
 

File: HilbMats               

 

Four Cholesky Factors  …  Hilbert Matrices

 

            August 26, 2011 6:25 am

from Prof. W. Kahan’s  notes for  Math. H110 & 128B             

 

WORK  IN  PROGRESS

 

               Page 1/36

 

Four Cholesky Factors of Hilbert Matrices and their Inverses

 

From notes for a 2nd undergraduate  

 

Numerical Analysis

 

  course by
Prof. W. Kahan

Math. Dept.,  and  Elect. Eng. & Computer Sci. Dept.
University of California at Berkeley

 

Abstract

 

Numerical software for matrix inversion and factorization is often tested upon  

 

Hilbert

 

  matrices 
because,  first,  they are so nearly singular,  the more so as dimensions increase,  and secondly 
their determinants,  inverses and  

 

Cholesky

 

  factors are computable accurately for comparison 
purposes from relatively simple integer recurrences embedded hereunder in  M

 

ATLAB

 

  programs.
The  N-by-N  Hilbert  matrices  H

 

N,K

 

  treated here have elements  {H

 

N,K

 

}

 

ij

 

 = 1

 

/

 

(i+j+K–1)  for 
integers  K 

 

≥

 

 0 .  Examples pit these matrices’ inverses and factors against  M

 

ATLAB

 

’s  

 

inv

 

,  

 

chol

 

  
and  

 

eig

 

  functions.  Correctness tests turn out much more arduous than the programs tested.
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Introduction

 

These are lengthy notes.

If you would rather not read them,  you should demand and purchase programming languages,  
environments and software development systems that support extravagantly wide precision for 
floating-point arithmetic 

 

as its default

 

.  The alternative is to pay occasionally for extra time and 
extraordinary mathematical talent that succeeds less often than extravagantly wide precision can 
at delivering computed results at least about as accurate as your data deserve.  IEEE Standard 754 
(2008) for Floating-Point Arithmetic  offers arithmetic  16  bytes wide,  with at least about  32  
sig. dec.  It is extravagant enough to render the effects of roundoff almost surely insignificant.

We should prefer rounding errors so tiny that their effects need not be appraised.   Instead they can  
degrade results computed nowadays by programs otherwise impeccably correct algebraically.  
When degradation is intolerable,  what  (if not whom)  shall we blame?  If not the program then 
the data.  We call a blameworthy program  “Numerically Unstable”.  We call blameworthy data  
“Ill-Conditioned”.  Such designations are oversimplifications often undeserved,  as we shall see.

At least since version  6.5,  M

 

ATLAB

 

’s  programs for its functions  

 

inv

 

,  

 

chol

 

  and  

 

eig

 

  have been  

 

State of the Art

 

  despite known rare failure modes that deliver misleading results for otherwise 
innocuous data.  (Some examples of  

 

inv

 

’s  failures appear in lecture notes posted on my web 
page at  <

 

www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf

 

>.)  Those failures are 
not the subject of the following notes,  which are not intended to disparage  M

 

ATLAB

 

’s  functions 
in question.  These are designed for matrices whose elements are uncorrelatedly uncertain by at 
least a unit in the last sig. bit retained,  as if rounded off when stored in the computer’s memory.

Uncertainty in data propagates,  amplified by appropriate  

 

Condition Numbers

 

,  to uncertainty 
inherited in the inverses,  Cholesky  factors and eigenvalues that  

 

inv

 

,  

 

chol

 

  and  

 

eig

 

  would 
produce if executed with infinitely precise arithmetic — no roundoff.  Ideally,  numerically stable 
software would let its roundoff add little more uncertainty than must be inherited anyway;  but 
practical software falls short of this ideal.  Different numerically stable programs differ in their 
degradation by roundoff;  some programs suffer more roundoff than others do when dimensions 
grow;  some programs tolerate bigger condition numbers before aborting.  We explore programs’ 
limitations by applying them to test data of increasing dimensions and worsening ill-condition.

Condition numbers of  Hilbert  matrices  H

 

N,K

 

  are known to grow rapidly  (exponentially)  with 
their dimension  N

 

 

 

.  They serve as test data for  

 

inv

 

,  

 

chol

 

  and  

 

eig

 

  because their inverses,  
Cholesky  factors and related eigenvalues are computable accurately from exact integer input data  
(N, K)  without first computing and rounding off the  Hilbert  matrices’ elements.  These accurate 
schemes are early instances of a growing body of  “structure-preserving”  algorithms that bypass 
explicit computations of a matrix whose gross ill-condition is an accident of the choice of one of 
many possible mathematical formulations of a problem with structured data.  Preserving this 
structure faithfully often preserves also a benign relationship between the problem’s solution and 
its data;  then the ill-condition of that matrix is irrelevant to the benign relationship.

