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80: Abstract and Introduction

Given areal function f(x) about which we know how to compute its value, we seek one of its
Zeros z, aroot of the equation f(z) =0, starting from some first guess(es). This z should be
the limit of a sequence of presumably improving guesses X,+1 := Hf (X, X1, X—p) computed
for n=0,1,2, 3, ... inturn by an Iterating Function Hf defined below. It will be compared
with afew others, and its application to an eigenproblem will be analyzed in detail.

Several assertions, equations and inequalities will be left for diligent readers to reconfirm.

Some iterating functions are derived in 81 from zeros of interpolating functions that match f(x)
at two or three points. If aderivative or two of f can be computed too, confluent versions of
those iterating functions become available; Newton’s and Halley’s are two of several offered
in 82. How should an iterating function be chosen from the plethora available? Considerations
relevant to that choice are explained in 83. Hyperbolic iterating functions seem apposite when

f has poles sprinkled among its sought zeros. The close relation demonstrated in 84 between
these iterating functions and Mobius (bilinear rational) functions helpsreveal how a program’s
languid convergence may be misdiagnosed. Thisiswhy 85 chooses Bi-Confluent Hyperbolic
Iteration to convergeto azero from both sides, thereby combatting both languor and roundoff
except, as 86 observes, for slow convergence to amultiple zero. A zero Hidden by apole
too nearby in 87 can be found quickly provided it isfirst straddled. A practical application of
the foregoing theory is the solution of the Spectral equation of an eigenvalue problem updated
by arank-1 perturbation; 888 - 11 exhibit the details, including an error-analysis that assesses
unavoidable uncertainties due to roundoff. Another applicationin 812 isanother eigenproblem.
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81: Iterating Functions Sf(...), Hf(...) and Mf(...)
If afunction f issmooth enough it may be approximated well by the first several terms of its
Newton Interpolating Polynomial Series

FO) = Fx0) + (xx0)-( (X0, X_0) + (%) -( FTT (X0, X1, X0) + (xxp)-(177...)))

in which a non-standard notation is being used for Divided Differences

FToy) = (FOOFOy) . FTwox y) = (Fiw, ) = Fioay)w-y) - £
The first two terms’ linear polynomial vanisheswhen x = Sf(Xg, X_3) := Xg— f(Xg)/ fT(xo, X_q) -
Theiteration Xp+q1 := Sf(Xp, Xn—q) iScalled Secant Iteration and, if it convergestoa Smple
zero z of f (where f(z2)=01 f'(2)), convergeswith Order (1+C5)/2» 1.618, or (rarely)
faster. Thismeansthat if z, x_; and Xy agreein sufficiently many leading decimal digits, X,
agreeswith z in at least an additional number of decimal digits that grows roughly proportional
to ((1+G5)/2)" until roundoff in the computation of f etc. interferes with convergence.

If, unlikeapolynomial, f resemblesarational function with poles scattered among its zeros,
f may be better approximated by the first few levels of an Interpolating Continued Fraction
F0) = £(x0) + (xa) (F*(x0, X 1) + (=X (F¥(x0, X 1, X 2) + (xx I (F...)))
in which a non-standard notation is being used for non-standard Reciprocal Divided Differences
700 y) = ICFO) = F)), P, %, y) = 0w, ) — FHw, y)), P
Thefirst two levels' continued fraction interpolates (matches) f(x) at X =Xg, X3 and X_p:
Y £(X; X0, X1, X2) 1= f(Xo) + (x=xo)/ (F*(X0, X_q) + (x=X_)/ (X0, X1, X))
= f(xo) + (x-X0)f (o X /(1 = (xx_) f T (xoX 1 X 2/ (X0X_2) )
Thisinterpolant Y f(X; Xg, X_1, X_p) vanisheswhen x = Hf(Xq, X_1, X_p) determined thus:
HF(U, v, w) := u— FU)-( F4(u, v) + () 7, v, w) )I( 1+ Fu)/f*(u, v, w))
= u= /(T V) = F0)-F v, wy v, w))
Theiteration Xp+1 := Hf (Xn X1, X—p) iScalled Hyperbolic Iteration and, if it convergesto a

simplezero z of f, convergeswith Order j » 1.839, the positiveroot of j 3=j 2+j +1,
or (rarely) faster. Thisfollowsfrom animportant and tediously verifiable identity
HEW, X N)=Z = Rewx.y) = Lo X )FT00 Y, 2) = 106 y) £ w, %, y, 2)
(W=2)-(x~2)-(y—2) w0 y) = FO-fTT (L x, Y)
whoselimit, as w® z, x® z and y® z, impliesthat asiterates x,® z they satisfy
*ne1 =2 (X0—2)- (X1~ 2)-(n2-2)) ® Rf(z,2,2)=(f"(@%4-f@)-f" (26)/f @),
whence alinear recurrence explainswhy —log(jx,—2z|) growsat least asfastas j" as n® +¥ .

Both iterating functions have graphical interpretations. Sf usesastraight line, asecant, that
cutsthe graph of f twiceto approximateit. Hf usesan hyperbolawith vertical and horizontal
asymptotes that cuts the graph of f thriceto approximateit. Its hyperbolaresembles a straight

line ever more widely as f** approaches ¥ . Caution: f*(w,x,y) = f*w,y,x) 1 f#x,w,y).

Both our iterations can be applied with a complex analytic function f(x) of acomplex variable
x tofind acomplex zero z. However, if f(x) isrea for al rea x, then our iterations require
complex initial guesses lest they never converge to anon-real zero z. Thisrequirement can be
circumvented by David Muller’s iterating function v=Mf(w, X, y) that istheroot v nearest
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w of the quadratic equation 0= f(w) + (v—=w)(fT(w, x) + v=)(FT(w, x, ¥))) :  Mf(w,xy) =

w —2f W)/ ( FT(wx)+w=) f T w,x,y) £ QU(FTw ) +w=) £ (wixy))? = 4Fw) T wxy) ) )
Graphically, Mf usesaparabolathat cutsthe graph of f thriceto approximateit. lterating
functions Mf and Hf havethesame Order j » 1.839 of convergenceto asimple zero of f;
but Hf and Sf cannot be expected to converge to adouble zero asfast as Mf can.

Note: Like fT(...) and f7(...), sodo Sf(...), Hf(...) and Rf(...) disregard their arguments order.

§2: Confluent Versions

If computing f(x) and also itsderivative f'(x) simultaneously costs not much more time than
computing f(x) aone, confluent versions of the foregoing iterating functions become worth
considering. Some of these confluent versions’ arguments coincide; some divided differences
are replaced by derivatives thus: fT(x, X)=f'(x) and fTT(x, X, X) = f" (X)/2. The confluent
version of Secant Iteration is Newton'sIteration X1 := Sf(Xp X)) = X — FX)/f' (X)) Which,
if convergent to asimple zero, convergeswith Order 2 or (rarely) faster. Hyperbolic Iteration
has five confluent versions: Xp.q := Hf (Xp X Xpq) --- COnvergeswith Order 1+ Q2 » 2.414;

Halley'sIteration Xn.q := Hf (Xp, X, Xn) = Xn = FO) (' (%) — %f(xn)'f" X (X)), if ..,
convergeswith Order 3; three more versionsintroduced below ... converge with order 3 2.

