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L east Squares Constrained by a Linear Equation

Given matrices F, g, C and d, weseek avector u to minimize ||F-u—g||2: (F-u—9)'-(Fu—g)
subject to the linear constraint C-u=d. By introducing avector v of Lagrange Multipliers we
find that the minimizing vector u= 0 must satisfy the linear equations

{F‘? C}H - {F‘Ec} . ie, CO=d and F(g-F0)=C'v. *)
cC O \ d
We shall show first that these equations have at least one solution U provided the constraint

Cu=d issatisfiable, second that any such solution does minimize ||F-u—g|[?, and third that

A~

the solution O isunique just when the columns of H are linearly independent even if the rows

of [C d] arenot. Fourth, we shall explore away to compute U without solving equations (*). C
will be assumed to have rather fewer rows than columns, and F to have more rows than columns.

Existence
To show that asolution U existswe shall invoke one of Fredholm's criteriaz A-x =b hasat least
one solution x if andonly if w'-b=0 whenever w'-A =0' . To thisend we suppose that

C O
last equation is substituted into the second-last we find that w'-F-F-w =0, whencefollowsin

[w' y']{F'D: Cﬂ =[0' 0]. Thismeansthat w'-F-F+y'-C=0" and w'-C' =0' . Whenthe

turnthat w'-F =o' andthen y'-C=0'. Consequently [w' y']{F'd[‘-ﬂ =w'-F-g+y-d=0

provided the constraint d = C-u issatisfiable. Then equations (*) have at least one solution (.

Minimization

Any solution @ of (*) makes ||F-G—g||* no bigger than |[F-u—g|[? for any u that satisfies the
constraint C-u=d. Hereiswhy:

IIF-u—glf® — IF-0 — lI* = (F-(u-0) + F-6-0)"(F-(u-0) + F-i-g) — (F-6-0)'(F-0-g)
= IF-(u-0)|I” + 2(u-0)" F (F--g)

= [IF-(u-0)|I? — 2(u-0)' -C'-v from (*)
= [IF-(u-0)|I° because Cu=C:d=d
>0.
Uniqueness
If more than one solution G exists their nonzero difference z must satisfy {F'C[F (CJ H =0
S

whichmeans F-Fz+ C'-s=0 and C.z=0. Asbefore, thisimplies z-F-F-z=0, whence
follows F-z=0 too, whichisimpossibleif the columns of H are linearly independent, in

which case solution U isdetermined uniquely by the linear equations (*) displayed above.
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The Solution G asaLimit
When unique, thissolution O turnsout to bethelimit, as p - o, of thesolution u of the

unconstrained |east-squares problem that chooses u to minimize || {“ﬂ (L - {“ Ed} ||2 . This
g

problem should be solved numerically by QR factorization after some suitably huge p has been
chosen. However, to provethat u - 0 as 4 - o, we shall usethe numerically dubious closed-

formformula u = (u%-C'-C + F-F)1(u2-C'-d + F'.g) obtained from thisleast-squares problem’s
Normal Equations. By substitution from (*) wefind that u=10+ ( uz-C' C+FF)1lCwv.
Since v isdetermined by (*), though not uniquely if therowsof C arelinearly dependent, our

objective will be attained when we show that ||( uZ-C'-C+ F-F)L.C| - 0 as u - ». Thisis
barely unobvious enough to be worth proving thrice.

The first and shortest proof uses a Congruence to diagonalize the two positive (semi-)definite
matrices C'-C=L>M-L' and F-F=L1W-.L'? simultaneously. Here L issomeinvertible
matrix; M and W are nonnegative diagonal matrices whose respective elements’ ratios my j/wj J-
are generalized eigenval ues determined by a determinantal equation det(w;;-C'-C —my;-F-F) =0

inwhich every my; +wj; >0 because the columns of E are linearly independent and therefore
H E =C-C+F-F=L1M +W)L must be positive definite. Consequently
I(u>C-C+FF)LCI? = |(u?C -C+FF)CC(p*C C+FF)|
= IL"M-(U>M +W)%L|| - 0 as pt — o
because every nonzero diagonal element m”/(pz-m” + WJ-]-)2 - 0. Soendsthefirst proof.

A second proof starts from any orthogonalization of H = QR inwhich R isinvertible and the
columns of Q provide an orthonormal basis (Q'-Q=1) for Range( E) . Thissubspaceis

separated by angles © from Range( H) in which the small identity matrix | and the diagonal
sguare matrix © each hasasmany rowsas C has, and 0<©@<T172.