For instance,  a problem in which  Hilbert  matrices can appear but needn’t is  

 

Least-Squares

 

  
approximation of any given function  y(

 

τ

 

)  over the interval  0 

 

≤

 

 

 

τ

 

 

 

≤

 

 1  by polynomials.  Choosing 

to represent these as linear combinations  

 

Ξ

 

(

 

τ

 

) := 

 

∑

 

1

 

≤

 

j

 

≤

 

N 

 

ξ

 

j

 

·

 

τ

 

j–1

 

  of power functions  

 

τ

 

j–1

 

  is what 
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brings in  Hilbert  matrices.  Their ill-condition reflects the maximal growth rate with increasing 
degree  N–1  of the coefficients  

 

ξ

 

j

 

  of polynomials  

 

Ξ

 

(

 

τ

 

)  of magnitudes  |

 

Ξ

 

(

 

τ

 

)|  restricted by,  say,  
||

 

Ξ

 

(

 

τ

 

)|| 

 

≤

 

 1  on that interval.  The growth is exponential for all of the usual norms  ||…||

 

 

 

.  Choosing 
a better representation as a linear combination  

 

Ξ

 

(

 

τ

 

) := 

 

∑

 

1

 

≤

 

j

 

≤

 

N 

 

χ

 

j

 

·G

 

j–1

 

(

 

τ

 

)  of polynomials  G

 

j–1

 

(τ)  
orthogonal on that interval entails milder coefficients  χj  and matrices far better conditioned than  
Hilbert  matrices when degree  N–1  gets big.  Thus does respect for the  Least-Squares  problem’s 
structure pay off.  But since these notes embrace rather than eschew  Hilbert  matrices,  only a 
little more will be said later about those orthogonal polynomials  Gj–1(τ) .

Cleverness does not guarantee correctness.  How can we know whether the  MATLAB   programs 
offered at the end of this document are accurate?  We should prefer proofs.  I cannot remember 
where I put my proofs a few decades ago;  but I do remember that they were so much longer than 
the programs in question that the proofs’ capture cross-section for error exceeded the programs’ 
by far.  That is why tests have been included,  though they are lengthy too.  Tests cannot prove 
accuracy,  but they can corroborate it,  or not.  Examples of ineffective tests are included among 
the effective tests of triangular factors.  Where explicit formulas for eigenvalues are unavailable,  
their tests here must be indirect but,  alas,  executable under only two old versions of  MATLAB .

INTRODUCTION NOT FINISHED YET 
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Genesis of  Hilbert  Matrices
Hilbert  matrices arise from  (weighted)  least-squares fitting of polynomials  Ξ(τ)  to arbitrary 
functions  y(τ)  over the interval  0 ≤ τ ≤ 1  as follows  (using  MATLAB ’s  vector notation):

Given the function  y(τ) ,  choose integers  K ≥ 0  (for the  weight)  and  N > 0  (for the  degree),  
and then find the column-vector  x := [ξ1; ξ2; …; ξN]  of coefficients  ξj  of the unique polynomial  

Ξ(τ) := ∑1≤j≤N ξj·τj–1  of degree less than  N  that minimizes

||Ξ(τ) – y(τ)||2 := ∫01 τK·(Ξ(τ) – y(τ))2·dτ  .
Most often  K = 0  and is then omitted.  The minimizing column vector  x  satisfies the

Normal Equations HN,K·x = bN,K 

in which column   bN,K := [β1; β2; …; βN]  has elements  βi := ∫01 τi–1+K·y(τ)·dτ ,  and matrix  

HN,K  has elements  θij  := ∫01 τi+j+K–2·dτ = 1/(i+j+K–1)  in row  #i  and column  #j .  This  HN,K  is 
an  N-by-N  Hilbert  matrix.  MATLAB   functions to generate  H = hilb(N)   in the most common 
case  K = 0  have been programmed by  Dr. Cleve Moler  (his comes with  MATLAB )  and by  Prof. 
Nicholas J. Higham,  but their programs are not the best to generate test data.  Here is why:

Hilbert  matrix  HN,K  becomes  “ill conditioned”  because it approaches singular matrices rapidly 

as  N  increases.   Consequently,  tiny perturbations that occur when quotients  1/(i+j+K–1)  are 
rounded off cause the computed inverse of a perturbed  HN,K  to change drastically,  and more so 
as  N  increases.  Hypersensitivity to perturbations is explored in  Relevant Course Notes Posted 
on my Web Pages  listed below,  and in  Higham’s  book listed below under  Further Reading.