83: Choosing an Iterating Function
How shall we decide which version to choose? The decision must weigh three considerations
listed herein order of difficulty: Cost, Vulnerability to Roundoff, and Appositeness.

Cost is easiest to assess when the accuracy desired is so high as will entail alarge number n of
iterationsof Order @ > 1. They will garner roughly @" correct significant digits at the cost of
computing time T :=n-C where C isthe cost of oneiteration. C isassumed the same for all
iterations, asisthe case when floating-point arithmetic affords just one precision, in which case
theiterates’ correct digits grow with time T roughly like (@Y%)T. (Otherwise, if arithmetic’s
precision isvariable, thelast iteration islikely to cost more than al the others taken together.)

Thus m:=log(@)/C isarough Figure-of-Merit, the bigger the better, for an iterating function
of Order @ and cost C periteration. A. Ostrowski proposed an assay like m of an iteration’s
merit in the middle of the 20th century. m isvery rough because it disregards propertiesof f
like values of its derivatives at its zero, so comparing Figures-of-Merit of two iterations may
be midleading if they depend upon different derivatives, especialy when, aswe often hope will
happen, adequate accuracy is attained with not very many iterations. We shall try not to be
misled when we compare afew iterating functions Figures-of-Merit.

Let C,; bethe cost of an iterating function that requires only one new value of f per iteration;
let C, bethecost... of f' and f; let C3 bethecost... of ', f' and f. Withvery rare
exceptions, C; <C,<Cz; andnormally Cx <K-C;. Ostrowski considered polynomials f
of degrees so high that Cx » K-C4 ; these contribute the following table’'s last column.
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Tablel: Iterations Figures-of-Merit m

Iteration Order| Cost m mfor polynomials f
Secant Xp41 := Sf(Xn, Xp1) 1618/ C; |0.4812/C,| 0.4812/C,
Newton's X,41 := Sf(Xp Xp) 2 | C,|06931/C, 0.3466/C,
Hyperbolic X1 := Hf (Xp X1y Xp1-2) 1.839 G; |0.6094/C;4 0.6094/ C,
Confluent Hyperbolic Xn.1 = Hf (X, X1, Xna)| 2 | G2 0.6931/C, 0.3466 / G,
Confluent Hyperbolic X1 := Hf (X, Xp, Xn1) |2.414] C, |0.8814/ C, 0.4407/ G,
Bi-Confluent Hyperbolic (to be defined later) 3 2G2|0.5493/C, 0.27471 G,
Haley's X1 := Hf (X X Xp) 3 | C3|1.098/Cs/ 0.3662/C;

Were Figures-of-Merit m all that mattered, this table would enact a severe law of diminishing

returns from iterations whose higher Order of convergenceis achieved at the cost of computing
derivatives. For instance, Newton’'s Iteration would be preferred over Secant Iteration only if

f' added lessthan 44% to the cost of computing f alone. Infact, misnot all that matters.

Vulnerability to roundoff matters too. Besides limiting how accurately a zero can be computed,
roundoff in the computation of f complicates the decision to quit iterating. The last few iterates
may waste time dithering in the zero’ s neighborhood unless roundoff’ s obscuration is estimated
adequately by an error-analysis built into the computation of f. Instead of an error-analysis,

an incorporation of f' accurateto afew significant digits helps an iteration to nearly minimize
the magnitude of iterates’ dithering, thus simplifying the program’s decision to quit iterating.

Appositeness of an iterating function like Sf(...) or Hf(...) reflects how nearly its provenance
accords with properties of f, and affects the iteration’s behavior while not yet near the sought
zero. Forinstance, if f hasapole near which an iterate may fall, Hyperbolic and Halley’'s
Iterations escape from the pol€e s neighborhood much faster than Newton’s or Secant Iteration
can. We should consider also whether an iteration, perhaps modified slightly, can maintain a
Sraddle; thisisapair of iterates, not necessarily consecutive, betweenwhich f reversessign
an odd number of times. Newton'sand Halley’s Iterations require programs more complicated
than the other iterations need to maintain a straddle when losing it risks losing the sought zero or
converging to an undesired zero. Moreover, when Newton's iterates converge they almost
always converge ultimately monotonically (i.e., from one side), whereas the other iterations
converge from both sides of a straddle for at least about as many functions f asnot. When two-
sided convergence is predictable it smplifies criteriafor quitting the iteration; it shrinks nested
straddles around a zero about as tightly as roundoff allows until it transgresses the last straddle.

The more is known about the propertiesof f, the better can an iterating function be chosen to
take advantage of those properties and also, perhaps, overcome their vitiation by roundoff.
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84. MobiusMaps Commute with Hyperbolic Iterations
Four real constants a, b, ¢ and d determinea Mdbius Function M(x) := (a-x —b)/(c:x + d) ,
also called a “Linear Fractional” or “Bilinear Rational” function. Lest it degenerate into a
constant, its constants must be constrained: a-d+b-c! 0. Then another Mdbius function
W(x) := (b + d:x)/(a—c:x) turnsout to beinverseto M(x) in the sensethat W(M(x)) = x and
M(W(x)) = x . Thesefunctions range and domain is best construed as the circle obtained from
the real axis after it has been closed by its incorporation of asingle point at infinity thus:
M(-d/ic) =¥, W(¥)=-dlc, MF)=alc and W@&/c)=¥ .
Any three distinct points p, g, r on this circle can be mapped by a suitably constructed M6bius
map M to any other distinct three points p = M(p), k =M(q), r = M(r) resp. by solving a
Bilinear Cross-Ratio Equation
(x=p)-(@—1)-(M(x)—r)-(k —=p) = (M(x) —p)-(k = )-(x—r)-(q—P)
for M(x) after deleting every factor, if any, that contains ¥ . Except acrossitspole —d/c,
M(x) isstrictly monotonic, increasing if a-d+b-c>0, elsedecreasing, because the divided

difference MT(x, y) = (a-d + b-c)/((c-x+d)-(cy+d)) hasthe samesignas a-d+b-c has.

The set of hyperbolas and straight lines that interpolate f(x) to determine Hyperbolic Iterating
Functions Hf(...) isaset mapped toitself by M(x). Consequently these Commute thus:
Given functions f(x) and M(x), determine M’s inverse W(x), and define
f(x):=y-f(W(x)) foranyconstant y * 0. Derive Hf (w, x, h) from divided
differencesof f justas Hf(w, X, y) isderived from divided differencesof f .
Then Hf (M(w), M(X), M(y)) = M(Hf(w, X,Yy)) .