These angles © were exposed in “Some New Bounds on Perturbations of Subspaces’ by C. Davisand W.M.
Kahan in pp. 863-9 of Bull. Amer. Math. Soc. 75 #4 (July 1969), and explained in their “The Rotation of
Eigenvectors by a Perturbation. 111" in pp. 1-46 of SAM J. Numer. Anal. 7 #1 (March 1970). C.C. Paigeand M. Wei
surveyed other applicationsin their “History and Generality of the CS Decomposition”, pp. 303-326in Linear
Algebra and Its Applications 108/109 (1994). This second proof is an application instigated by C.F. Van Loan in
“Generalizing the Singular VValue Decomposition”, pp. 76-83 of SSAM J. Numer Anal. 13 (1976).

cos(®) O

Aptly chosen orthogonal P = P = F;CP'O and U'=U"! turn Q into P-QU' = S‘”(()@) (I)
F

o o
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sn®) O .
and decompose C = Px[cos(©) O]'U-R and F=Pg:| o | -U-R. Into thefirst proof we
O o
and W := |$n® O | tofind asbefore that

now substitute L ;= U-R1, M := {0052(9) o
o) o)

I(w>C-C+FF)YLCIP = IL'M(*M +W)L|| -0 as { - o
becauise every nonzero diagonal element my/(u%my; +w;;)? = ('sec(8))/(u? + tan’(6)) )* - 0 at
arate determined by one of the angles 6; <12 . So endsthe second proof. However, what it
tellsusabout how fast u — O involves an obscure dependenceof L and © upon C and F. For

instance, replacing the constraint C-u=d by some equivalent constraint B™1.C = B™.d for an
invertible B aters u, L and © without altering G .

(0] |

Though more computational, thethird proof will help usassesshow fast u - G as g — o . Let
®:=1u% - 0+ as i —» . Then ||(p2-C'-C+F-F)LC|=e|(C-C+aF-F)LC|, soour
objective will be attained when we have shown that ||( C'-C + a&eF -F Y ™.C'|| stays bounded as

& - 0+ . Sincethe biggest-singular-value norm ||...|| isunitarily invariant, it isnot changed
after premultiplication and postmultiplication by orthogonal matrices that exhibit the singular

value decomposition of C as @; j inwhich V isasguare strictly positive diagonal matrix of

the nonzero singular valuesof C. Thesecondrow [O O] isempty whentherowsof C are
linearly independent. After the same postmultiplication, F partitionsinto [E, K] conformal with

the partition of the columns of @g j . Because the columns of H are linearly independent, so

V O
oo/ andthenof K, whose pseudo-inverseis KT= (K'-K)‘l-K' . Then
E K

are the columns of

-2 -2 ' JUoL
C'-C+aF F becomes |V'+&[EE ®[EK |, Approximately v -V O IEXY sits
®K'[E @K K «"EV? KK e

inverse because their product differs from an identity matrix by terms of order ae as & — O+.

«'Ev? 0
order & as & - 0+. Thisstays bounded, aswas asserted earlier. So ends the third proof.

Then (C'-C+aF-F)™.C' becomes approximately { v o ] to within terms of

Thuswe seewhy u—0=O(l/p?) as B — o whenever equation (*) determines G uniquely.

The third proof revealed something worth knowing about how the constant implicitin O(L/u?)
depends upon the matrices C and F through V, E and K. That constant can be huge only if

VY| and/or ||KT-E|| ishuge. Thiscan't happen unlesstherowsof C and/or the columns of E

are too nearly linearly dependent. In such cases the computation of u for ever increasing values
of p can appear to converge over awide range of big values p athough thetrue limit O isnot
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approached until p gets very much bigger. In such cases anumerically satisfactory choicefor p
can be difficult to ascertain. Here are examples:

Example1: C hasnearly linearly dependent rows.

