns of  F  are.  The other,  ξ ,  exerts no 
influence upon  û  but,  when  η  is very tiny,  affects the computed vector  u  drastically unless  

µ2 >> ξ/η .  This is how  µ  must be chosen to prevent acceptance of a plausible  u  in place of  û ,  
and this choice depends upon  g  as well as  C  and  F .  Again,  û  can be altered drastically by a 
small change in the data;  for instance,  changing  g'  slightly to  g' := [ξ  3  1  0  99]  alters  û  to  
[0  0  1  0]'  without changing the error  û –u .  This kind of hypersensitivity to perturbation can be 
difficult to dispel by solely numerical means when it arises from a redundancy injected into the 
least-squares problem at an early stage of its mathematical formulation.  It happens often.

Misbehavior ostensibly similar to the foregoing two examples can occur when the first few 
columns of  C  are too nearly linearly dependent even though the rows of  C  are  not.  This 
misbehavior is caused by roundoff.  Increasing  µ  worsens the misbehavior.  Here is an example:

Example 3:  The first two columns of  C  are linearly dependent.

Let  C := ,  d := ,  F' :=   and  g' := [7  -18  12  -15  -9] .  Now  û = .  

Error   û – u =  [15100µ2+29500   –48550µ2–8500   –256125µ2–30000]'/(301203µ4+614370µ2+23700)  → o  

like  1/µ2  in the absence of roundoff,  so any choice  µ > 226 ≈ 6.7·107  should keep the error  
û – u  below the uncertainty inherited when the data  C  and  F  were rounded to  53  sig. bits.
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Let  C := ,  d := ,  F' :=   and  g' := [4  8  12  16] .  Now  û = .  This 

example was constructed by  C.F. Van Loan.  Its error   û – u =  [36   0   36]'/(µ2+4)  → o  like  36/µ2  

in the absence of roundoff,  so any choice  µ > 227 ≈ 1.34·108  should keep the error  û – u  
comparable with what we might expect to inherit from arithmetic rounded to  53  sig. bits.

For other treatments of the linearly constrained least squares problem see Ch. 5.1  of  Åke 
Björck’s  book  Numerical Methods for Least Squares Problems (1996, S.I.A.M, Philadelphia),  
and  §17 and §22  of  C.L. Lawson & R.J. Hanson’s  book  Solving Least Squares Problems (1974,  
Prentice-Hall, New Jersey).

Charles Van Loan’s  Example:

F := ,   g := ,  C := ,  d := ,  û = /4  computed to only half-precision 

when  µ := 1/√eps  without full column pivoting.  He had used the  Generalized SVD  via the  CS-
decomposition   Q'·F = [sin(angles) on diag]·Z,  P'·C = [cos(angles) on diag]·Z ,   and    
Z'·Z = (F'·F + C'·C)  to analyze the algorithm’s behavior,  which resembles  Gaussian Elimination  
if  µ  is big enough.

If the rows of  C  as well as the columns of    are linearly independent,  then the constraint  

C·u = d  is satisfiable for every  d  by  u = C'·(C·C')–1·d  among other things.  Also the equations  

(*)  have a unique solution   .  In this case the equations  (*)  are equivalent to equations

·  =  ,  namely   C·û = d ,   r = F·û – g ,  and   F'·r + C'·v = o ,       

whose matrix is nonsingular.  Here is a proof that it is nonsingular:
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û
v

O C' F'

C O O

F O I–

û
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If  C·u = o ,  F·u – r = o  and  F'·r + C'·v = o ,  then  0 = u'·F'·r + u'·C'·v = u'·F'·F·u + 0 ,  whence follows  F·u = o  and 

therefore  u = o  because the columns of    are linearly independent.  Also  r = o  and therefore  C'·v = o ,  whence  

v = o  because the rows of  C  are linearly independent.  In other words,  the matrix of the equations  has only  o  in 

its nullspace so it must be nonsingular,  as claimed.

The numerically dubious closed-form formula  u = ( µ2·C'·C + F'·F )–1·(µ2·C'·d + F'·g)  turns out 
to be equivalent  (in the absence of roundoff)  to equations

 ·  =  ,  namely  C·u – w/µ2 = d ,   s = F·u – g ,  and  F'·s + C'·w = o ,       

whose matrix  (also nonsingular)  differs from the matrix of equations  above by the term  –I/µ2  

in the middle.  If this term is tiny enough,  negligible compared with the smallest singular value of 
the latter matrix,  the two systems of linear equations will have negligibly different solutions  u  
and  û .  Though that smallest singular value is positive because of our linear independence 
hypotheses,  its value can change when the constraint  C·u = d  is replaced by some equivalent 

constraint  B–1·C = B–1·d  that leaves  û  unaltered.  What does this approach to our problem 
imply?