This means changing coordinates from x to x := M(x) and from f(x) to f (x) :=y -f(W(X))
amountsto a MobiusMap that connects {x, f(x)} and {x, f (xX)} sotightly that Hyperbolic
iterates Xp+q = Hf (X, ...) starting from X, ... and converging tothezero z of f areimages

of analogous Hyperbolic iterates Xp41 = Hf (X, ...) = M(X,41) Starting from xg = M(xg), ..
and converging to the zero z := M(z) of f . Both sequencesof iterates x,, and X, = M(X,)
must converge to their respective destinations at the same speed in the long run.

“Inthelong runwearedl dead.” — JM. Keynes (1883 - 1946)

L ong-running computation is what we wish to avoid. We prefer that iteration enter promptly a
regime of fast Superlinear (Order > 1) convergence that we will terminate soon, as soon as
iterates approach the sought zero z about as closely as roundoff allows. Easier said than done.

From an ill-fated start, an iteration can enter instead aregime of languid convergence, creeping
through too many iterates before entering an ultimate regime of fast convergence. If a program
could detect its embrace by languor the program could attempt an escape. Detection is hindered
by an involuntary kind of conspiracy between roundoff and Mobius maps that can squeeze or
stretch any interval through which many Hyperbolic iteratestravel converging slowly to azero
outsideit. In one coordinate system, say {x, f (x)}, theseiterates are separated widely enough
for some regularity in their successive differences to suggest an extrapolation that may escape
from languor. Inanother {x, f(x)} coordinate system the iterates appear as crowded asif they
were about as near their destination as roundoff allows though actually the destination is not that
near at all. We desire that our root-finding program cope well with these phenomena.
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85: Infantile Greed, and Bi- or bi-Confluent Hyperbolic Iteration
Wewant it all, onthe cheap, and soon. Sometimes we get it.

We wish to compute each zero of f at least about as accurately as the data and the arithmetic’s
precision deserve, but without performing the extra computation of error-analyses to estimate
how much accuracy is deserved. And we wish not to wait while iterates grossly contaminated
by roundoff dither. Consequently aroot-finding program purporting to grant our wishes cannot
rely upon an iterative method that will ultimately converge monotonically (from one side) lest
short steps confound the program. It cannot distinguish numerous short steps taken to converge
very slowly to an unknown destination far away, from short steps taken as iterates drift through
aregion around a zero where |f(x)| is smaller than its computed value because of roundoff.

Without computing a modest overestimate (likethe Error-Analysis in 811 of 88's example)
of roundoff’s contributionto f, the only way to be about as sure as roundoff alows of azero’'s
location isto straddle it about as tightly as roundoff allows. To this end aroot-finder’ siterative
method must, after it finds astraddle, maintain it through a nested sequence of tighter straddles
that shrink onto a zero inside them until roundoff thwarts the method. Thiskind of method is
the kind we will prefer. However, what “thwarts’ means here entails subtleties.

Roundoff cannot thwart an iterative method, if it samples only computed valuesof f (not its
derivative nor any other information about it), until the straddle’ s ends coincide or are adjacent
floating-point numbers. To reach this state, if its precision overreaches the accuracy the data
deserve, often takeslonger than we wish to wait. We will prefer some other method.

Roundoff can thwart an iterative method that would, in the absence of roundoff, always shrink
astraddle and ultimately shrink it fast (superlinearly). Roundoff thwarts the method when, as
computed, an iteration-step would lose the straddle or not shrink it. Then isthe time to quit the
method. It must depend upon information, like a computable derivative f' and/or assumptions
about the smoothness and monotonicity of f, beyond merely how to compute its values. And
the method should not so exaggerate the effects of roundoff that iteration is stopped before the
sought zero has been located at least about as accurately asit deserves. Such a method can be
expected to succeed only under favorable circumstances. Here are two such methods:

Bi- and bi-Confluent Hyperbolic Iterations apply the iteration function computed as

HF(y, x.X) = Hf(xX, y) 1= x = FO/( ' (%) = FO)-FTTOoxy) £ (xy))
to both sides of astraddle. Suppose u and v straddle f’s sought simple zero z but no other
zero nor singularity nor zero of f'. Therefore f isstrictly monotonic within the straddle, so
f(w-f(v) <0, and f'(u), fT(u,v) and f'(v) all havethe same nonzero sign. Computing both

t:=Hf(uu,v) and w:=Hf(u,v,v)

will cost very little more than computing either, and both will fall into the straddle between u
and v. Appropriate replacement(s) of u and/or v by t and/or w will maintain and shrink
the straddle. How shall “Appropriate” be determined? Putting this question’s answer into
effect constitutes a Bi- or bi-Confluent Hyperbolic Iteration-step.

The obvious answer comes from the computation of both f(t) and f(w), together with f'(t)
and f'(w) for useinthe next iteration. The computation iswasteful only if f(t)-f(w) >0, in
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which case either {t, f(t), f'()} or {w, f(w), f'(w)} will be discarded and the other made part
of anew straddle nested in and noticeably narrower than the given straddle {u, v} . Waste like
this cannot afflict very many consecutive Bi-Confluent Hyperbolic iteration-steps; ultimately,
asisexplained hereunder, waste isinhibited by the influence of theratio Rf(...) defined above
in 81's tedioudly verifiable identity, namely ...

(t—2)/((v—2)-(u-2)?) = Rf(u,u, v) = Rf(v, uu) =

= (Fuu, v)-F Ty, 2) = £ W) FMuu, v, ) v)-f ) - F)- M, v) ;
(w—z)/((u—z)-(v—z)z) =Rf(u,v,v) =

= (F"u, viv)-FTT vy, 2) = £ ) FTT G, vy, 2)(FT (U, v)-F V) = FO)-F T, vy))

Though important, Rf(...) isnot intended to be computed during the iteration.

Rf(...) cannot beinfinite; otherwise t and/or w would be thrown out of the straddle, contrary
to the assumed monotonicity of f. Therefore Rf, like f, hasno singularity so long asal its
arguments stay within the given straddle. As u and v converge to their respective limits (not
yet proved to be coincident) in the course of iteration, Rf(u,u, v) and Rf(u, v,v) convergeto
their respective finite limits, asdo Hf(u,u, v) and Hf(u, v,v) to limits each of which must
coincidewith alimit of u or of v. Because the assumed strict monotonicity of f bounds fJr
away from zero, the convergence of Hf to the same limit as one of its arguments (regardless
of their order) impliesthat f convergesto zero there; consequently iterates u and v converge
to z from opposite sides, and both valuesof Rf(...) convergeto Rf(z,z,2) .

If Rf(z,z,z) =0, iterateswill convergeto z so exceptionally fast that the iterates computed
will be too few for anyone to care whether some were wasteful in the sense described above.

If Rf(z,z,2)* 0, itssignwill ultimately be matched by the signsof Rf(u,u, v) and Rf(u, v,v),
whereupon z will lie between t and w both within the straddle; neither need be wasted. That
nonzero sign determines how z and the Bi-Confluent Hyperbolic iterates will be ordered:

When al Rf(...) >0, ether u<w<z<t<v or v<t<z<w<u.
When al Rf(...)<0, ether u<t<z<w<v or v<w<z<t<u.