00000
Let C:= {100}, d:= H F = 11000] and g :=[311999 . Now G=[001] butas p - o
ono 0 01100

theerror 0—u=1[o -2 1'/(1 + 2n%p?/3) - o at arate determined by aparameter n # 0 that tells
how near to linearly dependent therowsof C are. When n isvery tiny the computed vector
u=[o 2 0" for awiderangeof hugevalues | << 1/n . To prevent acceptance of this plausible u
inplaceof 0 we must know enough about n to choose p >>1/n . Exampleslikethisare
vexatious a so because a small change in data can alter the solution G drastically; for instance,
changing d dlightly from [0 o' to [0 n]" alters G from [0 0 1" to [0 1 v2]' and altersthe error
to 0—u=[o-1 v2/'/(1+2n2p?/3). Changing n to 0 makes (i=u=1[02 o' . Exampleslike
thiswill motivate remedial action against constraints [C d] with nearly linearly dependent rows
when their near-redundancy is an accident due to a mathematical mishap easily dispelled.

Example 2 H has nearly linearly dependent columns.

10010

Let C:= {1000}, d=H, F:=|010000 gnd g :=(g31n99). Now G=[001 1" butas
0100 0 00100
ooono

I - o theerror 0—u=[=< -3 0 &n]'/(1+p?) — 0 a arate determined by two parameters: One
is n # 0 that tells how near to linearly dependent the columnsof F are. Theother, &, exertsno
influence upon G but, when n isvery tiny, affectsthe computed vector u drastically unless

u2>>&/n . Thisishow p must be chosen to prevent acceptance of aplausible u inplaceof @,
and this choice dependsupon g aswell as C and F. Again, 0 can bealtered drastically by a
small changein the data; for instance, changing g dightlyto g :=[¢ 31 0 99] alters U to

[0 010" without changing theerror 0—u. Thiskind of hypersensitivity to perturbation can be
difficult to dispel by solely numerical means when it arises from a redundancy injected into the

least-squares problem at an early stage of its mathematical formulation. It happens often.
Misbehavior ostensibly similar to the foregoing two examples can occur when the first few
columnsof C aretoo nearly linearly dependent even though the rowsof C are not. This
misbehavior is caused by roundoff. Increasing 1 worsens the misbehavior. Hereis an example:

Example 3. Thefirst two columnsof C arelinearly dependent.

4 11100 .
Let C:=| 10 | d:==(3,F:=]|02-111 gndg :=[7-1812-15-9. Now 0= |_q1q|.
331 3 12120 3
10 3 773

Error (—u= [15100p2+29500 —48550p2-8500 —256125p2—300001'/(301203u4+61437Ou2+23700) -0

like 1/p? in the absence of roundoff, so any choice p > 2% = 6.7-10" should keep the error
0 —u below the uncertainty inherited when thedata C and F wererounded to 53 sig. bits.
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1111 ~ 23 .
LetC::hilJ, 13-11 ad g :=481216. Now G=|_ . This
- 11 1

d:= Ej F = : :

example was constructed by C.F.VanLoan. Itserror G—u= [36 0 36]'/(p2+4) - 0 like 36/p2

in the absence of roundoff, so any choice p > 227 = 1.34-108 should keep the error G—u
comparable with what we might expect to inherit from arithmetic rounded to 53 sig. bits.

For other treatments of the linearly constrained |east squares problem see Ch. 5.1 of Ake
Bjorck’s book Numerical Methods for Least Squares Problems (1996, S.I.A.M, Philadel phia),
and 817 and 822 of C.L.Lawson& R.J. Hanson's book Solving Least Squares Problems (1974,
Prentice-Hall, New Jersey).

CharlesVan Loan’s Example:

23
-1
6

4 ly half-precisi
114 . /4 computed to only half-precision

111 1
F= 131,9::2,C::{111} d::m,ﬂz
1-11 3
1 4

when p := 1/Veps without full column pivoting. He had used the Generalized SVD viathe CS-
decomposition Q'-F =[sin(angles) ondiag]-Z, P-C =[cos(angles) ondiag]-Z, and

Z'-Z = (F-F+ C'-C) toanayzethealgorithm’'sbehavior, which resembles Gaussian Elimination
if u isbigenough.

If therowsof C aswell asthe columns of E are linearly independent, then the constraint

Cu=d issatisfiablefor every d by u=C'-(C-C')*d among other things. Also the equations

(*) have aunique solution H . Inthis case the equations (*) are equivalent to equations
\'

OCF| |0 o R R
cool-lv :H , hamely C.0=d, r=Fl-g, and Fr+C'-wv=0, E;E
FO-l |r g

whose matrix is nonsingular. Hereisaproof that it is nonsingular:
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If Cu=o, Fu-r=oad Fr+Cwv=o0, then O=u-Fr+u-Cv=u-F-Fu+0, whencefollows Fu=0 and

therefore u= 0 because the columns of E arelinearly independent. Also r =0 and therefore C'-v =0, whence

v = 0 becausetherowsof C arelinearly independent. In other words, the matrix of the equations gg hasonly o in

its nullspace so it must be nonsingular, as claimed.

