Handheld Calculator Evaluates Integrals

The HP-34C is the first handheld calculator to have a key
that performs numerical integration almost automatically.
It may change your attitude towards what used to be

regarded as a dreary tedious task.

by William M. Kahan

of about two thousand books and learned papers,

4 with a dozen or so “new” methods published every

year. And yet the task in question has a simple geometrical

interpretation seen in Fig. 1: given an expression f(u) and
lower and upper limits y and x respectively, the value

E UMERICAL INTEGRATION has been the subject

I= f; f(u) du

represents the area under the graph of f(u) for u between y
and x. Why so much fuss?

As I write this an electrical engineering colleague, Pro-
fessor J. R. Woodyard, enters my office and asks to have

I RV U
Il_jo( lnu]du

u—1

evaluated on my HP-34C Calculator (Fig. 2). Let’s do it.

Step 1. Key into the calculator under, say, label A a pro-
gram that accepts a value u in the display (X regis-
ter) and displays instead the computed value of the
integrand

Vulu—1) — 1/(ln u)

Fig. 3 shows an HP-34C program to do this.

Step 2. Restore the calculator to RUN mode and set the dis-
play to, say, FIX 5to display five decimal digits after
the point, which are as many digits of the integrand
as my client says he cares to see. (More about this
later.)

Step 3. Key in the lower and upper limits of integration
thus, 0 ENTER' 1, thereby putting 0 into the Y reg-
ister and 1 into X.

Step 4. Pressf;‘ A, wait 25 seconds until the display shows
0.03662, then press xsy to see 0.00001. We
have just calculated

I, = 0.03662 = 0.00001.

That was easy—too easy. Woodyard smiles as if he knew
something I don’t know. Could the calculator be wrong?
How does the calculator know the error lies within +0.000017

Many other questions come to mind:

Why is numerical integration impossible in general?

Why do we persist in trying to do it anyway?

How do we do it? How well do we do it?

- How does the f; key compare with other integration
schemes?

s What can go wrong and how do we avoid it?
s What else have we learned?
These questions and others are addressed in the following

pages.

Tolerance and Uncertainty

Integrals can almost never be calculated precisely. How
much error has to be tolerated? The | ;‘ key answers this
question in a surprisingly convenient way. Rather than be
told how accurately I = f;,‘ f(u)du should be calculated, the
HP-34C asks to be told how many figures of f(u) matter. In
effect, the user is asked to specify the width of a ribbon
drawn around the graph of f(u), and to accept in place of
I an estimate of the area under some unspecified graph lying
entirely within that ribbon. Of course, this estimate could
vary by as much as the area of the ribbon, so the calculator
estimates the area of the ribbon too. Then the user may
conclude from Fig. 4 that

I = (area under a graph drawn in the ribbon)
* (Y% area of the ribbon)

The calculator puts the first area estimate in its X register
and the second, the uncertainty, in the Y register.

Forexample, f(u) might represent a physical effect whose
magnitude can be determined only to within, say, +0.005.
Then the value calculated as f(u) is really f(u) = Af(u) with
an uncertainty Af(u) = 0.005. Consequently FIX 2, which
tells the calculator to display no more than two decimal
digits after the point, is used to tell the calculator that
decimal digits beyond the second cannot matter. Therefore
the calculator need not waste time estimating I + Al =
f;,‘ (f(u) = Af(u))du more accurately than to within an
uncertainty AI = |[7 Af(u)du|. This uncertainty is esti-
mated together with I = Al, thereby giving the calculator’s
user a fair idea of the range of values within which I
must lie.

Area | = f; f(u) du

T
u=y u=Xx

Fig. 1. An integral interpreted as an area.
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Fig. 2. HP-34C Calculator has keys to solve any equation and
to compute integrals.

The uncertainty Af(u) is specified by the user via the dis-
play setting. For instance, SCl 5 displays six significant
decimal digits, implying that the seventh doesn't matter.
The HP-34C allows the user’s f-program to change the dis-
play setting, thereby providing for uncertainties Af(u)
that vary with u in diverse ways. But users usually leave
the display set to SCI 4 or FIX 4 without much further
thought.

By asking the user to specify Af(u) instead of Al the
HP-34C helps avoid a common mistake—wishful think-
ing. Other integration procedures, which conventionally
expect the user to specify how tiny Al should be, blithely
produce estimates of I purporting to be as accurate as the
user wishes even when the error Af(u) is far too big to justify
such claims to accuracy. The HP-34C does not prevent us
from declaring that f(u) is far more accurate that it really is,
but our attention is directed to the right question and not dis-
tracted by questions we cannot answer. Whether we spec-
ify Af after a careful error analysis or just offer a guess, we
get estimates I =Al that we can interpret more intelligently
than if we got only I with no idea of its accuracy or inaccuracy.

