
File Hyp        Hyperbolic Interpolation  and  Iteration towards a Zero        p. 1/19

Prof. W. Kahan                       Notes for Math. 128 B                                    version dated   September 3, 2009 2:53 pm

§0:  Abstract and Introduction
Given a real function   ƒ(x)  about which we know how to compute its value,  we seek one of its  
Zeros  z ,  a root of the equation  ƒ(z) = 0 ,  starting from some first guess(es).  This  z  should be 
the limit of a sequence of presumably improving guesses  xn+1 := Hƒ(xn, xn–1, xn–2)  computed 
for  n = 0, 1, 2, 3, …  in turn by an  Iterating Function  Hƒ  defined below.  It will be compared 
with a few others,  and its application to an eigenproblem will be analyzed in detail.

Several assertions,  equations and inequalities will be left for diligent readers to reconfirm.

Some iterating functions are derived in  §1  from zeros of interpolating functions that match  ƒ(x)  
at two or three points.  If a derivative or two of  ƒ  can be computed too,  confluent versions of 
those iterating functions become available;  Newton’s  and  Halley’s  are two of several offered 
in  §2.  How should an iterating function be chosen from the plethora available?  Considerations 
relevant to that choice are explained in  §3.  Hyperbolic iterating functions seem apposite when  
ƒ  has poles sprinkled among its sought zeros.  The close relation demonstrated in  §4  between 
these iterating functions and  Möbius (bilinear rational)  functions helps reveal how a program’s 
languid convergence may be misdiagnosed.  This is why  §5  chooses  Bi-Confluent Hyperbolic 
Iteration  to converge to a zero from both sides,  thereby combatting both languor and roundoff 
except,  as  §6  observes,  for slow convergence to a multiple zero.  A zero  Hidden  by a pole 
too nearby in  §7  can be found quickly provided it is first straddled.  A practical application of 
the foregoing theory is the solution of the  Spectral  equation of an eigenvalue problem updated 
by a rank-1 perturbation;  §§8 - 11  exhibit the details,  including an error-analysis that assesses 
unavoidable uncertainties due to roundoff.  Another application in  §12  is another eigenproblem.
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§1:  Iterating Functions  Sƒ(…) ,  Hƒ(…)  and  Mƒ(…) 
If a function  ƒ  is smooth enough it may be approximated well by the first several terms of its
Newton Interpolating Polynomial Series 

ƒ(x) =  ƒ(x0) + (x–x0)·( ƒ†(x0, x–1) + (x–x–1)·( ƒ††(x0, x–1, x–2) + (x–x–2)·( ƒ†††…))) 
in which a non-standard notation is being used for  Divided Differences 

 ƒ†(x, y) := ( ƒ(x)–ƒ(y) )/(x–y) ,     ƒ††(w, x, y) := ( ƒ†(w, x) – ƒ†(x, y) )/(w–y) ,     ƒ†††… .

The first two terms’ linear polynomial vanishes when  x = Sƒ(x0, x–1) := x0 – ƒ(x0)/ƒ†(x0, x–1) .  
The iteration  xn+1 := Sƒ(xn, xn–1)  is called  Secant Iteration  and,  if it converges to a  Simple  

zero  z  of  ƒ  (where  ƒ(z) = 0 ≠ ƒ'(z) ),  converges with  Order  (1+√5)/2 ≈ 1.618 ,  or  (rarely)  
faster.  This means that if  z,  x–1  and  x0  agree in sufficiently many leading decimal digits,  xn  
agrees with  z  in at least an additional number of decimal digits that grows roughly proportional 

to  ((1+√5)/2)n  until roundoff in the computation of  ƒ  etc.  interferes with convergence.

If,  unlike a polynomial,  ƒ  resembles a rational function with poles scattered among its zeros,  
ƒ  may be better approximated by the first few levels of an  Interpolating Continued Fraction 

 ƒ(x) =  ƒ(x0) + (x–x0)/(ƒ#(x0, x–1) + (x–x–1)/(ƒ##(x0, x–1, x–2) + (x–x–2)/(ƒ###…))) 
in which a non-standard notation is being used for non-standard  Reciprocal Divided Differences 

 ƒ#(x, y) := (x–y)/( ƒ(x) – ƒ(y) ) ,    ƒ##(w, x, y) := (x–y)/( ƒ#(w, x) – ƒ#(w, y) ) ,    ƒ###… .
The first two levels’ continued fraction interpolates (matches)  ƒ(x)  at  x = x0 ,  x–1  and  x–2 :

Yƒ(x; x0, x–1, x–2) :=  ƒ(x0) + (x–x0)/(ƒ#(x0, x–1) + (x–x–1)/ƒ##(x0, x–1, x–2) )  

        =  ƒ(x0) + (x–x0)·ƒ†(x0,x–1)/( 1 – (x–x–1)·ƒ††(x0,x–1,x–2)/ƒ†(x0,x–2) ) .
This interpolant  Yƒ(x; x0, x–1, x–2)  vanishes when  x = Hƒ(x0, x–1, x–2)  determined thus:

      Hƒ(u, v, w) :=  u – ƒ(u)·( ƒ#(u, v) + (u–v)/ƒ##(u, v, w) )/( 1 + ƒ(u)/ƒ##(u, v, w) ) 

   =  u – ƒ(u)/( ƒ†(u, v) – ƒ(v)·ƒ††(u, v, w)/ƒ†(v, w) ) .
The iteration  xn+1 := Hƒ(xn, xn–1, xn–2)  is called  Hyperbolic Iteration  and,  if it converges to a 

simple zero  z  of  ƒ ,  converges with  Order  ϕ ≈ 1.839 ,  the positive root of  ϕ3 = ϕ2
 + ϕ + 1 ,  

or  (rarely)  faster.  This follows from an important and tediously verifiable identity
       Hƒ(w, x, y) – z           ƒ††(w, x, y)·ƒ††(x, y, z) – ƒ†(x, y)·ƒ†††(w, x, y, z) 
     -------------------------------------   =  Rƒ(w, x, y)  :=    ---------------------------------------------------------------------------------------------- 
   (w – z)·(x – z)·(y – z)         ƒ†(w, x)·ƒ†(x, y)  –  ƒ(x)·ƒ††(w, x, y) 
whose limit,  as  w → z ,  x → z  and  y → z ,  implies that as iterates  xn → z  they satisfy 

  (xn+1 – z)/((xn – z)·(xn–1 – z)·(xn–2 – z))  →  Rƒ(z, z, z) = ( ƒ"(z)2/4 – ƒ'(z)·ƒ'"(z)/6 )/ƒ'(z)2 ,
whence a linear recurrence explains why  –log(|xn – z|)  grows at least as fast as  ϕn  as  n → +∞ .

Both iterating functions have graphical interpretations.  Sƒ  uses a straight line,  a secant,  that 
cuts the graph of  ƒ  twice to approximate it.  Hƒ  uses an hyperbola with vertical and horizontal 
asymptotes that cuts the graph of  ƒ  thrice to approximate it.  Its hyperbola resembles a straight 

line ever more widely as  ƒ##  approaches  ∞ .  Caution:  ƒ##(w, x, y) = ƒ##(w, y, x) ≠ ƒ##(x, w, y) .

Both our iterations can be applied with a complex analytic function  ƒ(x)  of a complex variable  
x  to find a complex zero  z .  However,  if  ƒ(x)  is real for all real  x ,  then our iterations require 
complex initial guesses lest they never converge to a non-real zero  z .  This requirement can be 
circumvented by  David Muller’s  iterating function  v = Mƒ(w, x, y)  that is the root  v  nearest
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w  of the quadratic equation  0 = ƒ(w) + (v–w)(ƒ†(w, x) + (v–x)(ƒ††(w, x, y))) :     Mƒ(w,x,y) := 

 w – 2ƒ(w)/( ƒ†(w,x)+(w–x)ƒ††(w,x,y) ± √( (ƒ†(w,x)+(w–x)ƒ††(w,x,y))2 – 4ƒ(w)ƒ††(w,x,y) ) ) .
Graphically,  Mƒ  uses a parabola that cuts the graph of  ƒ  thrice to approximate it.  Iterating 
functions  Mƒ  and  Hƒ  have the same  Order  ϕ ≈ 1.839  of convergence to a simple zero of  ƒ ;  
but  Hƒ  and  Sƒ  cannot be expected to converge to a double zero as fast as  Mƒ  can.

 Note:  Like  ƒ†(…)  and  ƒ††(…),  so do  Sƒ(…),  Hƒ(…)  and Rƒ(…)  disregard their arguments’ order.