The numerically dubious closed-form formula u = ( pz-C' C+FF )‘1-(u2-C' -«d+ F-g) turnsout
to be equivalent (in the absence of roundoff) to equations

o ¢ F |, 5
c amn? o H = d] , namely C-u—w/p?=d, s=Fu-g, and F-s+Cw=o0, e
F o - S 9

whosematrix (also nonsingular) differsfrom the matrix of equations 55 above by the term —/u?

inthemiddle. If thistermistiny enough, negligible compared with the smallest singular value of
the latter matrix, thetwo systems of linear equations will have negligibly different solutions u
and (. Though that smallest singular value is positive because of our linear independence
hypotheses, its value can change when the constraint C-u=d isreplaced by some equivalent

constraint B™-C =B1.d that leaves G unaltered. What does this approach to our problem
imply?

Generating Test Data:
Given ostensibly “simple” F,C and 0, weset d:=C-0 and g:=F-G-r wherein r need only

be a not-too-complicated solution of [C' F]- M =0 for any arbitrary (perhapscomplicated) v .
r

By reducing [C' F] toitsrow-reduced echelon form, we can choose simple valuesfor all but
thefirst few elements of r almost arbitrarily subject to the constraint that those first few elements
now determined by the foregoing equation be not too complicated. Whether thisis feasible will
depend upon how thefirst few rows of F correlatewith C. Try MATLAB’s null([C' F1,r’).
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How Roundoff Can Ruin the Computation of O

Why wastheformula u=(p%C-C+F-F)L(u2C-d+F.g) caled “numerically dubious’?
It suffersintolerably from roundoff because of two phenomena. One occursas P getsvery big:
Digitsof F'-F get rounded away when it isadded to uz-C' -C . After p becomesbig enough, the
computed value of p2-C'-C + F'-F becomes just the computed value of p2-C'-C, asif F were

O . The same phenomenon can lose F'-g from the sum p-C'-d + F'-g . After these losses the
computation of u, if not aborted, becomes an accident of roundoff divorced from the data F
and g.

A second more subtle phenomenon can afflict the computation of F-F and F'-g in both the
numerically dubious formulafor u and equation (*) that defines . This second phenomenon
can arise when the columns of F are too nearly linearly dependent even though the columns of

H are amply independent enough to determine 0 sharply.

Backward Error in F'-F
Suppose A :=F'-F rounded; actually A =F-F+ AA . How small aperturbation AF can satisfy
A = (F+aF)'-(F+AF) exactly? Extra-precise arithmetic may be needed to compute AA ; usualy

weexpect [[pA]l = a||A]l= ae||F||2 wherein ge<< 1 isatiny roundoff threshold (like MATLAB’S

eps) . Butif F hassingular values so disparate that condition number k(F) = ||F||-||FT|| >>1,
which occurs often, the smallest perturbation AF compatible with AA can have a surprisingly
big norm ||aF|| = ae||F||-k(F) >>ae||F|| though ||aF|| can almost never exceed Vee||F|| .

A simpleexample:

Choose k >>1 whilekeeping 1+ak?>0, andthenset F:= {gﬂ and AA = iaeKz-Bﬂ S0

that A :=F -F+aA = { ® 0 | = (F+aF) (F+aF) for oF := +e Bﬂ K(1+V(1teekd)).

0 1+aek

No smaller AF iscompatiblewith AA . Now |pA|[/||A]| = e, the roundoff threshold, but
IaFI/||IF|| = sex/( 1 + V(1 + sek?) ) >>ae. Still, ||laF|l/||F|| < vae for all condition numbers k that
satisfy the assumed constraint 1+ aek?=0.