To avoid perturbing the data,  a program  hilbl(N, K)   supplied below computes  Y := L·HN,K  

for the least integer  L := LCM([K+1, K+2, …, 2N+K–1]) > 0  whose quotients  L /(i+j+K–1)  are 
all integers computed exactly,  except when this  L   gets so big that it has to be rounded off.

Ideally,  if  N  or  K  is too big for  hilbl(N,K)   to be computed accurately,  the program should 
stop at an error message.  It will after the command   system_dependent(‘setprecision’, 64)   
has been executed by  PC MATLAB  6.5  to enable extra-precise accumulation of sufficiently small 
matrix products.  Otherwise recent versions of  MATLAB   on some hardware may fail to discover 
when  hilbl(N,K)   is wrong.  This is due to an unavoidable failure of  lcm   explained in my web 
page’s course notes  <…/Math128/GCD5.pdf>   from which  gcd   and  lcm   were obtained.  Such 
failures would not occur if  MATLAB   supported the  Inexact Exception Flag  mandated by  IEEE 
Standard 754  for  Floating-Point arithmetic.  To preclude such failures,  invoke  hilbl(N,K)   
only with integers  N > 0  and  K ≥ 0  that are not too big;  these are tabulated on the next page.

Let  YN,K  and  LN,K  denote the results produced exactly by  [Y, L] = hilbl(N,K)  ,  whence  

HN,K := YN,K/LN,K ;  this  N-by-N  matrix,  with elements  1/(i+j+K–1)  in its row  #i  and column  
#j ,  is a block out of a bigger  Hilbert  matrix  HN+K ,  and turns out to have only integer elements 
in its inverse.  Program  invhilbl   below computes this inverse as accurately and as quickly as  
MATLAB   can.
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Tabulated under each listed  K < 100  is the biggest  N  found to be not too big for  hilbl(N,K)  :

Computing  Cholesky Factors  and  Determinants  of  HN,K  and its  Inverse : 

In principle,  HN
–1 = L·(L·HN)–1  could be computed using  Matlab’s  inv(…)   function,  but this 

incurs rounding errors that cause at least about as much damage as would rounding off  HN’s  
elements.  To avoid that damage,  MATLAB   provides a special function  invhilb(N)   for use 
instead of  inv(hilb(N))   to get an accurate inverse by computing a diagonal matrix  D  of 

integers for which  HN
–1 = D·HN·D .  The program  invhilbl(N,K)   below takes  K  into account 

too;  it uses a recurrence derived from one first published by  Dr. Sam Schechter  in  1959.

Roundoff poses the same threat to  det(H)   as to  inv(H)  ,  and the threat is avoided the same 
way,  namely by computing the diagonal matrix  D  of integers that figures in the formula  

H–1 = D·H·D  whence we get integers  det(H–1) = |det(D)|  and  det(Y) = det(L·H) = |det(L·D–1)|   
from the  MATLAB   program  [dy, L, dhi] = dethilbl(N, K)   supplied below.

Upper-triangular  Cholesky  factors of  HN,K  and its inverse are computed with nearly minimal 
rounding errors from mostly integer formulas below more complicated to derive.  These produce 
results far more accurate  (unless  N+K  is small)  than can be obtained from  MATLAB ’s  built-in  
chol(hilbl(N,K))   and  chol(invhilbl(N,K))  .  