§2:  Confluent Versions
If computing  ƒ(x)  and also its derivative  ƒ'(x)  simultaneously costs not much more time than 
computing  ƒ(x)  alone,  confluent versions of the foregoing iterating functions become worth 
considering.  Some of these confluent versions’ arguments coincide;  some divided differences 

are replaced by derivatives thus:   ƒ†(x, x) = ƒ'(x)   and   ƒ††(x, x, x) = ƒ"(x)/2 .  The confluent 
version of  Secant Iteration  is  Newton’s Iteration  xn+1 := Sƒ(xn, xn) =  xn – ƒ(xn)/ƒ'(xn)  which,  
if convergent to a simple zero,  converges with  Order 2  or  (rarely)  faster.  Hyperbolic Iteration
has five confluent versions:  xn+1 := Hƒ(xn, xn, xn–1)  … converges with  Order  1 + √2 ≈ 2.414 ;

Halley’s Iteration   xn+1 := Hƒ(xn, xn, xn) =  xn – ƒ(xn)/( ƒ'(xn) – ƒ(xn)·ƒ"(xn)/ƒ'(xn) ) ,  if …, 

converges with  Order 3 ;  three more versions introduced below  …  converge with order ≥ 2 .

§3:  Choosing an Iterating Function
How shall we decide which version to choose?  The decision must weigh three considerations 
listed here in order of difficulty:    Cost,    Vulnerability to Roundoff,   and    Appositeness.

Cost is easiest to assess when the accuracy desired is so high as will entail a large number  n  of 

iterations of  Order  Ø > 1 .  They will garner roughly  Øn  correct significant digits at the cost of 
computing time  T := n·Ç  where  Ç  is the cost of one iteration.  Ç  is assumed the same for all 
iterations,  as is the case when floating-point arithmetic affords just one precision,  in which case 

the iterates’ correct digits grow with time  T  roughly like  (Ø1/Ç)T
 .  (Otherwise,  if arithmetic’s 

precision is variable,  the last iteration is likely to cost more than all the others taken together.)

Thus  µ := log(Ø)/Ç  is a rough  Figure-of-Merit,  the bigger the better,  for an iterating function 
of  Order Ø  and cost  Ç  per iteration.  A. Ostrowski  proposed an assay like  µ  of an iteration’s 
merit in the middle of the  20th  century.  µ  is very rough because it disregards properties of  ƒ  
like values of its derivatives at its zero,  so comparing  Figures-of-Merit  of two iterations may 
be misleading if they depend upon different derivatives,  especially when,  as we often hope will 
happen,  adequate accuracy is attained with not very many iterations.  We shall try not to be 
misled when we compare a few iterating functions’  Figures-of-Merit.

Let  Ç1  be the cost of an iterating function that requires only one new value of  ƒ  per iteration;  
let  Ç2  be the cost … of  ƒ'  and  ƒ ;  let  Ç3  be the cost … of  ƒ",  ƒ'  and  ƒ .  With very rare 
exceptions,  Ç1 < Ç2 < Ç3 ;  and normally  ÇK < K·Ç1 .  Ostrowski  considered polynomials  ƒ  
of degrees so high that  ÇK ≈ K·Ç1 ;  these contribute the following table’s last column.

1
2
---
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 Table 1:  Iterations’ Figures-of-Merit  µ 

Were  Figures-of-Merit  µ  all that mattered,  this table would enact a severe law of diminishing 
returns from iterations whose higher  Order  of convergence is achieved at the cost of computing 
derivatives.  For instance,  Newton’s Iteration  would be preferred over  Secant Iteration  only if  
ƒ'  added less than  44%  to the cost of computing  ƒ  alone.  In fact,  µ  is not all that matters.

Vulnerability to roundoff matters too.  Besides limiting how accurately a zero can be computed,  
roundoff in the computation of  ƒ  complicates the decision to quit iterating.  The last few iterates
may waste time dithering in the zero’s neighborhood unless roundoff’s obscuration is estimated 
adequately by an error-analysis built into the computation of  ƒ .  Instead of an error-analysis,  
an incorporation of  ƒ'  accurate to a few significant digits helps an iteration to nearly minimize 
the magnitude of iterates’ dithering,  thus simplifying the program’s decision to quit iterating.

Appositeness of an iterating function like  Sƒ(…)  or  Hƒ(…)  reflects how nearly its provenance 
accords with properties of  ƒ ,  and affects the iteration’s behavior while not yet near the sought 
zero.  For instance,  if  ƒ  has a pole near which an iterate may fall,  Hyperbolic  and  Halley’s 
Iterations  escape from the pole’s neighborhood much faster than  Newton’s or Secant Iteration  
can.  We should consider also whether an iteration,  perhaps modified slightly,  can maintain a  
Straddle;  this is a pair of iterates,  not necessarily consecutive,  between which  ƒ  reverses sign 
an odd number of times.  Newton’s and Halley’s Iterations  require programs more complicated 
than the other iterations need to maintain a straddle when losing it risks losing the sought zero or 
converging to an undesired zero.  Moreover,  when  Newton’s  iterates converge they almost 
always converge ultimately monotonically  (i.e., from one side),  whereas the other iterations 
converge from both sides of a straddle for at least about as many functions  ƒ  as not.  When two-
sided convergence is predictable it simplifies criteria for quitting the iteration;  it shrinks nested 
straddles around a zero about as tightly as roundoff allows until it transgresses the last straddle.

The more is known about the properties of  ƒ ,  the better can an iterating function be chosen to 
take advantage of those properties and also,  perhaps,  overcome their vitiation by roundoff.

Iteration Order Cost µ µ for polynomials ƒ

Secant  xn+1 := Sƒ(xn, xn–1) 1.618 Ç1 0.4812 / Ç1 0.4812 / Ç1 

Newton’s  xn+1 := Sƒ(xn, xn) 2 Ç2 0.6931 / Ç2 0.3466 / Ç1 

Hyperbolic  xn+1 := Hƒ(xn, xn–1, xn–2) 1.839 Ç1 0.6094 / Ç1 0.6094 / Ç1 

Confluent Hyperbolic  xn+1 := Hƒ(xn, xn–1, xn–1) 2 Ç2 0.6931 / Ç2 0.3466 / Ç1 

Confluent Hyperbolic  xn+1 := Hƒ(xn, xn, xn–1) 2.414 Ç2 0.8814 / Ç2 0.4407 / Ç1 

Bi-Confluent Hyperbolic  (to be defined later) 3 2Ç2 0.5493 / Ç2 0.2747 / Ç1 

Halley’s  xn+1 := Hƒ(xn, xn, xn) 3 Ç3 1.0986 / Ç3 0.3662 / Ç1 
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§4:  Möbius Maps  Commute  with  Hyperbolic Iterations
Four real constants  a, b, c  and  d  determine a  Möbius Function  M(x) := (a·x – b)/(c·x + d) ,  
also called a  “Linear Fractional”  or  “Bilinear Rational”  function.  Lest it degenerate into a 
constant,  its constants must be constrained:  a·d + b·c ≠ 0 .  Then another  Möbius  function  
W(ξ) := (b + d·ξ)/(a – c·ξ)  turns out to be inverse to  M(x)  in the sense that  W(M(x)) = x  and  
M(W(ξ)) = ξ .  These functions’ range and domain is best construed as the circle obtained from 
the real axis after it has been closed by its incorporation of a single point at infinity thus: 

M(–d/c) = ∞ ,    W(∞) = –d/c ,    M(∞) = a/c    and    W(a/c) = ∞ .
Any three distinct points  p, q, r  on this circle can be mapped by a suitably constructed  Möbius  
map  M  to any other distinct three points  π = M(p),  κ = M(q),  ρ = M(r)  resp. by solving a  
Bilinear Cross-Ratio Equation  

 (x – p)·(q – r)·(M(x) – ρ)·(κ – π) = (M(x) – π)·(κ – ρ)·(x – r)·(q – p) 
for  M(x)  after deleting every factor,  if any,  that contains  ∞ .  Except across its pole  –d/c ,  
M(x)  is strictly monotonic,  increasing if  a·d + b·c > 0 ,  else decreasing,  because the divided 

difference   M†(x, y) = (a·d + b·c)/((c·x+d)·(c·y+d))   has the same sign as  a·d + b·c  has.

The set of hyperbolas and straight lines that interpolate  ƒ(x)  to determine  Hyperbolic Iterating 
Functions  Hƒ(…)  is a set mapped to itself by  M(x) .  Consequently these  Commute  thus:

Given functions  ƒ(x)  and  M(x) ,  determine  M ’s  inverse  W(ξ) ,  and define
φ(ξ) := ψ·ƒ(W(ξ))   for any constant  ψ ≠ 0 .  Derive  Hφ(ω, ξ, η)  from divided 
differences of  φ  just as  Hƒ(w, x, y)  is derived from divided differences of  ƒ .