Either way the iteration produces a sequence of ultimately strictly nested straddles whose ends
convergeto z withthesame Order 3 as Halley'slteration’s. However, unlesswevaluea

tight straddle more than a one-sided but usually no worse approximation to a sought zero, the
Figure of Merit m» 0.5493/ G, since each Bi-Confluent Hyperbolic iteration-step performs

nearly twice as much arithmetic asamerely Confluent one.

This cost can be cut back if Rf(...) always has the same nonzero sign deduced in advance from
propertiesof f; such functionswill appear in 88 and 812. Knowledge of that sign permits
valuesof t:=Hf(u,u,v) and w:=Hf(u, v,v) computed from the ends of a straddle to be put in
order with z according to the inequalities displayed above before f(t) or f(w) iscomputed.
Of two nested straddles, each withoneendat u or v and the other at t or w, the narrower
provides the next bi-Confluent Hyperbolic iteration-step. It requiresonly either {f(t), f'(t)}

or else {f(w), f'(w)} tobecomputed. Ultimately thisiteration converges alternatingly with
Order 1+ (@ » 2.414 if Rf(...)>0, or else Order Q2+ () » 2.058 if Rf(...)<0.
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86: Linear ConvergencetoaMultipleZero

Occasionally an iteration converges far slower than is consistent with its Order of convergence
exhibited in Table 1. If we wish to preclude such languor we shall have to understand what can
causeit. One possible causeisaviolation of the assumption that the sought zero z is Simple.

Functions with multiple zeros are rare, the more so the higher isthe multiplicity. On the other
hand, functions f with clusters of zeros well separated from the function’s other zeros and
poles are commonplace. From afar (far enough from both the cluster and all other zeros and
poles) the cluster resembles a multiple zero closely enough to retard an iteration’ s convergence
towards a sought zero z until iterates come sufficiently nearer to it than to all the cluster’s other
zeros. While retarded the iteration’ s behavior often exposes the cause of languor thus:

While convergenceislanguid it isroughly Linear, which meanstheratio (Xp.q—2)/(Xq—2) of
successive errors approximates avalue r * 0 dependent upon only the number m of zerosin
the cluster and the choice Sf(...) or Hf(...) of iterating function. This r istheratio’slimiting
value as iterates approach any function’s zero z of actual multiplicity m3 2. How r depends
upon m and that choice of iterating function is summarized below without proofs which, when
they exist, can be extremely tedious. Tabulated below for each choice Sf(...) and Hf(...) is
the polynomial of which r isitssole zero strictly between 0 and 1. When m ishig, 1-r
isof theorder of 1/m. Tabulated tooisthevaue r takeswhen m=2, whichisby far the
most common multiplicity m exceeding 1.

Table2: Iterations Linear Convergence Ratio r toaZeroof Multiplicity m

Iteration Polynomial ram=2
Secant Xp+1 := Sf(Xn, Xn-1) rMyprm1_q 0.618034
Newton's X,+1 := Sf(Xn, Xp) mr —m+1 0.5
Hyperbolic X471 := Hf (X1 Xpe1s Xp2) (r?+r+1rm™l-1 0.543689
Confluent Hyperbolic X1 := Hf (Xn, Xn1, Xn-1) | m-(r ™+ 1 ™1 — (r M= 2)/(r —1) 0.5
Confluent Hyperbolic Xn.q := Hf (X, X Xn1) |r ™+ 2r (r ™1-1)/(r —1) —m + 1| 0.414214
Halley’s Xn+1 := Hf (Xn, Xn» X) (m+1)r —m+1 0.333333

Unfortunately, languid convergence can be caused by other than clustered or multiple zeros.

Table 2 omits Bi-Confluent Hyperbolic Iteration because it requires a straddle unobtainable for a double root.
Whether and how to accelerate languid convergence to a cluster are discussed in 87 and 810 of my Lecture Notes
on Real Root-Finding posted at <www.cs.berkel ey.edu/~wkahan/Math128/Real Roots.pdf>.

87: Languid ConvergencetoaHidden Zero

Cdl z a Hidden Zero of f when it hasapole so close to the zero that they almost cancel out.
An example f(x) :=(z—x)-(1+ 1/x) hasapoleat x =0 that amost cancelsthe zero z if itis
tiny enough. As z® 0+ thegraph of y =f(x) approachesthe union of two straight lines, one
the graph of y=—(x+1), theother avertical line along the y-axis, asshown hereunder:
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f(x) = (z—x)(1+ 1/x), z=0.0005

1 T

0.5 —

-0.5} .

Y=f(X)

-1.5F B

-2 1 1 1 1 1
-2 -1.5 -1 -0.5 (6] 0.5 1
X
More generally, aplotted graph of afunction f with azero Hidden by asimple pole nearby
will fail (except by accident) to reveal the zero unless the plotted points are dense enough to

reveal that a nearly straight vertical line crosses a graph otherwise almost unexceptional.

Hyperbolic iterations appear called for to cope with the pole adjacent to a sought Hidden zero,
though it is unlikely to be found by these or any other iterations unless they start from a straddle
and maintainit. Halley’s iteration begun between the adjacent pole and zero converges well
unless an iterate jumps alittle too far past the sought zero, whereupon subsequent iterates will
go elsewhere. A program caninhibit Halley’s divagation by including ad hoc expedients like
retractions at the risk of needing so many of them that they retard convergence.

No ad hoc expedients are needed for the other two confluent Hyperbolic iterations to maintain
astraddle. They do so whenever f(x) isstrictly monotonic withinit: If f(u)-f(v) <0 and al
threeof f'(u), fT(u,v) and f'(v) havethesamesign, then Hf(u,u,v) and Hf(u,v,v) bothlie
strictly between u and v which, after the appropriate replacement(s), give way to atighter
straddle. Nested straddles will ultimately confine the sought zero as tightly as roundoff allows.
This desirable behavior comes at aprice: Occasionally these iterations can tarry in aregime of
languid convergence. The example f graphed above will illustrate how this languor can occur:

The Confluent Hyperbolic iterating function in question, namely

HE(y, x,X) = HEOGX, ) = x = F00/(F 0 — 00 £ ey (xy))
will be applied from each side to the foregoing example' s function f(x) := (z—x)-(1 + 1/x) with
0<z<<1; butwemust assume that no moreisknown about z thanastraddle O<u<z<v.
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Halley’'s iterates Hf(x,x,x) jumpover z. From thefar right Hf(v,v,v) jumps beyond the pole
too; Hf(v,v,v) <0 unless z<v < (3¢¥)%/(1-3Cx), so Hf(v,v,v) must be retracted unless v
ontheright of z isextremely near it. From the near left, from u between z and the pole,
0<u<z<Hf(uuu) =z + (z—u)3/(u® + 3uz + z:(1-2)) < Hf(0,0,0) = z + 2/(1-2) ,
which isexcellent. If Halley’s iteration starts from the near left it will converge alternatingly
and rapidly for this simple example. Other more complicated examples’ first iterates can jump
from between z and the pole far enough past z that their second iterates jump back beyond the
pole and must be retracted lest the straddle be lost. Hidden zerostend to hide from Halley.