Generating Test Data:
Given ostensibly  “simple”  F, C  and  û ,  we set  d := C·û  and  g := F·û – r  wherein  r  need only 

be a not-too-complicated solution of  [C'   F']·  = o  for any arbitrary  (perhaps complicated)  v .  

By reducing  [C'   F']  to its row-reduced echelon form,  we can choose simple values for all but 
the first few elements of  r  almost arbitrarily subject to the constraint that those first few elements 
now determined by the foregoing equation be not too complicated.  Whether this is feasible will 
depend upon how the first few rows of  F  correlate with  C .  Try  MATLAB’s  null([C'   F'],’r’) .
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How Roundoff Can Ruin the Computation of  û
Why was the formula     u = ( µ2·C'·C + F'·F )–1·(µ2·C'·d + F'·g)   called  “numerically dubious”?   
It suffers intolerably from roundoff because of two phenomena.  One occurs as  µ  gets very big:   

Digits of  F'·F  get rounded away when it is added to  µ2·C'·C .  After  µ  becomes big enough,  the 

computed value of  µ2·C'·C + F'·F  becomes just the computed value of  µ2·C'·C ,  as if  F  were  

O .  The same phenomenon can lose  F'·g  from the sum  µ2·C'·d + F'·g .  After these losses the 
computation of  u ,  if not aborted,  becomes an accident of roundoff divorced from the data  F  
and  g .

A second more subtle phenomenon can afflict the computation of  F'·F  and  F'·g  in both the 
numerically dubious formula for  u  and equation  (*)  that defines  û .  This second phenomenon 
can arise when the columns of  F  are too nearly linearly dependent even though the columns of  

  are amply independent enough to determine  û  sharply.

Backward Error in  F'·F
Suppose  A := F'·F  rounded;  actually  A = F'·F + ∆A .  How small a perturbation  ∆F  can satisfy  
A = (F+∆F)'·(F+∆F)  exactly?  Extra-precise arithmetic may be needed to compute  ∆A ;  usually 

we expect  ||∆A|| ≈ æ·||A|| ≈ æ·||F||2  wherein  æ << 1  is a tiny roundoff threshold  (like  MATLAB’s  

eps) .  But if  F  has singular values so disparate that condition number  κ(F) = ||F||·||F†|| >> 1 ,   
which occurs often,  the smallest perturbation  ∆F  compatible with  ∆A  can have a surprisingly 
big norm  ||∆F|| ≈ æ·||F||·κ(F) >> æ·||F||  though   ||∆F||  can almost never exceed  √æ·||F|| .

A simple example:

Choose  κ >> 1  while keeping  1 ± æ·κ2 ≥ 0 ,  and then set  F :=   and  ∆A := ±æ·κ2·   so 

that  A := F'·F + ∆A =  = (F+∆F)'·(F+∆F)  for  ∆F := ±æ· ·κ2/( 1 + √(1 ± æ·κ2) ) .  

No smaller  ∆F  is compatible with  ∆A .  Now  ||∆A||/||A|| = æ ,  the roundoff threshold,  but  

||∆F||/||F|| = æ·κ/( 1 + √(1 ± æ·κ2) ) >> æ .  Still,  ||∆F||/||F|| ≤ √æ   for all condition numbers  κ  that 

satisfy the assumed constraint  1 ± æ·κ2 ≥ 0 .

This simple example foreshadows what can happen in general:  The roundoff term  ∆A  can induce 
a perturbation  ∆F  that obscures almost as many as the last half of the significant digits stored in  
F .  Why nothing worse can ne expected to happen requires a lengthy explanation:
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Roundoff’s contribution  ∆A  must be small enough that  F'·F + ∆A = A = (F+∆F)'·(F+∆F)  is still 
positive (semi-)definite if  ∆F  exists.  This obliges us to assume that  F  has linearly independent 

columns,  and that   1 > æ·κ(F)2 ≈ ||(F'·F)–1||·||∆A||   to be sure that  ∆F  exists.  Even so,  ∆F  cannot 
be determined uniquely by the previous sentence’s equation alone since any one solution  ∆F  can 

be turned into another,  Ø'·(F+∆F) – F ,  by any orthogonal  Ø' = Ø–1
 .  We can try to determine  

∆F  uniquely by restricting it somehow,  say by trying to minimize  ||∆F||  while satisfying  
F'·∆F + ∆F'·F + ∆F'·∆F = ∆A .  Our first estimate  ∆1F  will neglect the second-order term  ∆F'·∆F .  
Our second estimate  ∆2F  will take this term into account but its  ||∆F||  will be somewhat bigger 
than minimal.  Later a third estimate  ∆3F  will minimize not  ||∆F||  but the  Frobenius  norm  
||∆F||ƒ := √(Trace(∆F'·∆F)) .  (It is  MATLAB’s  norm(∆F, ‘fro’) .)