     Then    Hφ(M(w), M(x), M(y))  =  M( Hƒ(w, x, y) ) .

This means changing coordinates from  x  to  ξ := M(x)  and from  ƒ(x)  to  φ(ξ) := ψ·ƒ(W(ξ))   
amounts to a  Möbius Map  that connects  {x, ƒ(x)}  and  {ξ, φ(ξ)}  so tightly that  Hyperbolic  
iterates  xn+1 = Hƒ(xn, …)  starting from  x0, …  and converging to the zero  z  of  ƒ  are images 

of analogous  Hyperbolic  iterates  ξn+1 = Hφ(ξn, …) = M(xn+1)  starting from  ξ0 = M(x0), …  

and converging to the zero  ζ := M(z)  of  φ .  Both sequences of iterates  xn  and  ξn = M(xn)  
must converge to their respective destinations at the same speed in the long run.

 “In the long run we are all dead.”  —   J.M. Keynes  (1883 - 1946) 

Long-running computation is what we wish to avoid.  We prefer that iteration enter promptly a 
regime of fast  Superlinear ( Order > 1 )  convergence that we will terminate soon,  as soon as 
iterates approach the sought zero  z  about as closely as roundoff allows.  Easier said than done.

From an ill-fated start,  an iteration can enter instead a regime of languid convergence,  creeping 
through too many iterates before entering an ultimate regime of fast convergence.  If a program 
could detect its embrace by languor the program could attempt an escape.  Detection is hindered 
by an involuntary kind of conspiracy between roundoff and  Möbius  maps that can squeeze or 
stretch any interval through which many  Hyperbolic  iterates travel converging slowly to a zero 
outside it.  In one coordinate system,  say  {ξ, φ(ξ)} ,  these iterates are separated widely enough 
for some regularity in their successive differences to suggest an extrapolation that may escape 
from languor.  In another  {x, ƒ(x)}  coordinate system the iterates appear as crowded as if they 
were about as near their destination as roundoff allows though actually the destination is not that 
near at all.  We desire that our root-finding program cope well with these phenomena.
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§5:  Infantile Greed,  and  Bi- or bi-Confluent Hyperbolic Iteration
We want it all,  on the cheap,  and soon.  Sometimes we get it.

We wish to compute each zero of  ƒ  at least about as accurately as the data and the arithmetic’s 
precision deserve,  but without performing the extra computation of error-analyses to estimate 
how much accuracy is deserved.  And we wish not to wait while iterates grossly contaminated 
by roundoff dither.  Consequently a root-finding program purporting to grant our wishes cannot 
rely upon an iterative method that will ultimately converge monotonically  (from one side)  lest 
short steps confound the program.  It cannot distinguish numerous short steps taken to converge 
very slowly to an unknown destination far away,  from short steps taken as iterates drift through 
a region around a zero where  |ƒ(x)|  is smaller than its computed value because of roundoff.

Without computing a modest overestimate  (like the  Error-Analysis  in  §11  of  §8’s  example)  
of roundoff’s contribution to  ƒ ,  the only way to be about as sure as roundoff allows of a zero’s 
location is to straddle it about as tightly as roundoff allows.  To this end a root-finder’s iterative 
method must,  after it finds a straddle,  maintain it through a nested sequence of tighter straddles 
that shrink onto a zero inside them until roundoff thwarts the method.  This kind of method is 
the kind we will prefer.  However,  what  “thwarts”  means here entails subtleties.

Roundoff cannot thwart an iterative method,  if it samples  only  computed values of  ƒ  (not its 
derivative nor any other information about it),  until the straddle’s ends coincide or are adjacent 
floating-point numbers.  To reach this state,  if its precision overreaches the accuracy the data 
deserve,  often takes longer than we wish to wait.  We will prefer some other method.

Roundoff can thwart an iterative method that would,  in the absence of roundoff,  always  shrink 
a straddle and ultimately shrink it fast  (superlinearly).  Roundoff thwarts the method when,  as 
computed,  an iteration-step would lose the straddle or not shrink it.  Then is the time to quit the 
method.  It must depend upon information,  like a computable derivative  ƒ'  and/or assumptions 
about the smoothness and monotonicity of  ƒ ,  beyond merely how to compute its values.  And 
the method should not so exaggerate the effects of roundoff that iteration is stopped before the 
sought zero has been located at least about as accurately as it deserves.  Such a method can be 
expected to succeed only under favorable circumstances.  Here are two such methods:

Bi- and bi-Confluent Hyperbolic Iterations  apply the iteration function computed as 

 Hƒ(y, x,x) = Hƒ(x,x, y) := x – ƒ(x)/( ƒ'(x) – ƒ(x)·ƒ††(x,x,y)/ƒ†(x,y) )  
to both sides of a straddle.  Suppose  u  and  v  straddle  ƒ ’s  sought simple zero  z  but no other 
zero nor singularity nor zero of  ƒ' .  Therefore  ƒ  is strictly monotonic within the straddle,  so  

ƒ(u)·ƒ(v) < 0 ,  and  ƒ'(u) ,  ƒ†(u,v)  and  ƒ'(v)  all have the same nonzero sign.  Computing both 
 t := Hƒ(u,u, v)   and   w := Hƒ(u, v,v) 

will cost very little more than computing either,  and both will fall into the straddle between  u  
and  v .  Appropriate replacement(s) of  u  and/or  v  by  t  and/or  w  will maintain and shrink 
the straddle.  How shall  “Appropriate”  be determined?  Putting this question’s answer into 
effect constitutes a  Bi- or  bi-Confluent Hyperbolic Iteration-step.

The obvious answer comes from the computation of both  ƒ(t)  and  ƒ(w) ,  together with  ƒ'(t)  
and  ƒ'(w)  for use in the next iteration.  The computation is wasteful only if  ƒ(t)·ƒ(w) > 0 ,  in 
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which case either  {t, ƒ(t), ƒ'(t)}  or  {w, ƒ(w), ƒ'(w)}  will be discarded and the other made part 
of a new straddle nested in and noticeably narrower than the given straddle  {u, v} .  Waste like 
this cannot afflict very many consecutive  Bi-Confluent Hyperbolic iteration-steps;  ultimately,  
as is explained hereunder,  waste is inhibited by the influence of the ratio  Rƒ(…)  defined above 
in  §1’s  tediously verifiable identity,  namely  …

    (t – z)/((v – z)·(u – z)2) = Rƒ(u,u, v) = Rƒ(v, u,u) = 

       = (ƒ††(u,u, v)·ƒ††(u,u, z) – ƒ'(u)·ƒ†††(u,u, v, z))/(ƒ†(u, v)·ƒ'(u) – ƒ(u)·ƒ††(u,u, v)) ;

    (w – z)/((u – z)·(v – z)2) = Rƒ(u, v,v) = 

       = (ƒ††(u, v,v)·ƒ††(v,v, z) – ƒ'(v)·ƒ†††(u, v,v, z))/(ƒ†(u, v)·ƒ'(v) – ƒ(v)·ƒ††(u, v,v)) .

Though important,  Rƒ(…)  is not intended to be computed during the iteration.

Rƒ(…)  cannot be infinite;  otherwise  t  and/or  w  would be thrown out of the straddle,  contrary 
to the assumed monotonicity of  ƒ .  Therefore  Rƒ ,  like  ƒ ,  has no singularity so long as all its 
arguments stay within the given straddle.  As  u  and  v  converge to their respective limits  (not 
yet proved to be coincident)  in the course of iteration,  Rƒ(u,u, v)  and  Rƒ(u, v,v)  converge to 
their respective finite limits,  as do  Hƒ(u,u, v)  and  Hƒ(u, v,v)  to limits each of which must 

coincide with a limit of  u  or of  v .  Because the assumed strict monotonicity of  ƒ  bounds  ƒ†  
away from zero,  the convergence of  Hƒ  to the same limit as one of its arguments  (regardless 
of their order)  implies that  ƒ  converges to zero there;  consequently iterates  u  and  v  converge 
to  z  from opposite sides,  and both values of  Rƒ(…)  converge to  Rƒ(z,z,z) .

If  Rƒ(z,z,z) = 0 ,  iterates will converge to  z  so exceptionally fast that the iterates computed 
will be too few for anyone to care whether some were wasteful in the sense described above.