Both Confluent iterates t := Hf(u,u, v) and w :=Hf(u, v,v) maintain the straddle; moreover
neither jJumps past z for this simple example whose Rf(z,z,z) » -1/z< 0. Keeping in mind
that 0<z<<1 and O<u<z<v, wefindthat, comingfrom v far ontheright,

v > Hf(u, v,v) = z+ (L-uw2z)(v—=2)%(1 +2v + v2ulz + u-z)

» v(L-u/2)/(2+v-ulz+1/v) when v>>(x.

This means that iteration solely from theright, starting afar from v >> Cz, shrinks the straddle
repeatedly by factors somewhat smaller than (1—<&u/z)/2 until abruptly convergence becomes
quadratic. Coming from u on the near left,

u<Hf(uu, v) = z—(z-u)>(v-2)/((z+W?)v + (1 -z + 2u)-Z)
» z(1-(1-uz)?v/(v+1)) when v>>z,
which implies that iteration solely from the left converges quadratically up to the tiny hidden
zero z without ever shrinking the straddle much.

Does this exampl€e’ s behavior adumbrate what happens with Hidden zeros generally?

If so, it bodesill for bi-Confluent Hyperbolic Iteration because its convergence is retarded by
its greedy choice of the narrower straddle. Bi-Confluent Hyperbolic Iteration convergesto a
Hidden zero so much faster that it seems preferable over al other iterative methods whenever a
Hidden zeroislikely to hide among those that are sought. This preference persists despite that
computing both {t, f(t), f'(Y)} and {w, f(w), f'(w)} seemscostly, or at least wasteful of the
one not retained. Because both characterize f(...) from the same data, computing both costs
appreciably less than twice the cost of computing either on most of today’ s computers, which
take longer to fetch data from memory than to perform pipelined arithmetic upon them.

However, Bi-Confluent Hyperbolic Iteration convergesto a Hidden zero only after it has been
straddled. How much should be known about afunction f for its Hidden zerosto be straddled
more reliably than by chance? At least the polesof f that may hideits Hidden zeros should
be easy to find. Therefore the question that deserves to be considered is actually ...

Aretherefunctions f whose Hidden zeros are hidden only by poles easy to find?

Such functions will appear in 88 and 812. They were not contrived. They are not artificial.

“Manisatool-using animal.” — Thomas Carlyle (1795 - 1881).
This explains why a man holding a hammer must find nailsto hit.
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88: Example: A Spectral Equation (alsocalled a Secular Equation)
Here is an example of an equation f(z) =0 which Hyperbolic Iteration is apposite to solve:

Suppose we seek all K eigenvalues x; of areal symmetric matrix X :=V +a-c-c' differing by
amatrix of rank 1 from another real symmetric matrix V whose eigensystem isgiven; given
asoarescalar a* 0 and column c* o. The eigenvalues sought are the zeros x = x; of the
Characteristic Polynomial det(x:l —X), which turns out to cost much more to compute than
doestheratio det(x-l — X)/det(x-I —V) of characteristic polynomials. Consequently our task
reduces to the numerical computation of al roots x; of a Spectral Equation f(x) =0 whose

f(x):= a,g92(x-1,)—1/a withgivenvauesof a® 0, g * 0 andeigenvalues | , of V
all distinct and sorted so that | <1 y,1. Eachroot x; isknowntolieinan openinterval X;
one of whose endpointsis | ; ; the other isthe nearer of |; +a-a g2 and | j+sign(a) (Whenit
exists). Every rootis Simple sincethe derivative f'(X) :—ékg(zl(x—l k)2<0; moreover

f'(x) <-1/(a®&, g?) , soevery root x; isdetermined sharply by the Spectral Equation’s f .
Though no root is repeated, some can be Hidden in the sense explored in 87 above.

Alas, the given data can come almost arbitrarily close to pathological: a can be arbitrarily tiny
or big; distinct values | ; canagreein all but their last digits; and coefficients gkz can vary
arbitrarily widely unlesseach g, tinier than roundoff in g, isresetto zero and deflated out.
In consequence of a near-pathology, aninterval X; can be arbitrarily narrow, orits x; can be
arbitrarily nearly Hidden. Pathology and roundoff conspire sometimes to render a numerical

computation unreliable. The conspiracy can usualy be thwarted by artful origin-shifts, but
these are atiresome story for another document.

Divisions dominate the cost of computing f(x) on computers that lack a pipeline dedicated to
divisions. Whatever that cost, it islessthan doubled by the cost of computing the derivative
f'(X) too. However, because ¥ isan attractive fixed-point for Newton’s and Secant iterating
functions Sf(...), theseareill-suited to solving our Spectral Equation unless started close
enough to a sought zero. Confluent Hyperbolic Iterations can generate iterates that converge to
X; rapidly from both sides when started from a straddlein X;, aswe shall see. The second

derivative f" (x) would add no morethan f'(x) didto each iteration’s cost and would enable
Halley’s Iteration; but this must be started close enough to the sought zero or else occasionally
inhibited by retractions of iterates that would escape from the current straddle. Flurries of these
retractions, by delaying convergence to some zeros, especially Hidden zeros, can complicate
load-balancing severely enough to impede parallel computation, for which all eigenvalues are
otherwise eminently eligible since each is computable with no reference to any other.

89: How Straddling isMaintained
Subscript j will be dropped from x; and X; to allay notational clutter in the explanation here.

Now f(x) =0 and x liesinanopeninterval X either between two adjacent poles | | of f or

else outside all poles. How do the properties of the Spectral Equation’s f and of Hf combine
to maintain straddling? Suppose X containsthree points w, x and y, maybe not all distinct,

of which two straddle x . Thesetwo straddle v := Hf(w, x,y) too because f' <0 and fT<0.

Prof. W. Kahan Notesfor Math. 128 B version dated September 3, 2009 2:53 pm



FileHyp  Hyperbolic Interpolation and lterationtowardsaZero  p.12/19

Onwhichsideof x will v lie? Ananswer comesout of aclose examination of f and Hf .
Start by dissecting Rf(w,X,Y) := (Hf(w, X,y) —=x)/((w—x)-(x—x)-(y—x)) with the aid of the
tedioudly verifiableidentity in 81 to find for Rf(w,X,y) =: —Rn(w, X, y)/Rd(w, x,y) that
R(w,x,y) = 106 y) FTTTw, %y, %) = 1w, %, y) FTT(x, v, %)
=818 29 i=1 (=1 )W )-(x=1 )y =1 )-(x=1)-(W=T1)-(x=1 -y =1 1)
>0 and
RW, x,¥) := FT(w,)-F1(x,y) = (x=3)-f1(x,)-F T (w, x,y) >0.
The last rather unobvious inequality follows from our supposition above about a straddle plus
three observations: First, Rd(w,Xx,y) > 0. Second, Rd(w,X,y) isacontinuous function of its
arguments and independent of their order. Third, whiletwo of w, x and y in X straddle x,

Rd(w, x,y)* O; otherwise v :=Hf(w,X,y) could bethrown out of X instead of faling inside
the straddle along with x. Taken together those inequalities about Rn and Rd imply that

(v =x)/(W=x)-(x=x)-(y—x)) = Rf(w,x,y) <0.
Thisinequality Rf(w,X,y) <0 and the prerequisitesfor itsvalidity are important. Theseare ...
e w, X and y (not necessarily al distinct) liein X aong with x, and

e Eithertwoof w, x and y straddle x, or itisclose enough to one of them.
( Amply many examples dissatisfy the second prerequisite and throw Hf(w,X,y) out of X.)