This simple example foreshadows what can happen in general: The roundoff term AA can induce

aperturbation AF that obscures almost as many as the last half of the significant digits stored in
F . Why nothing worse can ne expected to happen requires alengthy explanation:

Prof. W. Kahan for Math. 221 and 128B Page 7/10



File: LcLstSgs version dated January 29, 2006 5:49 am

Roundoff’s contribution AA must be small enough that F -F + AA = A = (F+AF)'-(F+AF) istill
positive (semi-)definiteif AF exists. Thisobligesusto assumethat F haslinearly independent

columns, andthat 1> aeK(F)2 =|(F-F)YIIaA| tobesurethat AF exists. Evenso, AF cannot
be determined uniquely by the previous sentence’'s equation alone since any one solution AF can

be turned into another, & -(F+AF) —F, by any orthogonal @' = @™. We can try to determine
AF uniquely by restricting it somehow, say by trying to minimize ||aF|| while satisfying

F -AF + AF -F + AF -AF = AA . Ouir first estimate AF will neglect the second-order term AF' -AF .
Our second estimate A,F will take this term into account but its |[aF|| will be somewhat bigger
than minimal. Later athird estimate A;F will minimize not |[aF|| but the Frobenius norm

llaF|| == V(Trace(aF' -AF)) . (Itis MATLAB's norm(aF, ‘fro’) .)

The singular-value decomposition of F = Q- m P hasorthogonal Q' =Q1, P =P anda
positive diagonal matrix V of singular values so ordered that thefirst v, = ||F|| isthe biggest and
thelast v, = V||FT|| isthe smallest. Let aH := P-aA-P=aH' and m = Q'-AF-P noting that

AV need not be diagonal. Substituting these into the equation AF must satisfy turnsit into an
equation V-AV +AV'-V +aV'-AV + AK'-AK =AH that AV and AK must satisfy. Note that

[[aH|| = ||AA||:ae«||F||2 and ||aF|| = ”E\Iﬂ || . A first estimate A;F that ignores second-order terms
must set AK := O tominimize [|aF|| after deducing that AVj; = AV, zAHij/(vi +vj) . Thenafirst

estimateis AF = Q-m P . Its [|AF can get roughly asbigas Lael[FIR{IFT = LeelIFll«(F),
enormously bigger than ee||F|, incase AV, = 2aH /v, = %||AH||-||FT|| , Which case cannot be
ruled out. Though thisfirst-order estimate losesitsvalidity when |[a,F|| getstoo big for its square
to beignored, it still allows A;F to get big enough to obscure ailmost half the significant digits
stored in F when k(F) = 1/Vae. Then, because A;F need not correlate with the rounding errors

in F-g, roundoff can corrupt results computed from A amost as badly asif the last half of the
significant digits stored inthedata F and g had been disregarded.

Our second estimate A,F isnot much bigger than the first-order estimate but takes second-order

terms fully into account. Like the first-order estimate, our second AF := Q-Fﬂ ‘P wherein

AV =aV', butnow AV :=V(V2+aH) =V . Here V... isthe positive (semi)definite square root
of apositive (semi)definite symmetric matrix. Now (F+AF)'-(F+AF) =A = F-F + AA exactly.
To gauge how big this second ||a,F|| cannot get we need the following inequality:

If M and W are symmetric positive definite, their positive definite squarerootsdiffer by at most
IVM —vW|| < IM-W[/( VM7 + VW) . To prove thisinequality use the formula
VM = (2/m) ™ (R%1 + M)™1-M-dR . Theinequality becomes equality when matrices are 1-by-1.
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Applying thisinequality to A,F and assuming [|aA|| < ae||F|)% < Y|IFT|I? we find
llazFll = llav| < laHI/( VII(V2 + aH) ™ + YV )
< [lAHI( UV (UQIFTIE = llaHID) + VIFTN)
= A (V(UIFTIE - laAl) + VIFT)  because [laH]| = [laA|
<k(F)-|Fl(1+V(1-2k(F)?)),
less than twice as big as the first-order estimate AF and yet valid no matter how big it gets. It
cannot exceed Vee||F|| . But this second estimate A,F need not minimize |[aF|| though the two

estimates AF and A,F become indistinguishable when their squares are negligible. Whatever
AF isminimal, its |]aF|| < |[aoF]| . soits [[a,F|| < Vee||F|| too.