If  Rƒ(z,z,z) ≠ 0 ,  its sign will ultimately be matched by the signs of  Rƒ(u,u, v)  and  Rƒ(u, v,v) ,  
whereupon  z  will lie between  t  and  w  both within the straddle;  neither need be wasted.  That 
nonzero sign determines how  z  and the  Bi-Confluent Hyperbolic  iterates will be ordered:

 When all  Rƒ(…) > 0 ,  either   u < w < z < t < v   or   v < t < z < w < u .

 When all  Rƒ(…) < 0 ,  either   u < t < z < w < v   or   v < w < z < t < u .

Either way the iteration produces a sequence of ultimately strictly nested straddles whose ends 
converge to  z  with the same  Order  3  as  Halley’s Iteration’s.  However,  unless we value a 
tight straddle more than a one-sided but usually no worse approximation to a sought zero,  the  
Figure of Merit  µ ≈ 0.5493 / Ç2  since each  Bi-Confluent Hyperbolic  iteration-step performs 
nearly twice as much arithmetic as a merely  Confluent  one.

This cost can be cut back if  Rƒ(…)  always has the same nonzero sign deduced in advance from 
properties of  ƒ ;  such functions will appear in  §8  and  §12.  Knowledge of that sign permits 
values of  t := Hƒ(u,u, v)  and  w := Hƒ(u, v,v)  computed from the ends of a straddle to be put in 
order with  z  according to the inequalities displayed above before  ƒ(t)  or  ƒ(w)  is computed.  
Of two nested straddles,  each with one end at  u  or  v  and the other at  t  or  w ,  the narrower 
provides the next  bi-Confluent Hyperbolic  iteration-step.  It requires only either  {ƒ(t), ƒ'(t)}  
or else  {ƒ(w), ƒ'(w)}  to be computed.  Ultimately this iteration converges alternatingly with  
Order 1 + √2 ≈ 2.414  if  Rƒ(…) > 0 ,  or else  Order √(2 + √5) ≈ 2.058  if  Rƒ(…) < 0 .
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§6:  Linear Convergence to a Multiple Zero
Occasionally an iteration converges far slower than is consistent with its  Order  of convergence 
exhibited in  Table 1.  If we wish to preclude such languor we shall have to understand what can 
cause it.  One possible cause is a violation of the assumption that the sought zero  z  is  Simple.

Functions with multiple zeros are rare,  the more so the higher is the multiplicity.  On the other 
hand,  functions  ƒ  with clusters of zeros well separated from the function’s other zeros and 
poles are commonplace.  From afar  (far enough from both the cluster and all other zeros and 
poles)   the cluster resembles a multiple zero closely enough to retard an iteration’s convergence 
towards a sought zero  z  until iterates come sufficiently nearer to it than to all the cluster’s other 
zeros.  While retarded the iteration’s behavior often exposes the cause of languor thus:

While convergence is languid it is roughly  Linear,  which means the ratio  (xn+1 – z)/(xn – z)  of 
successive errors approximates a value  ρ ≠ 0  dependent upon only the number  m  of zeros in 
the cluster and the choice  Sƒ(…) or Hƒ(…)  of iterating function.  This  ρ  is the ratio’s limiting 
value as iterates approach any function’s zero  z  of actual multiplicity  m ≥ 2 .  How  ρ  depends 
upon  m  and that choice of iterating function is summarized below without proofs which,  when 
they exist,  can be extremely tedious.  Tabulated below for each choice  Sƒ(…)  and  Hƒ(…)  is 
the polynomial of which  ρ  is its sole zero strictly between  0  and  1 .  When  m  is big,  1 – ρ  
is of the order of  1/m .  Tabulated too is the value  ρ  takes when  m = 2 ,  which is by far the 
most common multiplicity  m  exceeding  1 .

 Table 2:  Iterations’ Linear Convergence Ratio  ρ  to a Zero of Multiplicity  m 

Unfortunately,  languid convergence can be caused by other than clustered or multiple zeros.

Table 2  omits  Bi-Confluent Hyperbolic Iteration  because it requires a straddle unobtainable for a double root.  
Whether and how to accelerate languid convergence to a cluster are discussed in  §7  and  §10  of my  Lecture Notes 
on Real Root-Finding  posted at  <www.cs.berkeley.edu/~wkahan/Math128/RealRoots.pdf>.

§7:  Languid Convergence to a Hidden Zero 
Call  z  a  Hidden Zero  of  ƒ  when it has a pole so close to the zero that they almost cancel out.  
An example  f(x) := (z – x)·(1 + 1/x)  has a pole at  x = 0  that almost cancels the zero  z  if it is 
tiny enough.  As  z → 0+  the graph of  y = f(x)  approaches the union of two straight lines,  one 
the graph of  y = –(x + 1) ,  the other a vertical line along the  y-axis,  as shown hereunder:

Iteration Polynomial ρ  at  m = 2

Secant  xn+1 := Sƒ(xn, xn–1) ρm + ρm–1 – 1 0.618034

Newton’s  xn+1 := Sƒ(xn, xn) m·ρ – m + 1 0.5

Hyperbolic  xn+1 := Hƒ(xn, xn–1, xn–2) (ρ2
 + ρ + 1)·ρm–1 – 1 0.543689

Confluent Hyperbolic  xn+1 := Hƒ(xn, xn–1, xn–1) m·(ρm
 + ρm–1) – (ρm

 – 1)/(ρ – 1) 0.5

Confluent Hyperbolic  xn+1 := Hƒ(xn, xn, xn–1) ρm + 2ρ·(ρm–1
 – 1)/(ρ – 1) – m + 1 0.414214

Halley’s  xn+1 := Hƒ(xn, xn, xn) (m+1)·ρ – m +1 0.333333
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  f(x) = (z – x)·(1 + 1/x) ,    z = 0.0005

More generally,  a plotted graph of a function  ƒ  with a zero  Hidden  by a simple pole nearby 
will fail  (except by accident)  to reveal the zero unless the plotted points are dense enough to 
reveal that a nearly straight vertical line crosses a graph otherwise almost unexceptional.

Hyperbolic iterations appear called for to cope with the pole adjacent to a sought  Hidden  zero,  
though it is unlikely to be found by these or any other iterations unless they start from a straddle 
and maintain it.  Halley’s  iteration begun between the adjacent pole and zero converges well 
unless an iterate jumps a little too far past the sought zero,  whereupon subsequent iterates will 
go elsewhere.  A program can inhibit  Halley’s  divagation by including  ad hoc  expedients like 
retractions at the risk of needing so many of them that they retard convergence.

No  ad hoc  expedients are needed for the other two confluent  Hyperbolic  iterations to maintain 
a straddle.  They do so whenever  ƒ(x)  is strictly monotonic within it:  If  ƒ(u)·ƒ(v) < 0  and all 

three of  ƒ'(u) , ƒ†(u,v)  and  ƒ'(v)  have the same sign,  then  Hƒ(u,u,v)  and  Hƒ(u,v,v)  both lie 
strictly between  u  and  v  which,  after the appropriate replacement(s),  give way to a tighter 
straddle.  Nested straddles will ultimately confine the sought zero as tightly as roundoff allows.  
This desirable behavior comes at a price:  Occasionally these iterations can tarry in a regime of 
languid convergence.  The example  f  graphed above will illustrate how this languor can occur:

The  Confluent Hyperbolic  iterating function in question,  namely 

    Hf(y, x,x) = Hf(x,x, y) := x – f(x)/( f'(x) – f(x)·f††(x,x,y)/f†(x,y) ) , 
will be applied from each side to the foregoing example’s function  f(x) := (z – x)·(1 + 1/x)  with  
0 < z << 1 ;  but we must assume that no more is known about  z  than a straddle  0 < u < z < v .
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Halley’s  iterates  Hf(x,x,x)  jump over  z .  From the far right  Hf(v,v,v)  jumps beyond the pole 

too;  Hf(v,v,v) < 0  unless  z < v < (3√z)2/(1 – 3√z ) ,  so  Hf(v,v,v)  must be retracted unless  v  
on the right of  z  is extremely near it.  From the near left,   from  u  between  z  and the pole,

 0 < u < z < Hf(u,u,u) = z + (z–u)3/(u3 + 3u·z + z·(1–z)) < Hf(0,0,0) = z + z2/(1–z) ,
which is excellent.  If  Halley’s  iteration starts from the near left it will converge alternatingly 
and rapidly for this simple example.  Other more complicated examples’ first iterates can jump 
from between  z  and the pole far enough past  z  that their second iterates jump back beyond the 
pole and must be retracted lest the straddle be lost.  Hidden  zeros tend to hide from  Halley.