A Survey of Integration Schemes
Students are taught the fundamental theorem of calculus:

I= fy f(u)du=F(x)~F(y) provided % F(u) = f(u)

This means that one could calculate I if one could dis-
cover somehow an expression F(u) whose derivative is
the given expression f(u). Students are taught integration
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as a process, applied to expressions, that starts with f and
ends with F. But in professional practice that process
hardly ever succeeds. A compact expression F(u) is al-
most always difficult or impossible to construct from any
given f(u). For instance, neither

* exp(—u¥2)du/V2r nor [ exp(—u + x In u)du
. 0

possesses a closed form, that is, an expression involving only
finitely many elementary operations (+, —, X, +, In, exp, tan,
arctan, ...) upon the variable x. Nevertheless, both integrals
can be approximated arbitrarily accurately by aptly chosen
formulas. So often do statisticians and engineers need
values of those integrals that formulas for them, accurate
to ten significant decimal digits, can now be calculated in
a few seconds by pressing a key on certain handheld cal-
culators. (Press Q on the HP-32E to get the first integral,
the cumulative normal distribution; press x! on the HP-34C
to get the second integral, the gamma function I'(1+x),
whether x be an integer or not.)

Almost every rare integrand f(u) whose indefinite in-
tegral F(x fx u)du + c is expressible in a compact or
closed form can be recognized by a computer program that
accepts the string of characters that defines f and spews out
another string that represents F. (Such a program is part of
the MACSYMA system, developed at MIT, that runs on a
few large computers—two million bytes of memory—at
several universities and research labs.) Perhaps the terms
“compact’’ and “‘closed form” should not be attached to the
expression F(x), since usually, except for problems as-
signed to students by considerate teachers, the integral

Begin with u in the X register

Save u in the stack

. Vu

Recall u

. Vulu-1)

Recall u again

.. Hin(u)

Display Vu/(u—1) - 1/inu

Fig. 3. This program makes the HP-34C calculate the inte-
grand Vul(u—1) - 1lin u when the argument u is in the X
register and key Ais pressed. Labels B,0, 1,2, or 3would have
served as well as A.
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Fig.4. The graphofan uncertainintegrand f{u) xAf(u) canrun
anywhere in the ribbon bounded by the dashed lines. The area
under such a graph, | £Al, is uncertain by +Al, which is one-
half the area of the ribbon. The HP-34C displays its estimate of
I£Alinits X register and holds an estimate of Alin its Y register.

F(x) far exceeds the integrand f(u) in length and complex-
ity. Shown in Fig. 5 are two compact forms and one closed
form for F(x) when f(u)=1/(1+u5*). The extent to which F(x)
is here more complicated than f(u) is atypically modest out
of consideration for the typesetter. The formulas in Fig. 5
will remind many readers of hours spent on calculus prob-
lems, but they do not provide economical ways to calculate

F(x) for any but very big or very tiny values of x. When I use
the HP-34C's fy key to calculate F(1 fo duw/(1+u®) =
0.989367 + 0.000004 the answer appears in 200 seconds
including 20 seconds taken to enter the f-program plus 180
seconds for a result (in SCI 5). Calculating F(1) from any
formula in Fig. 5 takes at least about ten times longer, not
including the time taken to deduce the formula. Engineers
and scientists have long been aware of the shortcomings of
integration in closed form and have turned to other
methods.

Perhaps the crudest way to evaluate fy u)du is to plot
the graph of f(u), like Fig. 1, on uniformly squared paper
and then count the squares that lie inside the desired
area. This method gives numerical integration its other
name: numerical quadrature. Another way, suitable for
chemists, is to plot the graph on paper of uniform density,
cut out the area in question, and weigh it. Engineers used
to measure plotted areas by means of integrating engines
called planimeters. These range from inexpensive hatchet
planimeters of low accuracy to Swiss-made museum
pieces costing hundreds of dollars and capable of three
significant decimals. (For more details see reference 1).
Nowadays we reckon that the computer will drive
the graph plotter so it might as well integrate too.

Today’s numerical integration techniques are best ex-
plained in terms of averages like

A= f f(u)du/(x~y)
which is called “the uniformly weighted average of f{u)
over the interval between x and y.”” Anotherkind of average,

A=

VI

wif(u;) where w;>0 and zwjzl.

1 i=1

1l

s

is a finite weighted average of n samples f(u;), f(uz), ..., f(uy).