A third estimate AzF will minimize ||AF||f2. Recourseto Lagrange Multipliers impliesthat a
minimizing AF is AF = F-AX for some symmetric array AX =AX' derived from the Lagrange
multipliers and satisfying (I+aX)-F-F-(I+aX) =A . Let Y :=VF -F bethe positive definite
squareroot so that [|aF|| = [[Y-aX|| and [|aF]ls = [IY aX|l ; then aX := Y LY-AY —F F).y
must satisfy the previous sentence’s equation for every matrix square root VY-A-Y . We choose
the positive (semi)definite square root because it is easily proved to minimize [[aF||¢ = [[Y-aX]|¢ .
Thus can the smallest A;F = F-AX be computed, though only with extravagantly extra-precise

arithmetic. Arithmetic less extravagantly extra-precise suffices to compute it via the coordinate
system provided by the aforementioned singular value decomposition of F: Starting from

F=QVP and aAH =P -2AP set aAF:= Q(V(V(V2+aH)V)-VI)Vvip .

How big can thisthird estimate AzF not get? Recalling that [|aH|| = |[aA| < ae||F||2, we find
llagFll? = [ V(V(VZ+aH)V )V -V || = Trace( 2VZ + aH — 2V(V-(VZ + aH)-V ) )
< Trace( 2V? + ae||F||>1 = 2V(V (V2 —z||F||?1):V ) ) because V... ismonotonic
= n-ae||F||? + 2 Trace( V2 —V(V* —2||F|[>V?) ) wherein n :=# columns(F)
= nge||F|[* + 2ee|IFl|* Trace( (1 + V(1 —eellFI*V=2) ) ™)
<na|FP@+2/(1+V1-ak(F)?)).
Though this bound seems grossly pessimistic, it does keep |[asF|| f/ [|IF]| below something of the
order of Vee, so AgF can affect at most the last half of the significant digits stored in F+AgF .

If roundoff isso grossthat ae> 1/K(F)2 , the perturbations A,F and A;F may fail to exist or, less
likely, may exceed substantially the bounds derived for them above. These boundsare unlikely to
be approached closely in any event unless rounding errors conspire or are contrived to that end.

Example:
Suppose arithmetic carries six sig. dec., so a=0.000005, and consider the example
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—945202 862444 892315 790042 1000000 249247

F' -= | 1000000 678443 1000000 514413 -1000000 44972 | ”F” =~ 3571141.5 and the condition
911012 -1000000 814980 1000000 —1000000 —467316
107073 676717 293322 985317 70215 1000000

number K(F) := ||F|lIFT|| = 17286.27 rather exceeds 1/vae= 447.2 . Rounded to six sig. dec.,

4119730 —3817830 —4357270 1318590 —2961938 4833954 2354176 —3095486
A =F .F+AA =|—3817830 3726930 3897830 -590822 _106; AA = | 4833954 1830398 -1864848 214448 |

—4357270 3897830 4712520 —1862970 2354176 —1864848 491600 -1351436

1318590 -590822 -1862970 2531230 —3095486 —214448 -1351436 1942184

Here ||aA])/|JA|| = 0.00000059 < /8. However, computed perturbations

—231.915425 300.864252 11.992624 593.638098 —102.423853 407.711362
—427.847825 516.747158 22.895860 1019.553015 -199.132283 708.358292 | gn(
208.207541 —229.537071 —12.315385 —454.953451 103.918353 —-320.402987
| 173.534835 —-205.714729 -9.151738 -407.061221 81.629918 -282.693126

u

AF

—1.257943 224569396 —6.460172 417.283503 63.964507 254.555622
A3F' ~ |—229.720992 534.988777 4589035 1022.628296 —31.856636 671.600182
236.136074 —326.106231 —11.906222 —637.618372 98.586326 —437.690460
| 121.380572 —232.240881 —3.709921 —448.040219 31.309494 -297.615466)

have |lagFl/|IFll; = 0.00046 < [|agF/[IFl| = 0.00050 < [|a,FI}||F|| = 0.00052,, none of them much

smaller than V(JlpA[/JJA]) = 0.00077 , so both F+a,F and F+agF differ from F inalmost half
of itslast six sig. dec. Thusthe boundsfor ||aF|| derived above turn out to be approachable.

The computations of A,F and Az;F above were carried out in MATLAB 5.2 onan Apple
Macintosh Quadra 950, and confirmed in MATLAB 6.5 on a Wintel PC; but the same program
runin MATLAB 5.2 onan Apple Power Mac andin MATLAB 7.1 onthat Wintel PC produced
utterly inaccurate estimates of AzF for lack of extra-precisely accumulated matrix products. This
lack has been discussed in http://www.cs.berkel ey.edu/~wkahan/MxMul Eps.pdf and
...IMindless.pdf .
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