Both  Confluent  iterates  t := Hf(u,u, v)  and  w := Hf(u, v,v)  maintain the straddle;  moreover 
neither jumps past  z  for this simple example whose  Rf(z,z,z) ≈ –1/z < 0 .  Keeping in mind 
that  0 < z << 1  and  0 < u < z < v ,  we find that,  coming from  v  far on the right, 

  v > Hf(u, v,v) =  z + (1 – u/z)·(v–z)2/( 1 + 2v + v2·u/z + u – z )  
 ≈  v·(1 – u/z)/( 2 + v·u/z + 1/v )   when  v >> √z .

This means that iteration solely from the right,  starting afar from  v >> √z ,  shrinks the straddle 
repeatedly by factors somewhat smaller than  (1 – √u/z)/2  until abruptly convergence becomes 
quadratic.  Coming from  u  on the near left,

   u < Hf(u,u, v) =  z – (z–u)2·(v–z)/( (z+u2)·v + (1 – z + 2u)·z ) 

  ≈  z·( 1 – (1 – u/z)2·v/(v+1) )   when  v >> z , 
which implies that iteration solely from the left converges quadratically up to the tiny hidden 
zero  z  without ever shrinking the straddle much.

Does this example’s behavior adumbrate what happens with  Hidden  zeros generally?

If so,  it bodes ill for  bi-Confluent Hyperbolic Iteration  because its convergence is retarded by 
its greedy choice of the narrower straddle.  Bi-Confluent Hyperbolic Iteration  converges to a  
Hidden  zero so much faster that it seems preferable over all other iterative methods whenever a  
Hidden  zero is likely to hide among those that are sought.  This preference persists despite that 
computing both  {t, ƒ(t), ƒ'(t)}  and  {w, ƒ(w), ƒ'(w)}  seems costly,  or at least wasteful of the 
one not retained.  Because both characterize  ƒ(…)  from the same data,  computing both costs 
appreciably less than twice the cost of computing either on most of today’s computers,  which 
take longer to fetch data from memory than to perform pipelined arithmetic upon them.

However,  Bi-Confluent Hyperbolic Iteration  converges to a  Hidden  zero only after it has been 
straddled.  How much should be known about a function  ƒ  for its  Hidden  zeros to be straddled 
more reliably than by chance?  At least the poles of  ƒ  that may hide its  Hidden  zeros should 
be easy to find.  Therefore the question that deserves to be considered is actually … 

Are there functions  ƒ  whose  Hidden  zeros are hidden only by poles easy to find?

Such functions will appear in  §8  and  §12.  They were not contrived.  They are not artificial.

“Man is a tool-using animal.”  —  Thomas Carlyle  (1795 - 1881).
This explains why a man holding a hammer must find nails to hit.
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§8:  Example:  A  Spectral  Equation  (also called a  Secular  Equation)
Here is an example of an equation  ƒ(z) = 0  which  Hyperbolic Iteration  is apposite to solve:

Suppose we seek all  K  eigenvalues  ξj  of a real symmetric matrix  X := V + α·c·c'  differing by 
a matrix of rank  1  from another real symmetric matrix  V  whose eigensystem is given;  given 
also are scalar  α ≠ 0  and column  c ≠ o .  The eigenvalues sought are the zeros  ξ = ξj  of the  
Characteristic Polynomial  det(ξ·I – X) ,  which turns out to cost much more to compute than 
does the ratio  det(ξ·I – X)/det(ξ·I – V)  of characteristic polynomials.  Consequently our task  
reduces to the numerical computation of all roots  ξj  of a  Spectral Equation  ƒ(ξ) = 0  whose   

ƒ(ξ) :=  ∑k γk
2/(ξ – λk) – 1/α   with given values of  α ≠ 0 ,  γk ≠ 0  and eigenvalues  λk  of  V  

all distinct and sorted so that  λk < λk+1 .  Each root  ξj  is known to lie in an open interval  Ξj  

one of whose endpoints is  λj ;  the other is the nearer of  λj + α·∑k γk
2  and  λj+sign(α)  (when it 

exists).  Every root is  Simple  since the derivative   ƒ'(ξ) = –∑k γk
2/(ξ – λk)2 < 0 ;   moreover  

ƒ'(ξj) < –1/(α2·∑k γk
2) ,  so every root  ξj  is determined sharply by the  Spectral Equation’s  ƒ .  

Though no root is repeated,  some can be  Hidden  in the sense explored in  §7 above.

Alas,  the given data can come almost arbitrarily close to pathological:  α  can be arbitrarily tiny 
or big;  distinct values  λj  can agree in all but their last digits;  and coefficients  γk

2  can vary 
arbitrarily widely unless each  γk  tinier than roundoff in  γk±1  is reset to zero and  deflated  out.  
In consequence of a near-pathology,  an interval  Ξj  can be arbitrarily narrow,  or its  ξj  can be 
arbitrarily nearly  Hidden.  Pathology and roundoff conspire sometimes to render a numerical 
computation unreliable.  The conspiracy can usually be thwarted by artful origin-shifts,  but 
these are a tiresome story for another document.

Divisions dominate the cost of computing  ƒ(ξ)  on computers that lack a pipeline dedicated to 
divisions.  Whatever that cost,  it is less than doubled by the cost of computing the derivative  
ƒ'(ξ)  too.  However,  because  ∞  is an attractive fixed-point for  Newton’s and Secant  iterating 
functions  Sƒ(…) ,  these are ill-suited to solving our  Spectral Equation  unless started close 
enough to a sought zero.  Confluent Hyperbolic Iterations  can generate iterates that converge to  
ξj  rapidly from both sides when started from a straddle in  Ξj ,  as we shall see.  The second 
derivative  ƒ"(ξ)  would add no more than  ƒ'(ξ)  did to each iteration’s cost and would enable  
Halley’s Iteration;  but this must be started close enough to the sought zero or else occasionally 
inhibited by retractions of iterates that would escape from the current straddle.  Flurries of these 
retractions,  by delaying convergence to some zeros,  especially  Hidden  zeros,   can complicate 
load-balancing severely enough to impede parallel computation,  for which all eigenvalues are 
otherwise eminently eligible since each is computable with no reference to any other.

§9:  How Straddling is Maintained
Subscript  j  will be dropped from  ξj  and  Ξj  to allay notational clutter in the explanation here.  
Now  ƒ(ξ) = 0  and  ξ  lies in an open interval  Ξ  either between two adjacent poles  λk  of  ƒ  or 
else outside all poles.  How do the properties of the  Spectral Equation’s  ƒ  and of  Hƒ  combine 
to maintain straddling?  Suppose  Ξ  contains three points  w,  x  and  y ,  maybe not all distinct,  

of which two straddle  ξ .  These two straddle  v := Hƒ(w, x, y)  too because  ƒ' < 0  and  ƒ† < 0 .
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On which side of  ξ  will  v  lie?  An answer comes out of a close examination of  ƒ  and  Hƒ .  
Start by dissecting   Rƒ(w, x, y) := (Hƒ(w, x, y) – ξ)/((w – ξ)·(x – ξ)·(y – ξ))  with the aid of the 
tediously verifiable identity in  §1  to find for  Rƒ(w, x, y) =: – Rn(w, x, y)/Rd(w, x, y)  that

     Rn(w, x, y) :=  ƒ†(x, y)·ƒ†††(w, x, y, ξ) – ƒ††(w, x, y)·ƒ††(x, y, ξ) 

         = ∑i ∑k>i γi
2·γk

2·(λi – λk)2/((ξ – λi)·(w – λi)·(x – λi)·(y – λi)·(ξ – λk)·(w – λk)·(x – λk)·(y – λk)) 
         > 0     and  

     Rd(w, x, y) :=  ƒ†(w, x)·ƒ†(x, y) – (x – ξ)·ƒ†(x, ξ)·ƒ††(w, x, y)  > 0 .

The last rather unobvious inequality follows from our supposition above about a straddle plus 
three observations:  First,   Rd(w, ξ, y) > 0 .  Second,  Rd(w, x, y)  is a continuous function of its 
arguments and independent of their order.  Third,  while two of w,  x  and  y  in  Ξ  straddle  ξ ,  
Rd(w, x, y) ≠ 0 ;  otherwise  v := Hƒ(w, x, y)  could be thrown out of  Ξ  instead of falling inside 
the straddle along with  ξ .  Taken together those inequalities about  Rn  and  Rd  imply that

  (v – ξ)/((w – ξ)·(x – ξ)·(y – ξ))  =  Rƒ(w, x, y)  < 0 .