Provided the sample arguments u4, u,, ..., Uy, called nodes,
all lie between x and y the sample average A will approxi-
mate, perhaps poorly, the desired average A, and hence
provide [ = (x—y)A as an approximation to I = (x—y)A.
Statisticians might be tempted to sprinkle the nodes u; ran-
domly between x and y—that is what Monte Carlo methods
do. But randomness is a poor substitute for skill because
the error A—A tends to diminish like 1/V/n as the number
n of random samples is increased, whereas uniformly
spaced and weighted samples provide an error that dimin-
ishes like 1/n2. Other more artful methods do even better.

Different numerical integration methods differ princi-
pally in the ways they choose their weights w; and nodes y;,
but almost all have the following characteristics in com-
mon. Each average A is associated with a partition of the
range of integration into panels as shown in Fig. 6. Each
panel contains one node u; whose respective weight is

w; = (width of panel j)/((width of range of integration).
The formula given above for A amounts to approximating
the area in each panel under the graph of f(u) by the area of
a rectangle as wide as the panel and as high as the sample
f(u;). The simplest method is the midpoint rule, whose
nodes all lie in the middles of panels all of the same width.
Other methods, like the trapezoidal rule and Simpson’s
rule, vary the panel widths (weights) and nodes in ways
designed to exploit various presumed properties of the
integrand f(u) for higher accuracy. Which method is best?
If this question had a simple answer there would not be so
many methods nor would we need texts like “Methods of
Numerical Integration’ by P.]. Davis and P. Rabinowitz,?
which contains 16 FORTRAN programs and three bib-
liographies with well over 1000 citations.

For example, consider Gaussian quadrature. This method
is widely regarded as “best’” in the sense that it very often
requires fewer samples than most other methods to achieve
an average A that approximates the desired A to within
some preassigned tolerance. But the weights and nodes of
Gaussian quadrature take quite a while to calculate. Pro-
grams to do so, and theresulting tables of weights and nodes
for various sample counts n, have been published.? Had
we chosen Gaussian quadrature for the f; key we would

x

F(x) Efo f(uydu where f(u)=1/(1 +u®.
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Fig. 5. Formal integration transforms many a simple expres-
sion f(u} into messy formulas F(x} of limited numerical utility.
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Fig. 6. The integral, regarded as an area, is here divided into
four panels each of whose areas is approximated by the area
of arectangle as wide as the panel and as high as a sample.

have had to store at least as many nodes and weights as we
could expect to need for difficult integrals, amounting to
at least several hundred 13-digit numbers, in read-only
memory. But that would have left no space in the HP-34C
for anything else, so a different method had to be found.

The f; key could not use a method that generates just
one average A because that gives no indication of how
accurately it approximates A. Instead we looked only at
methods that sample repeatedly and with increasing
sample counts n; < n, < nj < ... to produce a sequence of
increasingly accurate averages A;, Aj. Aj, ... . Provided
that sequence converges to A so fast that each |Ay, — A|
is considerably smaller than its predecessor, the error
|A —A| can be approximated accurately enough by
|Ax—Ag.1], and the last average Ay, can be accepted in
lieu of A as soon as |Ax—Ay 4] is tolerably small.

How small is ‘‘tolerably small’’? That depends upon the
area of the ribbon discussed above under “Tolerance and
Uncertainty.” Since the integral I = f;,‘ f(u)du inherits an
uncertainty Al = | f;,‘ Af(u)du| from the uncertainty Af(u)
in the integrand, so does A = I/(x—y) inherit an uncertainty
AA = All|x—y|, which may be approximated by

n
AA = > wiAf(u)

i=1
in the same way as A is approximated by A. Indeed, A and
AA can be computed together since they use identical
weights and nodes. And so the sequence A;, Ay, Az, ... is
accompanied by a sequence of respective uncertainty esti-
mates AA,, AA,, AAj, ... . Now “‘tolerably small” can be
defined to mean ‘“‘rather smaller than AA,,;."”

The foregoing argument provides an excuse for accept-
ing Ay, in lieu of A whenever two consecutive estimates
Ay and Ay, agree to within AAy,;, but it provides no
defense against the possibility that convergence is not so
fast, in which case Ay and Ay, ; might agree by accident
and yet be both quite different from A. The f; key waits for
three consecutive estimates Ay, Ag., and Ay, to agree
within AAy.,. Only the most conservative integration
schemes wait that long. While this conservatism strongly
attenuates the risk of accidental premature acceptance of
an estimate, the risk that three consecutive estimates might
agree within the tolerance and yet be quite wrong cannot
be eliminated. Later, under ‘“‘How to Deceive Every Nu-
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merical Integration Procedure,” some such risk will be
proved unavoidable, but the risk now is so small that
further attenuation is not worth its cost.