Thefirst of two inferences from the inequality Rf <0 isthat, solong as both its prerequisites
hold for all theiterates x,, of a (perhaps Confluent) Hyperbolic Iteration, a persistent pattern

of signsof x,—x determines the maximum number m of consecutive iterates that can lie on
the same sideof x. Hereisatabulation of m and that pattern:

Hyperbolic Iterations Fig.-Merit mm| Sign(x,—Xx) Patterns

Hyperbolic X1 -= Hf (X X1y Xpp) | 0.6094/Cq | 3| ... +++—+++— ... Or
m——t———t .

Confluent Hyperbolic |Xpe1 :=Hf(Xp1, Xp1, Xp) | 0.6931/C, | 1| ... ¥ =+ —+—+— ...

Confluent Hyperbolic | Xp+1 ;== Hf (Xp, Xy Xpp) | 0.8814/Cy | 2| ... ++——++—— ...
Halley's Xn+1 = Hf (X0, X Xp) 1.0986/C3 | 1| ... +—+—+—+—...

Thistable explains how Hyperbolic iteratesthat all satisfy both prerequisites straddle x and
converge to it from both sides until roundoff interferes. Confluent Hyperbolic Iteration aways
satisfies both prerequisitesif started from a straddle, but converges alittle slower than do the
others. Their faster convergence could be enjoyed if we could answer an interesting question:
How can we predict from some few of achosen Iteration’s iterates whether
all subsequent iterates will satisfy both of the prerequisitesthat keep Rf <0 ?
Prediction is obvious only for Confluent Hyperbolic Iteration only if it starts from a straddle.

For other Hyperbolic Iterations, prediction may become practicable if the following conjectureis true:
Provided w, x and y satisfy both prerequisitesfor Rf(w, x,y) <0,
whenever any one of them movestowards x, sodoes v :=Hf(w,X,y) .
Until this conjecture is decided | am inclined to eschew non-Confluent Hyperbolic and Halley's Iterations.
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A second inference from the inequality Rf <0 isthat since Rf(u,u, v) <0 and Rf(u, v,v) <0
whenever u and v straddle x, then we can predict sign(f(Hf(u,u, v))) = sign(f(u)) and
sign(f(Hf(u, v,v))) =sign(f(v)) . These predictionsfigurein straddle-maintaining Bi-Confluent
Hyperbolic Iterations that converge to a Hidden zero x never slower than quadratically, we
hope, and converge ultimately with Order 3 and Figure-of-Merit m3 0.5493/C, .

Of course, the program must allow for predictions flouted by roundoff. It must terminate the
iteration when, because of roundoff, neither prospective computed replacement t := Hf(u,u, v)
for u nor w:=Hf(u, v,v) for v could narrow the straddle. And the program hasto find an
initial straddle to initiate Bi-Confluent Hyperbolic Iteration.

810: Whereto Find theInitial Straddle
Bi-Confluent Hyperbolic Iteration needsinitial points u and v in X; and on opposite sides

of X;. Toward thisend, closed-form solutions of the Spectral Equations of 2-by-2 matrices
X will beintroduced: Givenvaluesof just a® 0, >>0, ?>>0, and | ;1 | ,, thetwo
zeros z_ of q?l(z-1,) +%/(z—],) —1/a arethefunctions...

Zo(@, 0% 1 1, @% 1 ) = (I 1+1 2+ a(®+ ) +sign(a)-D)/2  and
zg@, g% 1 1, 3% 1) = (1 +1 ,+a(g?+g?) —sign(a)-D)/2  wherein
discriminant D:= (I ;-1 ,+a(g°—g?))?+4a%g?g? >0.
Thenames “zg” and “zg” have been so chosen because zg liesstrictly Between |, and | 5
whereas zq liesstrictly Outside them. When z5 and zg have very different magnitudes the

smaller is best computed after the bigger from theidentity zozg =1 11 , +a-(I ;g2 +1 g9
to lessen contamination by roundoff. What follows uses both functions zq(...) and zg(...) .

Back to the original task: Bi-Confluent Hyperbolic Iteration needstwo initial iterates u and v
in X; but on opposite sides of an eigenvalue x; of X, whose dimension now exceeds 2.

Two Cases (B and O) shall be distinguished according to whether X; lies Between | ; and
| j+sign(a) » OF €lse Outside the narrowest interval containing all the eigenvalues | =~ of V.

Thisisthe more common Case. It entails the computation of two nonempty sums-of-squares
s.:=a(g? overindices k for which a:(k§)£0) and

s,,:=a(g? overindices k for which a:(k5)>0).
In other words, s sums g<2 for al indices k onthesamesideof j+sign(a) asis j, and
S,, Sums gkz for al indices k onthesamesideof | asis j+sign(a). Then x; turnsout to

lie strictly between zg(a, S« | j» Grsign@)> ! j+sign@) @A Zg(@, g2 1, Sy, | j4sign(a)) - both
of which fall inside X; too.
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Case O: When X; lies Outside the narrowest interval containing all eigenvalues | | of V.
This Case arisesonly when | ; istheleast (if a <0) orlargest (if a>0) eigenvalueof V.

Let s:=8;072; thissums g2 foral indices k with | onthesideof | opposite x;,
which lies strictly between zo(a, g% 1, §_sgn(a)> | j-sign@)) ad zo@, g% 1, S, | j_sign@a)) -
Both of these also fall inside X;, whichistheinterval strictly between | and | + a-d,q7°.

Therelevant Case providestwo estimates z_(...) inside X; that straddle ;. Neither of the
two need be closeto X;, especially if g ggn@)? and g2 aretiny compared with &, g2, in
which case each estimate z_ (...) may liesoclosetoitsend of X; that too many Hyperbolic

Iterations will be squandered to get all iterates far enough away from those ends’ poles that fast
convergence can commence. To defend against this contingency, form athird estimate z from
the average of the two estimates z (...) and, after examining thesignof f(z), keep z and

whichever of the two estimates z...(...) lieson the other side of x; to serve asthetwo initial

iterates u and v . Subsequent Bi-Confluent Hyperbolic Iterations will maintain the straddle
and shrink it rapidly onto x;, evenif itis Hidden, until roundoff retards further shrinkage.