The singular-value decomposition of  F = Q· ·P'  has orthogonal  Q' = Q–1 ,  P' = P–1  and a 

positive diagonal matrix  V  of singular values so ordered that the first  v1 = ||F||  is the biggest and 

the last  vn = 1/||F†||  is the smallest.  Let  ∆H := P'·∆A·P = ∆H'  and   := Q'·∆F·P  noting that  

∆V  need not be diagonal.  Substituting these into the equation  ∆F  must satisfy turns it into an 
equation  V·∆V + ∆V'·V + ∆V'·∆V + ∆K'·∆K = ∆H  that  ∆V  and  ∆K  must satisfy.  Note that  

||∆H|| = ||∆A|| ≈ æ·||F||2  and  ||∆F|| = || || .  A first estimate  ∆1F  that ignores second-order terms 

must set  ∆K := O  to minimize  ||∆F||  after deducing that  ∆Vij = ∆Vji ≈ ∆Hij/(vi + vj) .  Then a first 

estimate is  ∆1F = Q· ·P' .  Its  ||∆1F||  can get roughly as big as   æ·||F||2·||F†|| ≈ æ·||F||·κ(F) ,  

enormously bigger than  æ·||F|| ,  in case  ∆Vnn ≈ ∆Hnn/vn ≈ ||∆H||·||F†|| ,  which case cannot be 

ruled out.  Though this first-order estimate loses its validity when  ||∆1F||  gets too big for its square 
to be ignored,  it still allows  ∆1F  to get big enough to obscure almost half the significant digits 
stored in  F  when  κ(F) ≈ 1/√æ .  Then,  because  ∆1F  need not correlate with the rounding errors 
in  F'·g ,  roundoff can corrupt results computed from  A  almost as badly as if the last half of the 
significant digits stored in the data  F  and  g  had been disregarded.

Our second estimate  ∆2F  is not much bigger than the first-order estimate but takes second-order 

terms fully into account.  Like the first-order estimate,  our second  ∆2F := Q· ·P'  wherein  

∆V = ∆V' ,  but now  ∆V := √(V2 + ∆H) – V .  Here  √…  is the positive (semi)definite square root 
of a positive (semi)definite symmetric matrix.  Now  (F+∆2F)'·(F+∆2F) = A = F'·F + ∆A  exactly.  
To gauge how big this second  ||∆2F||  cannot get we need the following inequality:

If  M  and  W  are symmetric positive definite,  their positive definite square roots differ by at most    

||√M – √W|| ≤ ||M–W||/( 1/√||M–1|| + 1/√||W–1|| ) .  To prove this inequality use the formula  

√M = (2/π)·∫0∞ (ß2I + M)–1·M·dß .  The inequality becomes equality when matrices are  1-by-1 .

V
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Applying this inequality to  ∆2F  and assuming  ||∆A|| ≤ æ·||F||2 ≤ 1/||F†||2  we find  

  ||∆2F|| = ||∆V|| ≤ ||∆H||/( 1/√||(V2 + ∆H)–1|| + 1/||V–1|| ) 

≤ ||∆H||/( 1/√(1/(1/||F†||2 – ||∆H||)) + 1/||F†|| )  

= ||∆A||/( √(1/||F†||2 – ||∆A||) + 1/||F†|| )          because  ||∆H|| = ||∆A|| 

≤ κ(F)·æ·||F||/( 1 + √(1 – æ·κ(F)2) ) ,
less than twice as big as the first-order estimate  ∆1F  and yet valid no matter how big it gets.  It 
cannot exceed  √æ·||F|| .  But this second estimate  ∆2F  need not minimize  ||∆F||  though the two 
estimates  ∆1F  and  ∆2F  become indistinguishable when their squares are negligible.  Whatever  
∆F  is minimal,  its  ||∆F|| ≤ ||∆2F|| ,  so its  ||∆2F|| ≤ √æ·||F||  too.

A third estimate  ∆3F  will minimize  ||∆F||ƒ
2 .  Recourse to  Lagrange Multipliers  implies that a 

minimizing  ∆F  is  ∆F = F·∆X  for some symmetric array  ∆X = ∆X'  derived from the  Lagrange  
multipliers and satisfying  (I+∆X)·F'·F·(I+∆X) = A .  Let  Y := √F'·F  be the positive definite 

square root so that  ||∆F|| = ||Y·∆X||  and  ||∆F||ƒ = ||Y·∆X||ƒ ;  then  ∆X :=  Y–1·(√Y·A·Y – F'·F)·Y–1  
must satisfy the previous sentence’s equation for every matrix square root  √Y·A·Y .  We choose 
the positive (semi)definite square root because it is easily proved to minimize  ||∆F||ƒ = ||Y·∆X||ƒ .  
Thus can the smallest  ∆3F = F·∆X  be computed,  though only with extravagantly extra-precise 
arithmetic.  Arithmetic less extravagantly extra-precise suffices to compute it via the coordinate 
system provided by the aforementioned singular value decomposition of  F :  Starting from  

F = Q·V·P'  and  ∆H := P'·∆A·P  set   ∆3F :=  Q·( √( V·(V2 + ∆H)·V ) – V2)·V–1·P' .