The combination of ignorance with conservatism is
surprisingly costly. Had we known in advance that Ay
would be accurate enough we would have calculated none
of the other averages. Instead, waiting for three consecu-
tive averages to agree could easily cost some methods al-
most 6.25 times as many samples as if only Ay had to be
calculated, and more than that if the sample counts ny,
Ny, N, ... are not chosen optimally. For the f; key we chose
ni = 2" —1 and we chose a method whose successive aver-
ages each share almost half of the previous average's
samples, thereby preventing the cost of ignorance from
much exceeding a factor of 4.

Memory limitations precluded the use of another family
of methods known as adaptive quadrature. These methods
attempt to distribute nodes more densely where the inte-
grand f(u) appears to fluctuate rapidly, less densely else-
where where f(u) appears to be nearly constant or relatively
negligible. They succeed often enough that the best
general-purpose integrators on large computers are adap-
tive programs like Carl de Boor's CADRE; this and others
are described in reference 2. Alas, adaptive programs con-
sume rather more memory for scratch space than the
twenty registers available in the HP-34C.

What Method Underlies the [y Key?

The HP-34C uses a Romberg method; for details consult
reference 2. Several refinements were found necessary. In-
stead of uniformly spaced nodes, which can induce a kind
of resonance or aliasing that produces misleading results
when the integrand is periodic, the f; key’'s nodes are
spaced nonuniformly. Their spacing can be explained by
substituting, say,

into

1 1
- - 3,-1,3).3 1.2
I= J:lf(u)du—f_lf(zv 3 ) 2(1 v’)dv

and distributing nodes uniformly in the second integral.
Besides suppressing resonance, the substitution confers
two more benefits. One is that no sample need be drawn
from either end of the interval of integration, except when
the interval is so narrow that no other possibilities are
available, and consequently an integral like

3 .
f sinu du
0 u

won’t hang up on division by zero at an endpoint. Second,
I = f;,‘ f{u)du can be calculated efficiently when
ffu) = glu)Vix—ul or g(u)V(x—u){u—y) where g(u) is
everywhere a smooth function, without any of the expedients
that would otherwise be required to cope with the infinite
values taken by the derivative f'(u) at u = x or u = y. Such
integrals are encountered often during calculations of areas
enclosed by smooth closed curves. For example, the area of
a circle of radius 1 is




JE VuE—u)du = 3.14159 = 8.8x10°°

which consumes only 60 seconds when evaluated in SCI 5
and only 110 seconds to get 3.141592654*1.4x107°
in SCI 9.

Another refinement is the use of extended precision,
13 significant decimal digits, to accumulate the sums that
define Ay, thereby allowing thousands of samples to be
accumulated, if necessary, without losing to roundoff any
more information than is lost within the user’s own f-pro-
gram. The last example’s 10 significant decimal digits of
m could not have been achieved without such a refinement.

How Does the [y Key Compare with Other Integrators?

What most distinguishes the HP-34C’s f; key from all
other schemes is its ease of use. No step-size parameters, no
plethora of error tolerances, no warning indicators that
“can usually be ignored.”” Only the minimum informa-
tion needed to specify [ (f(u)+Af(u))du has to be supplied.
And because the [y key is effective over so wide a range of
integrals it ranks among the most reliable procedures avail-
able anywhere. Usually it is far faster than simpler proce-
dures like the trapezoidal rule or Simpson’s rule com-
monly used previously on calculators. For integrands de-
fined by programs that fit comfortably into a mid-sized
handheld calculator that can hold at most 210 program
steps, the f; key is comparable in speed (count the number
of samples) with the integrators available on large com-
puters. For much more complicated integrands the best
adaptive integrators on large computers are appreciably
faster.

One of the HP-34C’s most important components is its

Evaluation in RUN Mode

Integrand in PRGM Mode

..Saveu

..forv

..save v, getu

Wait for answer |
to be displayed

Owner's Handbook. It is for most owners the first guide to
the foothills of an awesome range of new possibilities. Two
chapters are devoted to [y. The first is introductory, and
allows the user to evaluate simple integrals effortlessly
and confidently. The second chapter is a longer explana-
tion of the power and the pitfalls, concerned mainly with
numerical integration generally rather than with the
HP-34C in particular. This chapter had to be included be-
cause its explanations and practical advice are not yet to be
found in any text likely to be consulted by an owner, nor
are they supplied by the instructions that accompany other
integrators on other computers or calculators. This second
chapter is part of the educational burden that must be
borne by innovators and pioneers. The Owner’s Handbook
provides no formulas for the nodes and weights used by
the HP-34C because they are not needed to understand
how the [y key works; instead they can be deduced from
information in this article.