The iteration’s stopping criterion takes roundoff into account without mentioning it explicitly:

Unless f(u) =0 or f(v) =0, inwhich casethereisno need for more,
end iteration as soon as neither computed Hf(u,u, v) nor H(u, v,v)
falls strictly between u and v, andthenassignto X; whichever

of these two minimizes the computed |f(X;)| .

811: Error Analysis of the Roots of the Spectral Equation f(x) =0
How uncertain is a computed root x; because of roundoff? Uncertainty is engendered almost

entirely by roundoff’ s contribution to the computed value of f(x) := a K g<2/(x -1y -1a.

Recall that itsdataare a* 0 and K values g.* 0, and K values | | al distinct and sorted so | | <1 1. Each
root x; isknowntolieinan openinterval X; one of whose endpointsis | 5; the other isthe nearer of | 3 ggn(a)
and | ;+a-d, g2 subject tothe understanding that | o:=—¥ and | ,q := +¥ . Every root xj is Simple because
the derivative f'(x) =—ag2/(x—1)><0; moreover f'(x) <-1/(a&, g?), soevery root x; isdetermined
sharply by the Spectral Equation’s f. Infact, f ismonotone non-increasing in each X; despite roundoff.

Alas, the given data can come almost arbitrarily close to pathological: a can be arbitrarily tiny or big; distinct
values | |, may agreein al but their last digits; and the coefficients g<2 can range almost arbitrarily widely unless
each g tinier than roundoff in g1 isresetto zero and Deflated out. In consequence of a near-pathology, an
interval Xj can be arbitrarily narrow, orits x; can come arbitrarily close to either endpoint where a pole may
Hide the zero. Pathology and roundoff can conspire to render the numerical computation of x; unreliable.

The analyses hereunder will help anyone who wishes to assess a computed zero' s uncertainty
due to roundoff and the effectiveness of an attempt to combat it by Deflation (described below).
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A reasonable bound upon roundoff’s contribution is  e(x) := @d  g2/[x—1 | wherein & isa
modest multiple of aroundoff threshold 1.000...001—-1 like MATLAB’S eps . This “modest
multiple’ varieswith matrix X's dimension K, which isthe number of termsin &,. The
multiple depends on how summation is programmed and runsfrom 1 through log,(K) to K ;
roughly (X isprobably satisfactory. The consequent uncertainty in any computed value of x
at which f(x) » 0 isabout i(x) := e(X)/|f'(¥)| = (A a/x -1 W)/A a2/ (x—1 2. Inthis
formula a figuresindirectly by virtue of itsinfluence upon x . Thus U(x;)/ee isacomputable
positively weighted harmonic mean of all the gaps [x;—I | between x; and thepoles | .

We can tolerate this much uncertainty U easily if absolute error in x; isour sole concern.

However, in order to compute every eigenvector x; of X accurately enough from the simple
formula x;:= Column({g/(x3—I \)}), al thegaps relative uncertainties must be kept small.
To this end we might endeavor to keep both t(xy)/(eelx;—1 jI) and t(xp/(elx;—! ssign(a)l)
small enough.

This endeavor must fail occasionally when x; istoo nearly Hidden by apole | .

Before the failure is explained some simplifying assumptions and abbreviations will be invoked:
First, for any given J, let | bethe subscript of the pole | nearest x; sothat either 1 =J or

I=J+sign(a) . Next assign abbreviations ...

c = a2g2>0; r(x) ==l illxg=1l; &' :=&i; and  q(xy) := Uxg)/(aelxy—11]) .
Now &eq(xy isthe relative uncertainty inthesmallest gap x;—I 7. Drop (X toget simply
q=(1+&' ¢ )/(1+8 cer?). Notethat O<r £r,=1 foral k; consequently q>1.

How big can g not be?

In the absence of constraints upon thedata a, {l ,} and {g;} beyond those assumed so far,

g can be arbitrarily bigger than 1, ashappentoasmall K-by-K matrix example with
K=3, J=2, 1,=0, a=g=%X=1, 1;=1-2q, I3=1+2q, g=g=Cq(q-1).
This small example’ suncertainty U(x,) = g-ae[x,—1 o| for any chosen g no matter how big.

More generally, for arbitrary dimensions and data,
q= U(x)/(eel;-11) £ 1(1+ A& ad)al),

and the upper bound is achievable. Thisinequality’s proof starts from Cauchy’s inequality,
which implies

q=(1+& cn)(1+8¢cn2) £q:= (1+ Q&' cd cerD))(1+& cerl) |
with equality just when all numbers r, arethesameforal k1. Anyway, g3 1 sinceall
such r £1. Now introduce temporary abbreviations ¢:=(Qa'c,) and q:=Qa' ck-rkz) to
simplify g:=(1+¢q)/(1+q? and the confirmation that

1+¢2—(29-1)% = (¢o®+29-¢%(1+q?)? 3 0,
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sothat q£ (1+ Q1 +¢?)/2 with equality just when 2q=¢/q. Work backward to obtain the
foregoing more general upper bound upon q. It can be arbitrarily big if |q|/C"Ié K g<2) istiny
enough, and then the endeavor described above can fail and often does, alas; then roundoff can

deflect some eigenvectors, if computed from the simple formula above, through angles roughly
as big asthe gaps worst relative errors.

The rounding-error-bounds ((x; and aeq(x; cost little to compute because they come from

quantities already computed for each iteration. The bounds are approachable too, occasionally
bigger than actual errors by less than an order of magnitude. However the bounds tend to gross
pessimism, the more so asdimension K increases. They are pessimistic, on computers that
conformto |IEEE Standard 754 for floating-point arithmetic, because rounding errors resemble
independent random variables with mean zero in so far as they tend to cancel partially asthey
accumulate. But roundoff is not random on these computers; consequently computed val ues of
f(x) are monotone non-increasing between poles. Here is a snapshot comparing values of a
typical Spectral f(x) computed with 4-byte floating-point versus 8-byte:

-6
x 10

1 1.5 2 2.5
X -7
x 10

This staircase graph istypical, though the sizes of horizontal steps and vertical risers are often
far more diverse. Were roundoff random or biased, the graph of f would appear ragged or
shifted, and itszeros x; would need atrickier program and noticeably longer to be computed

“at least about as accurately as the data and the arithmetic’ s precision deserve”.
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Evidently roundoff can debase the relative accuracy of acomputed x; severely only when
|g~|/dé’1 K gKZ) istoo tiny. Then, in an attempt to circumvent debasement, we could try ...

Deflation: Asif g =0, removeitand | ; from the datatemporarily;
restore them after all K—1 other roots x,, have been computed.

Deflation is motivated by the observation that one of the Spectral equation’sroots x;® | as
g ® 0 whileall other dataiis held fixed. Two questions demand attention:

Whichroot x;® |;? How bigis Deflation’s error |x;—11|?

Their answers will tell us how small |g| must be to render Deflation’s error (accepting |7 in
place of x;) tolerable, and whereto restore | j in sorted order among the other roots x, .