How big can this third estimate  ∆3F  not get?  Recalling that  ||∆H|| = ||∆A|| ≤ æ·||F||2 ,  we find

||∆3F||ƒ
2 = || √( V·(V2 + ∆H)·V )·V–1 – V ||ƒ

2 = Trace( 2V2 + ∆H – 2√( V·(V2 + ∆H)·V ) ) 

 ≤ Trace( 2V2 + æ·||F||2·I – 2√( V·(V2 – æ·||F||2·I)·V ) )  because  √…  is monotonic

 = n·æ·||F||2 + 2 Trace( V2 – √( V4 – æ·||F||2·V2 ) )   wherein  n := # columns(F)

 = n·æ·||F||2 + 2æ·||F||2·Trace( ( I + √( I – æ·||F||2·V–2 ) )–1
 ) 

 ≤ n·æ·||F||2·(1 + 2/( 1 + √(1 – æ·κ(F)2) )) .
Though this bound seems grossly pessimistic,  it does keep  ||∆3F||ƒ/||F||  below something of the 
order of  √æ ,  so  ∆3F  can affect at most the last half of the significant digits stored in  F+∆3F .

If roundoff is so gross that  æ > 1/κ(F)2 ,  the perturbations  ∆2F  and  ∆3F  may fail to exist or,  less 
likely,  may exceed substantially the bounds derived for them above.  These bounds are unlikely to 
be approached closely in any event unless rounding errors conspire or are contrived to that end.

Example:
Suppose arithmetic carries six sig. dec.,  so  æ = 0.000005 ,  and consider the example
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F' :=  .  ||F|| ≈ 3571141.5  and the condition 

number  κ(F) := ||F||·||F†|| ≈ 17286.27  rather exceeds  1/√æ ≈ 447.2 .  Rounded to six sig. dec., 

A := F'·F + ∆A = ·106;   ∆A = .

Here  ||∆A||/||A|| ≈ 0.00000059 < æ/8 .  However,  computed perturbations  

 ∆2F' ≈    and

 ∆3F' ≈ 

have   ||∆3F||ƒ/||F||ƒ ≈ 0.00046 < ||∆3F||/||F|| ≈ 0.00050 < ||∆2F||/||F|| ≈ 0.00052 ,  none of them much 

smaller than  √(||∆A||/||A||) ≈ 0.00077 ,  so both  F+∆2F  and  F+∆3F  differ from  F  in almost half 
of its last six sig. dec.  Thus the bounds for  ||∆F||  derived above turn out to be approachable.

The computations of  ∆2F  and  ∆3F  above were carried out in  MATLAB 5.2  on an  Apple 
Macintosh Quadra 950,  and confirmed in  MATLAB 6.5  on a  Wintel PC;  but the same program 
run in  MATLAB 5.2  on an  Apple Power Mac  and in  MATLAB 7.1  on that  Wintel PC  produced 
utterly inaccurate estimates of  ∆3F  for lack of extra-precisely accumulated matrix products.  This 
lack has been discussed in  http://www.cs.berkeley.edu/~wkahan/MxMulEps.pdf  and  
…/Mindless.pdf . 

945202– 862444 892315– 790042– 1000000 249247

1000000 678443– 1000000 514413 1000000– 44972

911012 1000000– 814980 1000000 1000000– 467316–

107073 676717 293322 985317– 70215 1000000

4119730 3817830– 4357270– 1318590

3817830– 3726930 3897830 590822–

4357270– 3897830 4712520 1862970–

1318590 590822– 1862970– 2531230

2961938– 4833954 2354176 3095486–

4833954 1880398 1864848– 214448–

2354176 1864848– 491600 1351436–

3095486– 214448– 1351436– 1942184

231.915425– 300.864252 11.992624 593.638098 102.423853– 407.711362

427.847825– 516.747158 22.895860 1019.553015 199.132283– 708.358292

208.207541 229.537071– 12.315385– 454.953451– 103.918353 320.402987–

173.534835 205.714729– 9.151738– 407.061221– 81.629918 282.693126–

1.257943– 224.569396 6.460172– 417.283503 63.964507 254.555622

229.720992– 534.988777 4.589035 1022.628296 31.856636– 671.600182

236.136074 326.106231– 11.906222– 637.618372– 98.586326 437.690460–

121.380572 232.240881– 3.709921– 448.040219– 31.309494 297.615466–