Every numerical integrator like [y, which executes a
user-supplied program to get the integrand's value f(u),
imposes constraints upon that program. Some constraints,
like requiring f to have a smooth graph on the interval of
integration, are practically unavoidable. Others are nui-
sances like
» Begin the f-program with a special label, say A’.
= Do not use certain memory registers, say #0 - #5.

» Do not use certain operations, say = and CLR.

The f; key is encumbered with no such nuisances. The
f-program may begin with any of several labels, so several
different integrals can be calculated during one long com-
putation. The f-program may use memory registers freely
and may use any operation key except f; itself. One of

Equation in PRGM Mode

. 1+uve*

Fig. 71 A program to evaluate
I = [o udutv(u) where v = wu)

.. v—u+in(1 +uve" L5
vourin(l +ure’) satisfies v—u+In (1 +uve¥)=0.
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those keys is the HP-34C’s powerful SOLVE key.* Conse-
quently this calculator is currently the only one that can
evaluate conveniently integrals of implicit functions.

For example, let v = y(u) be the root of the equation

v —u + In(1 + uve®) = 0.
Then
J, u dum(u) = 1.81300 * 0.000005

results from a program rather shorter than on any previous
calculator; it is exhibited in Fig. 7.

Furthermore, f; may be invoked, like any other function,
from within a program, thereby permitting the HP-34C to
SOLVE equations involving integrals. For example,
solving

f; cos (x sin 6)dg = 0

for x = 2.405... takes a short program contained in the
Owner’s Handbook, and exhibits the first zero of the Bessel
function Jy(x).

How to Deceive Every Numerical Integration Procedure

Such a procedure must be a computer program—call it
P—that accepts as data two numerical values x and y and
a program that calculates f(u) for any given value u, and
from that data P must estimate I = f;f f(u) du. The integra-
tion procedure P is not allowed to read and understand
the f-program but merely to execute it finitely often,
as often as P likes, with any arguments u that P chooses.
What follows is a scheme to deceive P.

First ask P to estimate I for any two different values x and
y and for f{u)=0. Record the distinct arguments u; , uz, ..., Uy
at which P evaluates f(u). Presumably when P finds that
f(u,) = fluy) = ... = fluy) = 0 it will decide thatI = 0 and
say so. Next give P a new task with the same limits x and y
as before but with a different integrand

f(u) = ((u—u1)*(u—uz)-...-(u—uq))%

Once again P will calculate f(u), f(u,), ..., and finding no
difference between the new f and the old, P will repeat
exactly what it did before. But the new integral I is quite
different from the old, so P must be deceived.

The HP-34C’s [y key can be hoodwinked that way. Try
to evaluateffllzzg f{u)du using first f{u) = 0 programmed
in a way that pauses (use the PSE key) to display its argu-
ment u. The calculator will display each sample argument
it uses, namely 0, =88, +47 and =117. Next program

f(u) = (u(u—88)(u+88)(u—47)(u+47)(u—-117)(u+ 117))2

and evaluate [71%8 f(u)du again. The calculator will say
that both integrals are 0, but the second polynomial’s
integral is really 1.310269 x 10%%. That polynomial’s graph,
shown in Fig. 8, has the sharp spikes that characterize
integrands troublesome for every numerical integration
procedure. To calculate the integral correctly, reevaluate
itas 2 folza f(u)du, thereby doubling the spikes’ width com-
pared with the range of integration.
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The threat of deceit impales the designer of a numerical
integrator upon the horns of a dilemma. We all want our inte-
grators to work fast, especially when the integrand f(u)
is very smooth and simple like f(u)=3u—4. But if the inte-
grator is too fast it must be easy to deceive; fast integration
means few samples f(u;), implying wide gaps between some
samples, which leave room for deceitful misbehavior.
Figs. 9a-9e illustrate the dilemma with two estimates of
f;f f(u)du. The first estimate is based upon the three sam-
ples drawn at the white dots, the second upon seven sam-
ples including those three white plus four more black dots.
Fig. 9a shows why all sufficiently smooth graphs f(u) that
agree at all seven samples have nearly the same integrals,
but Fig. 9b shows how two integrands could provide the
same samples and yet very different integrals. The coinci-
dence in Fig. 9b is unlikely; successive estimates based
upon increasingly dense sampling normally would reveal
the difference as in Fig. 9c. However, situations like those
illustrated in Figs. 9d and 9e are very likely to deceive.

Textbooks tell us how to avoid being deceived: avoid
integrands f(u) among whose first several derivatives are
some that take wildly different values at different places
in the range of integration. Or avoid integrands f(u) that
take wildly different values when evaluated at complex
arguments in some neighborhood of the range of integra-
tion. And if wild integrands cannot be avoided they must
be tamed. We shall rejoin this train of thought later.