This inequality  Rƒ(w, x, y) < 0  and the prerequisites for its validity are important.  These are …  
•    w ,  x  and  y  (not necessarily all distinct)  lie in  Ξ  along with  ξ ,  and
•    Either two of  w ,  x  and  y  straddle  ξ ,  or it is close enough to one of them.

( Amply many examples dissatisfy the second prerequisite and throw  Hƒ(w, x, y)  out of  Ξ .)

The first of two inferences from the inequality  Rƒ < 0  is that,  so long as both its prerequisites 
hold for  all  the iterates  xn  of a  (perhaps Confluent)  Hyperbolic Iteration,  a persistent pattern 
of signs of  xn – ξ  determines the maximum number  m  of consecutive iterates that can lie on 
the same side of  ξ .  Here is a tabulation of  m  and that pattern:

This table explains how  Hyperbolic  iterates that  all  satisfy both prerequisites straddle  ξ  and 
converge to it from both sides until roundoff interferes.  Confluent Hyperbolic Iteration  always 
satisfies both prerequisites if started from a straddle,  but converges a little slower than do the 
others.  Their faster convergence could be enjoyed if we could answer an interesting question:

How can we predict from some few of a chosen  Iteration’s  iterates whether
all subsequent iterates will satisfy both of the prerequisites that keep  Rƒ < 0 ?

Prediction is obvious only for  Confluent Hyperbolic Iteration  only if it starts from a straddle.

For other  Hyperbolic Iterations,  prediction may become practicable if the following conjecture is true:
Provided  w ,  x  and  y  satisfy both prerequisites for  Rƒ(w, x, y) < 0 ,

whenever any one of them moves towards  ξ ,  so does  v := Hƒ(w, x, y) .
Until this conjecture is decided I am inclined to eschew  non-Confluent Hyperbolic  and  Halley’s  Iterations.

Hyperbolic Iterations Fig.-Merit µ m Sign(xn – ξ)  Patterns

Hyperbolic xn+1 := Hƒ(xn, xn–1, xn–2) 0.6094 / Ç1 3  … + + + – + + + – …  or
 … – – – + – – – + …

Confluent Hyperbolic xn+1 := Hƒ(xn–1, xn–1, xn) 0.6931 / Ç2 1  … + – + – + – + – …

Confluent Hyperbolic xn+1 := Hƒ(xn, xn, xn–1) 0.8814 / Ç2 2  … + + – – + + – – …

Halley’s xn+1 := Hƒ(xn, xn, xn) 1.0986 / Ç3 1  … + – + – + – + – …  
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A second inference from the inequality  Rƒ < 0  is that since  Rƒ(u,u, v) < 0  and  Rƒ(u, v,v) < 0  
whenever  u  and  v  straddle  ξ ,  then we can predict  sign(ƒ(Hƒ(u,u, v))) = sign(ƒ(u))  and  
sign(ƒ(Hƒ(u, v,v))) = sign(ƒ(v)) .  These predictions figure in straddle-maintaining  Bi-Confluent 
Hyperbolic Iterations  that converge to a Hidden zero  ξ  never slower than quadratically,  we 
hope,  and converge ultimately with  Order  3  and  Figure-of-Merit  µ ≥ 0.5493 / Ç2 .

Of course,  the program must allow for predictions flouted by roundoff.  It must terminate the 
iteration when,  because of roundoff,  neither prospective computed replacement  t := Hƒ(u,u, v)  
for  u  nor  w := Hƒ(u, v,v)  for  v  could narrow the straddle.  And the program has to find an 
initial straddle to initiate  Bi-Confluent Hyperbolic Iteration.

§10:  Where to Find the Initial Straddle
Bi-Confluent Hyperbolic Iteration  needs initial points  u  and  v  in  Ξj   and on opposite sides 
of  ξj .  Toward this end,  closed-form solutions of the  Spectral Equations  of  2-by-2  matrices  

X  will be introduced:  Given values of just  α ≠ 0 ,  γ1
2 > 0 ,  γ2

2 > 0 ,  and  λ1 ≠ λ2 ,  the two 

zeros  ζ…   of   γ1
2/(ζ – λ1) + γ2

2/(ζ – λ2) – 1/α   are the functions …

 ζO(α, γ1
2, λ1, γ2

2, λ2) :=  ( λ1 + λ2 + α·(γ1
2

 + γ2
2) + sign(α)·√∆ )/2    and 

 ζB(α, γ1
2, λ1, γ2

2, λ2) :=  ( λ1 + λ2 + α·(γ1
2

 + γ2
2) – sign(α)·√∆ )/2     wherein  

         discriminant   ∆ :=  ( λ1 – λ2 + α·(γ1
2

 – γ2
2) )2 + 4α2·γ1

2·γ2
2  > 0 .

The names  “ζO”  and  “ζB”  have been so chosen because  ζB  lies strictly  Between  λ1  and  λ2  
whereas  ζO  lies strictly  Outside  them.  When  ζO  and  ζB  have very different magnitudes the 

smaller is best computed after the bigger from the identity  ζO·ζB = λ1·λ2 + α·(λ1·γ2
2

 + λ2·γ1
2)  

to lessen contamination by roundoff.  What follows uses both functions  ζO(…) and ζB(…) .

Back to the original task:  Bi-Confluent Hyperbolic Iteration  needs two initial iterates  u  and  v  
in  Ξj  but on opposite sides of an eigenvalue  ξj  of  X ,  whose dimension now exceeds  2 .  
Two  Cases  (B  and  O)  shall be distinguished according to whether  Ξj  lies  Between  λj  and  
λj+sign(α) ,  or else  Outside  the narrowest interval containing all the eigenvalues  λ…  of  V .

Case B:   When  Ξj  lies  Between  λj  and  λj+sign(α) .
This is the more common  Case.  It entails the computation of two nonempty sums-of-squares  

  σ« := ∑( γk
2  over indices  k  for which  α·(k–j) ≤ 0 )   and

  σ» := ∑( γk
2  over indices  k  for which  α·(k–j) > 0 ) .

In other words,  σ«  sums  γk
2  for all indices  k  on the same side of  j + sign(α)  as is  j ,  and  

σ»  sums  γk
2  for all indices  k  on the same side of  j  as is  j + sign(α) .  Then  ξj  turns out to 

lie strictly between   ζB(α, σ«, λj, γj+sign(α)
2, λj+sign(α))  and   ζB(α, γj

2, λj, σ», λj+sign(α)) ,  both 

of which fall inside  Ξj  too.
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Case O:   When  Ξj  lies  Outside  the narrowest interval containing all eigenvalues  λ…  of  V .
This  Case  arises only when  λj  is the least  (if  α < 0 )  or largest  (if  α > 0 )  eigenvalue of  V .

Let   σ := ∑k≠j γk
2 ;   this sums  γk

2  for all indices  k  with  λk  on the side of  λj  opposite  ξj ,  

which lies strictly between  ζO(α, γj
2, λj, γj–sign(α)

2, λj–sign(α))  and  ζO(α, γj
2, λj, σ, λj–sign(α)) .  

Both of these also fall inside  Ξj ,  which is the interval strictly between  λj  and  λj + α·∑k γk
2 .

  •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •    •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   • 

The relevant  Case  provides two estimates  ζ…(…)  inside  Ξj  that straddle  ξj .  Neither of the 

two need be close to  ξj ,  especially if  γj+sign(α)
2  and  γj

2  are tiny compared with   ∑k γk
2

 ,  in 
which case each estimate  ζ…(…)  may lie so close to its end of  Ξj  that too many  Hyperbolic 
Iterations  will be squandered to get all iterates far enough away from those ends’ poles that fast 
convergence can commence.  To defend against this contingency,  form a third estimate  ζ  from 
the average of the two estimates  ζ…(…)  and,  after examining the sign of  ƒ(ζ) ,  keep  ζ  and 
whichever of the two estimates  ζ…(…)  lies on the other side of  ξj  to serve as the two initial 
iterates  u  and  v .  Subsequent  Bi-Confluent Hyperbolic Iterations  will maintain the straddle 
and shrink it rapidly onto  ξj ,  even if it is  Hidden,  until roundoff retards further shrinkage.  
The iteration’s stopping criterion takes roundoff into account without mentioning it explicitly:

Unless  ƒ(u) = 0  or  ƒ(v) = 0 ,  in which case there is no need for more, 
end iteration as soon as neither computed  Hƒ(u,u, v)  nor  H(u, v,v)  
falls strictly between  u  and  v ,  and then assign to  ξj  whichever 

of these two minimizes the computed  |ƒ(ξj)| .

§11:  Error Analysis  of the  Roots  of the  Spectral Equation  ƒ(ξ) = 0
How uncertain is a computed root  ξJ  because of roundoff?  Uncertainty is engendered almost 

entirely by roundoff’s contribution to the computed value of  ƒ(ξ) :=  ∑k γk
2/(ξ – λk) – 1/α .