K 0 1 2 3 4 5 6 7 8 9

max N 21 21 21 20 20 19 19 18 18 17

K 10 11 12 13 14 15 16 17 18 19

max N 17 16 16 15 15 14 14 13 13 12

K 20 21 22 23 24 25 26 27 28 29

max N 12 11 11 10 10 11 10 10 9 9

K 30 31 32 33 34 35 36 37 38 39

max N 9 10 9 9 9 8 8 8 10 9

K 40 41 42 43 44 45 46 47 48 49

max N 9 9 8 8 8 7 8 8 7 7

K 50 51 52 53 54 55 56 57 58 59

max N 9 8 8 8 8 7 7 7 7 7

K 60 61 62 63 64 65 66 67 68 69

max N 7 7 7 7 6 7 6 6 7 7

K 70 71 72 73 74 75 76 77 78 79

max N 6 6 6 7 7 6 7 6 6 7

K 80 81 82 83 84 85 86 87 88 89

max N 6 6 6 6 6 6 6 7 7 6

K 90 91 92 93 94 95 96 97 98 99

max N 6 6 6 6 6 6 6 6 6 6
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Closed-form Formulas for Inverses and Triangular Factors of Hilbert Matrices
The element of  N-by-N  matrix  HN,K  in its row  #i  and column  #j  is  {HN,K} i,j := 1/(i+j+K–1) .  

In most of our other other matrices the  Combinatorial Coefficients  NÇK := N!/((N–K)!·K!)  will 
be needed.  In the formulas that follow,  the subscripts  N,K  will be taken for granted so that the 
abbreviation  H  can be used for  HN,K  and similarly for all other matrices except  $  and  u'   

whose only subscript would be their dimension  N .  Here  $ := Diag([1, –1, 1, –1, …, (-1)N–1])  
and row  u'  := [1, 1, 1, …, 1] .  The  N-by-N  diagonal matrix  D  has integer elements 

 {D} j,j := dN,K,j := (–1)j·j· 
NÇj · 

N+K+j-1ÇN .

 {H–1} i,j = {D·H·D}i,j = dN,K,i ·dN,K,j /(i+j+K–1)   also has elements all integers;

 det(H–1) = |det(D)| = |∏j dN,K,j|     is an integer that grows huge very fast with  N+K .

  u'·H–1·u :=  ∑i·∑j {H
–1} i,j = N·(N+K)     is useful to test the accuracy of  H–1 .

  u'·$·H–1·$·u :=  ∑i·∑j |{H
–1} i,j| = ( 4N–1·(N+K)2N–1/((N–1)!)2

 )·(1 + O((N+K)–2) )  
         as  K → +∞ .

  ||H–1||F
2:=  ∑i·∑j ({H

–1} i,j)
2 = ( (2N–2)!·(N+K)2N–1/((N–1)!)4

 )2·(1 + O((N+K)–2) )  
         as  K → +∞ .

The four  N-by-N  upper-triangles  U  and  R  and their inverses are  Cholesky  factors of  

H = U'·U = R–1·R'–1  and of  H–1 = R'·R = U–1·U'–1  and,  though not generally integer matrices,  
can be assembled out of integer matrices starting with these four  N-by-N  diagonals:

      {$}j,j := (–1)j–1 ;     {¥}j,j := K + 2j – 1 ;     {£}j,j := K+2j–2Çj–1 ;   and     {Ω} j,j := K+N–1+jÇN–j .
These combine with two  N-by-N  integer-element upper triangles  C  and  G  defined by

  {C} i,j := 2j–1+KÇj–i    and      {G}i,j := i+j–2+KÇj–i   = {$·¥·C–1·¥–1·$}i,j  
to produce the four  Cholesky  factors and inverses:

   U = √¥·C·(¥·£)–1,    U–1= £·$·G·$·√¥ ,      R = $·√¥·C·$·Ω = $·U·D  and    R–1= (Ω·¥)–1·G·√¥ .

MATLAB   program  chohilbl   below computes  U ;  ichohilb   computes  U–1
 ;  choihilb   

computes  R ;  and  ichihilb   computes  R–1
 . 

All these formulas have been adapted more or less directly from formulas found in the literature 
cited under  Further Reading.  For big dimensions  N  these formulas seem at first to entail work 

proportional to  N3 ,  but in fact  H,  U,  R  and their inverses can all be computed from recurrences 

that cost work proportional to  N2 ;  these appear in our  MATLAB   programs.  And most of the 
arithmetic,  if precise enough,  produces intermediate results computable exactly as integers.  Of 
course,  for any chosen precision,  like  MATLAB ’s  53 sig. bits,  roundoff will corrupt at least 
some of those huge integers when  N  and/or  K  gets too big.