Improper and Nearly Improper Integrals

An improper integral is one that involves = in at least
one of the following ways:
» One or both limits of integration are +=, e.g.,

18
X -
1027
1027
I il
(] I
1(u) =(u(u? - 47%) (U2 -883) (U2 -1172))2
1025 1
T T T Ll
-128 -88 0 47 117 128

Fig. 8. The polynomial f(u) was devised to deceive the
HP-34C into miscalculating its integral as O instead of
1.31x10%8. This spiky graph is typical of integrands that can
baffle any numerical integrator. 73% of the area under the
graph lies under two spikes whose widths span/ess than 4% of
the area of integration.



tu)

(a)

N
\\
A

~<
x

f(u)

(b) ‘ [

f(u)

() M/\QL

f(u)

@ %"A‘Z
y

f(u)

<
x

<
x

4 ]
2] Which/ 2
/

-
-

@ e

-

Fig.9. Few samples (open circles) mean fastintegration buta
large possibility of error. More samples (solid dots plus open
circles) usually mean more accuracy, but not always, as in (b),
(d), and (e). (a) Which is the graph of f(u)? No matter; both
have almost the same integral. (b) Which is the graph of f(u)?
They have very different integrals. (c) Here two graphs that
coincide on the first samples O are distinguished by a signifi-
cantly different outcome after second samples @ are drawn. (d)
ifthe graph of f(u) has a few sharp and narrow spikes, they will
probably be overlooked during the estimation of the integral
based on finitely many samples. (e) If the graph of f{u) has a
step that was not made known during the estimation of the
integral, then the estimate may be mistaken.
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[Cexp (-u’) du = V2.

» The integrand tends to +=x someplace in the range of
integration, e.g.,

[, Infu)du = 1.

» The integrand oscillates infinitely rapidly somewhere in
the range of integration, e.g., f& cos (In u)du = %.
Improper integrals are obviously troublesome. Equally
troublesome, and therefore entitled to be called nearly
improper, are integrals afflicted with the following malady:
» The integrand or its first derivative changes wildly with-
in a relatively narrow subinterval of the range of integra-
tion, or oscillates frequently across that range.
This affliction can be diagnosed in many different ways.
Sometimes a small change in an endpoint can render the
integral improper, as in

'()Toom In(u)du =- 0.99898 ... —»L‘ In(u)du = 1.

Sometimes a small alteration of the integrand can render
the integral improper, as in

JLaxi + 107") = 314157.2654... — [ dwix” = =.

Sometimes the value of the integral is nearly independent
of relatively huge variations in one or both of the end-
points, as is fg exp (—u?) du = V@2 for all x > 10. Regard-
less of the cause or diagnosis, nearly improper integrals
are the bane of numerical integration programs, as we
have seen.

During the HP-34C’s design a suspicion arose that most
integrals encountered in practice might be improper or
nearly so. Precautions were taken. Now that experience
has confirmed the suspicion, we are grateful for those pre-
cautions. They were:

1. Avoid sampling the integrand at the ends of the range of
integration.

2. By precept and example in the Owner's Handbook,
warn users against wild integrands, suggest how to recog-
nize them, and illustrate how to tame them.

The second precaution ignited controversy. Against it on
one side stood fears that its warnings were excessive and
might induce paranoia among potential customers. Who
would buy a calculator that he thinks gets wrong answers?
Actually wrong answers were very rare, thanks in part to
the first precaution, and many attempts to vindicate dire
predictions about mischievous improper and nearly im-
proper integrals were thwarted by unexpectedly correct
answers like

J; In (u) du = 0.9998 + 0.00021

in 2 minutes at SCI 3. Or

30
J,, exp(-u®) du = 0.886227 = 0.0000008

in 4 minutes at SCI 5. If the wages of sin be death, O Death,
where is thy sting?

On the other side stood a number of embarrassing ex-
amples like

AUGUST 1980 HEWLETT-PACKARD JOURNAL 29




J.t)oo exp(—u?) du

miscalculated as 0.0 = 0.0000000005 in 14 seconds.
Another, had we known it then, would have been Wood-
yard's example at the beginning of this article; the correct
answer

1
f (MU _ 1) 4u=0.03649 = 0.00000007
o u-1 Inu

in 23 minutes at FIX 7 differs from FIX 5’s wrong answer
0.03662 in the worst way; the error is too small to be ob-
vious and too large to ignore. Adding to the confusion
were examples like

Ax) = x7! f; V =2 In cos(u?) dum?® = 1 + x*60 + x%480 + ...

for which computation in SCI 4 produced ridiculous values
like A(0.1) = 0.95742 + 0.00005, A(0.01) = 0.58401 +
0.00003, and A(0.001) = 0, all impossibly smaller than 1.
This example appears to condemn the f; key until the
integrand f(u)=V —2 In cos{u?)/u? is watched for small
arguments u and seen to lose most of its figures to round-
off, losing all of them for |u1=0.003, despite an absence of
subtractions that could be blamed for cancellation. Then
the example appears to condemn the whole calculator. Who
wants responsibility for a calculator that gets wrong
answers?