Recall that its data are  α ≠ 0  and  K  values  γk ≠ 0 ,  and  K  values  λk  all distinct and sorted so  λk < λk+1 .  Each 
root  ξJ  is known to lie in an open interval  ΞJ  one of whose endpoints is  λJ ;  the other is the nearer of  λJ+sign(α)  

and  λJ + α·∑k γk
2  subject to the understanding that  λ0 := –∞  and  λK+1 := +∞ .  Every root  ξJ  is  Simple  because 

the derivative   ƒ'(ξ) = –∑k γk
2/(ξ – λk)2 < 0 ;  moreover  ƒ'(ξJ) < –1/(α2·∑k γk

2) ,  so every root  ξJ  is determined 
sharply by the  Spectral Equation’s  ƒ .  In fact,  ƒ  is monotone non-increasing in each  ΞJ  despite roundoff.

Alas,  the given data can come almost arbitrarily close to pathological:  α  can be arbitrarily tiny or big;  distinct 

values  λk  may agree in all but their last digits;  and the coefficients  γk
2  can range almost arbitrarily widely unless 

each  γk  tinier than roundoff in  γk±1  is reset to zero and  Deflated  out.  In consequence of a near-pathology,  an 
interval  ΞJ  can be arbitrarily narrow,  or its  ξJ  can come arbitrarily close to either endpoint where a pole may  
Hide  the zero.  Pathology and roundoff can conspire to render the numerical computation of  ξJ  unreliable.

The analyses hereunder will help anyone who wishes to assess a computed zero’s uncertainty 
due to roundoff and the effectiveness of an attempt to combat it by  Deflation  (described below).
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A reasonable bound upon roundoff’s contribution is   e(ξ) := æ·∑k γk
2/|ξ – λk|   wherein  æ  is a 

modest multiple of a roundoff threshold  1.000…001 – 1  like  MATLAB’s  eps .  This  “modest 
multiple”  varies with matrix  X ’s  dimension  K ,  which is the number of terms in  ∑k .   The 
multiple depends on how summation is programmed and runs from  1  through  log2(K)  to  K ;  
roughly  √K  is probably satisfactory.  The consequent uncertainty in any computed value of  ξ  

at which  ƒ(ξ) ≈ 0  is about   ü(ξ) := e(ξ)/|ƒ'(ξ)| = æ·(∑k γk
2/|ξ – λk|)/∑k γk

2/(ξ – λk)2 .  In this 

formula  α  figures indirectly by virtue of its influence upon  ξ .  Thus  ü(ξJ)/æ  is a computable 
positively weighted harmonic mean of all the gaps  |ξJ – λk|  between  ξJ  and the poles  λk .

We can tolerate this much uncertainty  ü  easily if absolute  error in  ξJ  is our sole concern.

However,  in order to compute every eigenvector  xJ  of  X  accurately enough from the simple 

formula  xJ := Column({γk/(ξJ – λk)}) ,  all the gaps’  relative uncertainties  must be kept small.  

To this end we might endeavor to keep both  ü(ξJ)/(æ·|ξJ – λj|)  and  ü(ξJ)/(æ·|ξJ – λJ+sign(α)|)  
small enough.

This endeavor must fail occasionally when  ξJ  is too nearly  Hidden  by a pole  λ… .

Before the failure is explained some simplifying assumptions and abbreviations will be invoked:  
First,  for any given  J ,  let  Î  be the subscript of the pole  λÎ  nearest  ξJ   so that either  Î = J  or  
Î = J + sign(α) .  Next assign abbreviations …

 ck := γk
2/γÎ

2 > 0 ;   rk(ξJ) := |ξJ – λÎ|/|ξJ – λk| ;   ∑' := ∑k≠Î ;  and    q(ξJ) := ü(ξJ)/(æ·|ξJ – λÎ|) .

Now  æ·q(ξJ)  is the  relative uncertainty  in the smallest gap  ξJ – λÎ .  Drop  (ξJ)  to get simply  

q = ( 1 + ∑' ck·rk )/( 1 + ∑' ck·rk
2 ) .  Note that  0 < rk ≤ rî = 1  for all  k ;  consequently  q > 1 .

How big can  q  not  be?

In the absence of constraints upon the data  α ,  {λk}  and  {γk}  beyond those assumed so far,   
q  can be arbitrarily bigger than  1 ,  as happen to a small  K-by-K  matrix example with  
      K = 3 ,   J = 2 ,   λ2 = 0 ,   α = γ2 = ξ2 = 1 ,   λ1 = 1 – 2q ,   λ3 = 1 + 2q ,   γ1 = γ3 = √2q·(q – 1) . 
This small example’s uncertainty  ü(ξ2) = q·æ·|ξ2 – λ2|   for any chosen  q  no matter how big.

More generally,  for arbitrary dimensions and data,

  q =  ü(ξJ)/(æ·|ξJ – λÎ|)  ≤  ( 1 + √(∑k γk
2)/|γÎ| ) , 

and the upper bound is achievable.  This inequality’s proof starts from  Cauchy’s  inequality,  
which implies

 q = ( 1 + ∑' ck·rk )/( 1 + ∑' ck·rk
2 )  ≤  q :=  ( 1 + √(∑' ck·∑' ck·rk

2) )/( 1 + ∑' ck·rk
2 )  ,

with equality just when all numbers  rk  are the same for all  k ≠ Î .  Anyway,  q ≥ 1  since all 

such  rk ≤ 1 .  Now introduce temporary abbreviations  ç := √(∑' ck)  and  θ := √(∑' ck·rk
2)  to 

simplify  q := (1 + ç·θ)/(1 + θ2)  and the confirmation that  

  1 + ç2 – (2q – 1)2  =  (ç·θ2 + 2θ – ç)2/(1 + θ2)2  ≥ 0 , 

1
2
---
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so that  q ≤ (1 + √(1 + ç2))/2  with equality just when  2θ = ç/ q .  Work backward to obtain the 

foregoing more general upper bound upon  q .  It can be arbitrarily big if  |γÎ|/√(∑k γk
2)  is tiny 

enough,  and then the endeavor described above can fail and often does,  alas;  then roundoff can 
deflect some eigenvectors,  if computed from the simple formula above,  through angles roughly 
as big as the gaps’ worst relative errors.

  •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •    •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   • 

The rounding-error-bounds  ü(ξJ)  and  æ·q(ξJ)  cost little to compute because they come from 
quantities already computed for each iteration.  The bounds are approachable too,  occasionally 
bigger than actual errors by less than an order of magnitude.  However the bounds tend to gross 
pessimism,  the more so as dimension  K  increases.  They are pessimistic,  on computers that 
conform to  IEEE Standard 754 for floating-point arithmetic,  because rounding errors resemble 
independent random variables with mean zero in so far as they tend to cancel partially as they 
accumulate.  But roundoff is not random on these computers;  consequently computed values of  
ƒ(x)  are monotone non-increasing between poles.  Here is a snapshot comparing values of a 
typical  Spectral  ƒ(x)  computed with  4-byte  floating-point versus  8-byte:

This staircase graph is typical,  though the sizes of horizontal steps and vertical risers are often 
far more diverse.  Were roundoff random or biased,  the graph of  ƒ  would appear ragged or 
shifted,  and its zeros  ξJ  would need a trickier program and noticeably longer to be computed  
“at least about as accurately as the data and the arithmetic’s precision deserve”.

  •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •    •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   • 
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Evidently roundoff can debase the relative accuracy of a computed  ξJ  severely only when  

|γÎ|/√(∑k γk
2)  is too tiny.  Then,  in an attempt to circumvent debasement,  we could try … 

 Deflation :     As if  γÎ = 0 ,  remove it and  λÎ  from the data temporarily; 
 restore them after all  K–1  other roots  ξk  have been computed.

Deflation is motivated by the observation that one of the  Spectral  equation’s roots  ξJ → λÎ  as  
γÎ → 0  while all other data is held fixed.  Two questions demand attention:

Which root  ξJ → λÎ ?    How big is  Deflation’s  error  |ξJ – λÎ| ?

Their answers will tell us how small  |γÎ|  must be to render  Deflation’s  error  (accepting  λÎ  in 
place of  ξJ )  tolerable,  and where to restore  λÎ  in sorted order among the other roots  ξk .

We know already that either  J = Î  or  J = Î – sign(α) .  Assume for now that we know which;  
the appropriate choice(s) will emerge later.  And assume  λÎ  is not too near any other  λ… .