We know already that either J=1 or J=1-sign(a). Assumefor now that we know which;
the appropriate choice(s) will emerge later. And assume | § isnot too near any other | .

At first sight the error |x;—1 1| might be expected to approach zero like gz sincethisisthe
only way ¢ appearsinthe Spectral equation f(Xj) := ékg(zl(xJ—l ) —1/a=0. Usudly the
error does behave that way; but whenever | ; isakind of double root the error approaches zero
much slower, like |g|, instead. Hereishow that can happen:

Abbreviations &' :=8.7, fi(x):=&"adx-1)-VYa, fi:=f07, f:=FfTx 19
and fi' :=fi'(lp) = fiT(I » I'1) <0 will help reduce clutter. Note: f; and f;' are computable.

Now 0= f(xy = g (xy—I 1)+ fi(x) = %=1+ fi(l ) + (xg=1 )-fi"(x3, 1 7). whence
comes g2/(x;—1 1) + fj + (x—I i)-fiT:O. From this equation’s two solutions (x;—11) we
select the one conforming to our assumption that |g| istiny enough that the limits, namely
X;—17|® 0 and f1*® fi' <0 as g ® 0, arevery near. When fj* O our selection must be

x3—1 1= —2g%(sign(fy)-Qfi® — 4g>f") + ) » —2g%/(sign(fy)-Q(fi® — 4g°') +1;) ;
andthen J=1 - (sign(f;) + sign(a))/2.

When f{=0 (then T sign(a) and 1t K+1+sign(a)) our selection becomes ambiguous:
x3—1 7= #gl&F") » +gl/Q—f) for I=T+ (x1-sign(@))/2 resp.

Thisambiguity is not adefect in our analysis, but acharacteristic of the dispersal of a double

root’ s fragments by a perturbation of its equation. | isthe doubleroot, half Hidden, of the

Secular equation when g isinfinitesimal. In other words, |{=11_ggna) turnsouttobea

double eigenvalue of matrix X :=V +a-c.c when g =0. A smal examplewith T=2 has

h=11:==2, 1,:=0, :=lz:=a:=1, andtiny variable g,:=¢g
and produces these series expansions for the three eigenvalues of X :
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X, = —|d/C2 — 7116 + 29:|g%/(256CD) + ... ,
X, =+ 2 — 7116 — 29-|9%/(256(D) + ..., and
X3=4+9.¢7/8—-81.¢P/8192+ ..., all for g <1.461....

Generally, when | isfar enough from al other | s, theforegoing approximationsto xj—Ij
permit Deflation’s error to be deemed tolerable or not. The situation gets more complicated
otherwise, when | belongsto atight cluster of values |, since fi' may approximate f,'T

poorly then. A crude but fully general overestimate of the effect upon al X’s eigenvalues of
Deflation comes from recognizing it asa Rank-2 perturbation of X that subtracts from all its

eigenvalues amounts between a-( g + ((g% + 48 .1 9°) )-g/2, most of them much tinier.

Whether with Deflation or without, whether assessed or not, the accuracies of al computed
eigenvalues can be at |east about as good as the data and arithmetic’s precision deserve, and yet
some gaps xj—I . can be too inaccurate for reliable computation of all X’s eigenvectors from

the simple formula x3= Column({g/(x;—! \)}) . To compute every eigenvector of X reliably

without extra-precise arithmetic requires unobvious formulas for them and for eigenvalues
obtained accurately enough with the aid of artful origin shifts; these are a story for another day.

812: Another Example, a Tridiagonal Eigenvalue Problem

Suppose T isa K-by-K symmetric tridiagonal matrix whose eigenvalues t; are sought. These
arethe K zerosof det(T—t-1) but it isharder to computethan p(t) := det(T -t -1)/det(T -t 1),
where T isobtained from T by striking off itslast row and column, after floating-point
Over/Underflow istaken into account. Infact, p(t) isthelast diagonal element of the upper-
triangular factor U of T—t:l =L-U without pivotal exchanges;, L islower-triangular with a
diagona whose every elementis 1. The K polesof p areat ¥ andtheeigenvaluesof T,
and interlace the zeros of p. The count of zerosof p lessthan t isthe same asthe count of
negative diagonal elementsof U; acount of the signs of al but the last diagonal element of U
countsfinite polesof p lessthan t, locating them implicitly. Between poles, p'(m) <-1 and
computed values of p(m) are monotone non-increasing despite roundoff.

Hyperbolic Iterating Functions Hp(...) act much as Hf(...) dofor the Spectral equation's f
because a MdbiusMap (84) that takesthe infinite pole of p to afinitelocation turns p into a
rational function f with K finite zerosinterspersed among K finite poles between which f
isstrictly decreasing. However, because the polesof p arenot explicit, straddlesof Hidden
zerosof p haveto befound by aprocessof Binary Chop acting on the aforementioned counts.
On the other hand, Deflation, accomplished by zeroing out negligible off-diagonal elements of
T, issimpler to manage for p thanfor f. Soisroundoff. Another story for another day.
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813: Further Reading

For more about the theory of equation-solving see booksby J.F. Traub, by A.M. Ostrowski,
and by A.S. Householder, all cited in my extensive Lecture Notes on Real Root-Finding
posted at <www.cs.berkeley.edu/~wkahan/Math128/Real Roots.pdf>. These notes also apply
Projective maps built out of Mdbius mapsto Secant and Newton's Iterations. Properties of
Maobius maps are explored in my lecture notes posted at <.../Math185/Mobius.pdf>. For the
properties of eigenvalues of real symmetric matrices see B.N. Parlett’s book The Symmetric
Eigenvalue Problem (1998, Classicsin Applied Mathematics #20) Soc. for Indust. & Appl.
Math., Philadelphia. Roundoff istreated at length in N.J. Higham’s book Accuracy and
Sability of Numerical Algorithms 2d ed. (2002) Soc. Indust. & Appl. Math., Philadelphia. For
the tiresome details about unobvious eigenvector formulas and “artful origin shifts’ see my
notes on Rank 1 Updates of a Symmetric Eigenproblem to be (WHEN?) posted at
<.../SymUpdtl.pdf>, andthe MATLAB programs therein. The unobvious eigenvector formulas
come from Ming Gu and Stanley C. Eisenstat (1994) “A Stable and Efficient Algorithm for the
Rank-One Modification of the Symmetric Eigenproblem” pp. 1266-1276 of SAM J. Matrix
Anal. Appl. 15. For the currently best alternativeto Bi-Confluent Hyperbolic Iteration see Ren-
Cang Li (1994) Solving Secular Equations Sably and Efficiently, EECS Comp. Sci. Divn.
Tech. Rept. No. UCB//CSD-94-851, Univ. of Calif. @ Berkeley. His scheme supplanted an
older one, in“Rank-one modication of the symmetric eigenproblem” by J.R. Bunch, Ch.P.
Nielsen, and D.C. Sorensen (1978) on pp. 31-48 of Numer. Math. 31, that converged to each
zero monotonically, and to Hidden zerosfar too slowly.
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