Don't panic! The answers are wrong but the calculator
is right.

How to Tame a Wild Integral

Forewarned is forearmed. Every experienced calculator
user expects to encounter pathological examples like some
of those above, and expects to cope with them. The ques-
tion is not “‘whether” but “when’'? And that is when atten-
tion to detail by the calculator’s designers is rewarded by
the user's freedom from petty distractions that can only
complicate a task already complicated enough. But like
the dog that did not bark,* the absence of distracting de-
tails may fail to be appreciated. That is why the examples
explained below have been chosen—to illustrate the ad-
vantages of liberated thought. Work them on your calcula-
tor as you read them; don’t skim them like a novel. Then
you may come to think of your calculator the way I think
of mine, as a trusted friend who stays with me when [
need help.

The integral A(x) above contains an integrand f{u) =
V' —2 In cos(u2)/u? that loses its figures when u becomes
tiny. The problem is caused by rounding cos(u?) to 1,
which loses sight of how small u? must have been. The
solution compensates for roundoff by calculating f(u)
as follows:

Let y = cos u’ rounded.
If y = 1 then let f(u) = 1
else let flu) =V —2 In yfcosly.

The test for y = 1 adds four steps to the f-program and,
provided In and cos ™! are implemented as accurately as
on all recent HP calculators, the problem goes away.

*See the last few paragraphs of the Sherlock Hoimes story “Silver Blaze” by Conan Doyle.
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Fig. 10. Substituting w2 for u turns the wild graph (a) into the
easy one (b). But do not replace ((w—1) (w+1)) by (w2—1)
because roundoff errors introduce a spike, as shown in (c).

Woodyard’s example I; has an integrand f{u) whose de-
rative f'(u) = as u — 0. The graph of f{u) shown in Fig. 10a
looks like a lovers’ leap. Stretching the u-axis near u=0 by
substituting u = w? turns the precipice into the hummock
shown in Fig. 10b and transforms the integral into an easy
calculation:

= (2 ) g
Ul Y w-1w+1) Inw

The HP-34C computes this as 0.03649 = 0.000005 in 100
seconds at FIX 5 or 0.0364900 + 0.00000008 in 200 seconds




at FIX 7. Do not replace (w-1)(w+1) by (w“~1) because
the latter loses to roundoff half of its significant digits as
w — 1 and introduces a gratuitous spike into the integrand’s
graph shown in Fig. 10c, which was plotted on an HP-85. Do
not worry about w = 0 or w = 1 because they don’t happen,
but do worry that as w — 1 the integrand approaches the un-
reliable expression * — % = 0. This means that FIX 7 dis-
plays about as many digits as could possibly be correct for
all w < 0.999, beyond which the f; key draws few if any
samples because it converges so fast.

The graphs of exp(—u®) over 0 < u < 300 and of
1/(u® + 107'% over —1 < u <1 both resemble huddled mice
with very long tails stretched out hundreds or thousands of
times as long as their bodies. Plotting the graphs on a page
of normal width is futile because the bodies get squashed
into vertical whiskers.

Most people who integrate such functions numerically
cut off the tails. Thin tails can be cut almost indiscrimi-
nately without much degrading the accuracy or the speed of
integration. Such is the case for [ exp (—u?)du, which f
evaluates in less than, say, 4 minutes at SCI § provided that
x, if bigger than 4 or 10, is cut back to something between 4
and 10. But [ du/(u?® + 1071%) has too thick a tail to cut
without losing accuracy or patience when x is large. That
is why Procrustean methods are not recommended. Better
to shrink the tail via an artful substitution like u = A + utan v
where A lies within the body of the mouse and w is roughly
that body’s width. Doing so with A = 0 and & = 1 changes
f; exp(—u?) du into

t
fam anx exp(—tan®v) (1 + tan?v) dv

]

which |, : evaluates in three minutes at $CI 5 even when
x isas big as 10'%. Don’t worry about tan 7/2 because it can't
happen on a well-designed calculator.

f)_(xdu/(u2 + 10719)

benefits miraculously from the foregoing substitution
when A = 0 and & = 1073, but values near those do almast
as well.