At first sight the error  |ξJ – λÎ|  might be expected to approach zero like  γÎ
2  since this is the 

only way  γÎ  appears in the  Spectral  equation   ƒ(ξJ) := ∑k γk
2/(ξJ – λk) – 1/α = 0 .  Usually the 

error does behave that way;  but whenever  λÎ  is a kind of double root the error approaches zero 
much slower,  like  |γÎ| ,  instead.  Here is how that can happen:

Abbreviations   ∑' := ∑k≠Î ,   ƒÎ(ξ) := ∑' γk
2/(ξ – λk) – 1/α ,   fÎ := ƒÎ(λÎ) ,   fÎ

† := ƒÎ
†(ξJ, λÎ)  

and   fÎ' := ƒÎ'(λÎ) = ƒÎ
†(λÎ, λÎ) < 0  will help reduce clutter.  Note:  fÎ  and  fÎ'  are computable.

Now   0 = ƒ(ξJ) =  γÎ
2/(ξJ – λÎ) + ƒÎ(ξJ)  =  γÎ

2/(ξJ – λÎ) + ƒÎ(λÎ) + (ξJ – λÎ)·ƒÎ
†(ξJ, λÎ) ,   whence 

comes   γÎ
2/(ξJ – λÎ) + fÎ + (ξJ – λÎ)·fÎ

† = 0 .  From this equation’s two solutions  (ξJ – λÎ)  we 
select the one conforming to our assumption that  |γÎ|  is tiny enough that the limits,  namely   

|ξJ – λÎ| → 0  and  fÎ
† → fÎ' < 0  as  γÎ → 0 ,  are very near.  When  fÍ ≠ 0  our selection must be

       ξJ – λÎ =  –2γÎ
2/( sign(fÍ)·√(fÍ

2 – 4γÎ
2·fÍ

†) + fÍ )  ≈  –2γÎ
2/( sign(fÍ)·√(fÍ

2 – 4γÎ
2·fÎ') + fÍ ) ;

and then   J = Î – (sign(fÍ) + sign(α))/2 .

When  fÍ = 0  (then  Î ≠ sign(α)  and  Î ≠ K+1+sign(α) )  our selection becomes ambiguous:

       ξJ – λÎ =  ±|γÎ|/√(–fÍ
†)  ≈  ±|γÎ|/√(–fÎ')     for   J = Î + ( ±1 – sign(α) )/2   resp.

This ambiguity is not a defect in our analysis,  but a characteristic of the dispersal of a double 
root’s fragments by a perturbation of its equation.  λÎ  is the double root,  half  Hidden,  of the  
Secular  equation when  γÎ  is infinitesimal.  In other words,  λÎ = λÎ–sign(α)  turns out to be a 
double eigenvalue of matrix  X := V + α·c·c'  when  γÎ = 0 .   A small example with  Î = 2  has 

γ1 := λ1 := –2 ,    λ2 := 0 ,    γ3 := λ3 := α := 1 ,   and tiny variable  γ2 := γ  
and produces these series expansions for the three eigenvalues of  X :
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  ξ1 = –|γ|/√2 – γ2/16 + 29·|γ|3/(256√2) + … ,

  ξ2 = +|γ|/√2 – γ2/16 – 29·|γ|3/(256√2) + … ,     and

  ξ3 = 4 + 9·γ2/8 – 81·γ6/8192 + … ,    all for  |γ| < 1.461… .

Generally,  when  λÎ  is far enough from all other  λ…s,  the foregoing approximations to  ξJ – λÎ  
permit  Deflation’s  error to be deemed tolerable or not.  The situation gets more complicated 

otherwise,  when  λÎ  belongs to a tight cluster of values  λ… ,  since  fÎ'  may approximate  fÍ
†  

poorly then.  A crude but fully general overestimate of the effect upon all  X ’s  eigenvalues of  
Deflation  comes from recognizing it as a  Rank-2  perturbation of  X  that subtracts from all its 

eigenvalues amounts between  α·( γÎ ± √(γÎ
2 + 4∑k≠Î γk

2) )·γÎ/2 ,  most of them much tinier.

Whether with  Deflation  or without,  whether assessed or not,  the accuracies of all computed 
eigenvalues can be at least about as good as the data and arithmetic’s precision deserve,  and yet 
some gaps  ξJ – λk  can be too inaccurate for reliable computation of all  X’s  eigenvectors from 

the simple formula  xJ = Column({γk/(ξJ – λk)}) .  To compute every eigenvector of  X  reliably 
without extra-precise arithmetic requires unobvious formulas for them and for eigenvalues 
obtained accurately enough with the aid of artful origin shifts;  these are a story for another day.

§12:  Another Example,  a  Tridiagonal Eigenvalue Problem
Suppose  T  is a  K-by-K  symmetric tridiagonal matrix whose eigenvalues  τj  are sought.  These 

are the  K  zeros of  det(T – τ·I)  but it is harder to compute than  π(τ) := det(T – τ·I)/det(T – τ·I) ,  
where  T  is obtained from  T  by striking off its last row and column,  after floating-point  
Over/Underflow  is taken into account.  In fact,  π(τ)  is the last diagonal element of the upper-
triangular factor  U  of  T – τ·I = L·U  without  pivotal exchanges;  L  is lower-triangular with a 
diagonal whose every element is  1 .  The  K  poles of  π  are at  ∞  and the eigenvalues of  T ,  
and interlace the zeros of  π .  The count of zeros of  π  less than  τ  is the same as the count of 
negative diagonal elements of  U ;  a count of the signs of all but the last diagonal element of  U  
counts finite poles of  π  less than  τ ,  locating them implicitly.  Between poles,  π'(µ) < –1  and 
computed values of  π(µ)  are monotone non-increasing despite roundoff.

Hyperbolic Iterating Functions  Hπ(…)  act much as  Hƒ(…)  do for the  Spectral  equation’s  ƒ  
because a  Möbius Map  (§4)  that takes the infinite pole of  π  to a finite location turns  π  into a 
rational function  ƒ  with  K  finite zeros interspersed among  K  finite poles between which  ƒ  
is strictly decreasing.  However,  because the poles of  π  are not explicit,  straddles of  Hidden  
zeros of  π  have to be found by a process of  Binary Chop  acting on the aforementioned counts.  
On the other hand,  Deflation,  accomplished by zeroing out negligible off-diagonal elements of  
T ,  is simpler to manage for  π  than for  ƒ .  So is roundoff.  Another story for another day.
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§13:  Further Reading
For more about the theory of equation-solving see books by  J.F. Traub,  by  A.M. Ostrowski,  
and by  A.S. Householder,  all cited in my extensive  Lecture Notes on Real Root-Finding  
posted at  <www.cs.berkeley.edu/~wkahan/Math128/RealRoots.pdf>.  These notes also apply  
Projective  maps built out of  Möbius  maps to  Secant  and  Newton’s Iterations.  Properties of  
Möbius  maps are explored in my lecture notes posted at  <…/Math185/Mobius.pdf>.  For the 
properties of eigenvalues of real symmetric matrices see  B.N. Parlett’s  book  The Symmetric 
Eigenvalue Problem  (1998, Classics in Applied Mathematics #20) Soc. for Indust. & Appl. 
Math., Philadelphia.  Roundoff is treated at length in  N.J. Higham’s  book  Accuracy and 
Stability of Numerical Algorithms  2d ed. (2002) Soc. Indust. & Appl. Math., Philadelphia.  For 
the tiresome details about unobvious eigenvector formulas and  “artful origin shifts”  see my 
notes on  Rank 1 Updates of a Symmetric Eigenproblem  to be  (WHEN?)  posted at  
<…/SymUpdt1.pdf>,  and the  MATLAB  programs therein.  The unobvious eigenvector formulas 
come from  Ming Gu and Stanley C. Eisenstat (1994) “A Stable and Efficient Algorithm for the 
Rank-One Modification of the Symmetric Eigenproblem” pp. 1266-1276 of SIAM J. Matrix 
Anal. Appl. 15.  For the currently best alternative to  Bi-Confluent Hyperbolic Iteration  see  Ren-
Cang Li (1994) Solving Secular Equations Stably and Efficiently,  EECS Comp. Sci. Divn. 
Tech. Rept. No. UCB//CSD-94-851, Univ. of Calif. @ Berkeley.  His scheme supplanted an 
older one,  in “Rank-one modication of the symmetric eigenproblem” by J.R. Bunch, Ch.P. 
Nielsen, and D.C. Sorensen (1978) on pp. 31-48 of Numer. Math. 31,  that converged to each 
zero monotonically,  and to  Hidden  zeros far too slowly.
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