Another technique might be called “‘subdivide and con-
quer.” It subdivides the range of integration into subinter-
vals upon each of which the integrand f{u) is tame, al-
though f(u) may look wild on the range as a whole. For
example, f(u) = V u2 + 10-10 has a V-shaped graph prac-
tically the same as that of luf. Evaluating f f(u) du
accurately takes a long time if done with one press of

¥, but subdividing the integral into

f_af(u) du + fo f(u)du
takes two presses off and one of £+ but much less time.

Subdivide and conquer works best when combined with
apt substitutions. For example, if the formulas in Fig. 5

were unavailable how would F(x) = [, du/{1 + u®) be

calculated?

F(e) =f(: du/(1 + u®) + [ duf(1 + u®) ... subdivided
=f01 dw(1 + u) + fol whdw/(w + 1) .. u=1w

Il

fol (1 + u%?) du/(1 + ut ...merged viaw=u

=1+ f(: (u®-u®) du/(1 + u®) ... some algebra

Il

... u=v" to shrink

1+% f; (1—v%) v5%8 duf(1 + 1)
a tail

1.000401708155 + 1.2x10~ 2

Il

in 10 minutes at $ClI 8. Thus we have calculated F(x) =
(m/64)csc(m/64) to 13 significant decimals on a ten-sig-
nificant-decimal calculator.

Oscillatory integrals like f; cos(ln u) du sometimes suc-
cumb to stretching substitutions like u = v? that damp the
oscillations, but generally oscillatory integrals cannot be
calculated accurately and quickly without sophisticated
tricks beyond the scope of an article like this. A simple
trick worth trying when the period of oscillation is known
in advance is called folding, though it is really another
instance of subdivide and conquer. Here is a didactic
example.

600w 2
sin’u . .
I; = —= - ——~== du = still running after over three
) Vu+Vu+r hours at sc1 s

599
sin®u d

EJ‘mH-‘n'
= u
n=0Ynm Vu + Vu+r

599
sin%v

Vv+nm + \/v+n7r+7r

dv

after being subdivided and with u = v + n#. Exchanging
[ and $ produces

» 599

1
I, = J. sin®v - 2 dv.

0 nzo Vv+nm + Vvtnm+r

At this point a program should be written to calculate

the sum, but because the example is didactic the sum
collapses to yield

m
600 sin?v
I, =f ———————= dv = 21.10204 = 0.00007
b Vv + Vu+6007

in 5 minutes at S$CI 5.
Now for a final example drawn from life:

du

V=
J.0 (a2+u) V(a2+u) (b%+u) (c2+u)

fora=100,b=2,c=1.

This integral pertains to the electrostatic field about an
ellipsoidal body with principal semiaxes a, b, c.5 The
ellipsoid is needle-shaped like an antenna or a probe. The
classical approach transforms V into a standard form called
an elliptic integral of the second kind and interpolates on
two variables in published tables to get a numerical value.
The following approach takes less time.

First transform the improper integral ([g) into a proper
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one by substituting, say, u = {(a2—c2?)/[(1-v?3) — a? to get

V= xf: VI—v2)w a) dv
where
A = 2/((a®~c?) V' a®—b?) = 2.00060018 x 10°

I

u = cla = 0.01

Il

a = (b®~cYi(a®*~b*) = 3.001200480 x 10~°

Now, as always happens when a >> b > ¢, the integral
is nearly improper because @ and w are both so nearly 0. We
suppress this near impropriety by finding an integral in
closed form that sufficiently resembles the troublesome
part of V. One candidate is

W= f: dvVvi+a = A In (v+ VP +a) l :=“
=\ln ((1+ V1+a)(u+Vui+a))

= 8.40184§80708x 1078

Then

<
Il

W+ }‘f: (V13 +a) — 1/Vv?+a) dv

LW 2

v
B }\L (:;— (1+ V1-v?) Vv? +a) dv

=7.78867525%10°6 + 1.3x10~1¢

after seven minutes at FIX 8. Don’t worry about V1-v?
as v — 1 because the figures lost to roundoff are not needed
and its infinite derivative doesn’t bother the HP-34C.

Conclusion

A powerful mathematical idea has been placed at the
disposal of people who will invoke it with fair confi-
dence by pressing a button marked f ; without having to
understand any more about its internal workings than
most motorists understand about automatic transmissions.
Integrals that might previously have challenged the
numerical expert and a big computer now merely amuse
the scientist or engineer, and tomorrow they will be rou-
tine. And now those engineering students who do attend
classes in numerical analysis need no longer be expected
to memorize the names nor the remainder terms of quadra-

ture formulas but may instead be taught to use integra-
tion wisely.
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