Also cited under  Further Reading  are formulas and programs more general than ours published 
by  Prof. Plamen Koev  for accurate triangular factors and singular values of  Cauchy  matrices,  of 
which  Hilbert  matrices are instances.
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Tests of  hilbl ,  invhilbl ,  and  dethilbl   
These programs’ own correctness has to be assessed before they are used to generate data to test 
other programs’ accuracies.  A test of  [Y, L] = hilbl(N, K)   confirmed that all the elements of   
V = L./Y   were the correct small integers,  the reciprocals of the elements of  HN,K ,  except when 
some of the biggest values of the scale factor  L  got rounded back to  53 sig. bits,  in which case 
some of the entries in  V  differed from integers in their  53rd (last) sig. bit.

W = invhilbl(N, K)   was tested by computing   norm([Y, L*eye(N)]*[W; -eye(N)])   to 
obtain  || Y·W – L·I ||  as one matrix product accumulated extra-precisely in  64  sig. bits on an old  
68040-based  Macintosh Quadra 950.  Both norms vanished for small values of  N  and  K  but,  
beyond these,  64  sig. bits were too few to hold the intermediate products of elements of  W  and  
Y ,  so roundoff contaminated  Y·W .  Almost the same results were obtained from  MATLAB  6.5  
on an  IBM PC  after the command  system_dependent('setprecision', 64)  ,  without which 
roundoff contaminated results sooner and worse.  Another test better indicative of (in)correctness 
in  invhilbl   on other computers was needed;  it was constructed from the following observation:

Let row  N-vector  u'  := [1, 1, 1, …, 1] ;  then  σN,K := u'·HN,K
–1·u = N·(N+K)  after massive 

cancellation,  the more so as  N  and  K  increase;  and the computation of  σN,K  generates no 

intermediate sums bigger in magnitude than the biggest elements of  HN,K
–1  because their signs 

alternate.  If  u'·W·u ≠ N·(N+K)  then surely  W ≠ HN,K
–1

 .  This is how roundoff’s interference 
was inferred to be recorded in the documentation of  invhilbl  . 

[dy, L, dhi] = dethilbl(N, K)   was tested for a few small integers  N  and  K  by comparing 
its outputs with values of the determinants computed exactly by the automated algebra system  
DERIVE 4.1  run on an  IBM PC.  The outputs matched perfectly until they got so big that only 
their rounded values displayed by  MATLAB   to  15 sig. dec. could be compared;  these matched in 
all but at worst the last digit displayed.

Tests of  MATLAB ’s  inv  :
The accuracy of any estimate  M  of  HN

–1 ,   no matter how  MATLAB   computes it,  can now be 
assessed by comparing it with   W = invhilbl(N)   using arithmetic no more precise than was 
used to compute  M .  What measure of (in)accuracy is suitable?  One possibility is  elementwise:

First compute  R = 2*(M-W)./(M+W)  ,  the array of symmetric differences from  1  of ratios of 
respective elements of  M and W ;   then    m = -log(max( eps/2, max(abs(R(:))) ))/log(2)   
is the least number  m  of matching sig. bits between respective elements of  M  and  W .  No more 
than  53  can match;  this is why  eps/2   appears there.  See the first graph below.

This elementwise measure  m  is appropriate for inverses of  Hilbert  matrices because they have 
no elements much closer to zero than their neighbors.  There are matrices for which elementwise 
measures of (in)accuracy are inappropriate;  for these a better measure may be  normwise,  using    
r := 2·||M–W||/||M+W||  in place of  max|R(:)|  above.  The choice of norm  ||…||  matters less for 
inverses of  Hilbert  matrices than for some others,  in particular examples in course notes posted 
at  <…/Math128/FailMode.pdf>  .  
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Elementwise Accuracies of   L*inv(hilbl(N))   and  inv(hilb(N))   

Normwise Accuracies of   L*inv(hilbl(N))   and  inv(hilb(N))   
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MATLAB ’s  own biggest-singular-value  norm(…)   was chosen for the second graph above;  it plots
  -log(max( eps/2, 2*norm(M-W)/norm(M+W) ))/log(2)   

against  N  for  1 ≤ N ≤ 13,  beyond which  hilb(N)   is too nearly singular for  MATLAB ’s inv(…) .

The graphs corroborate that roundoff’s effects inside  inv(…)   are comparable with the damage 
done by rounding the fractional elements of  HN  to  MATLAB ’s  working precision of  53 sig. bits.

Exercise:  Use tests like those above to compare with  invhilbl(N)   diverse estimates for  HN
–1  

computed by  MATLAB   from expressions like
   inv(hilb(N)), round(inv(hilb(N)), L*inv(hilbl(N)), round(L*inv(hilbl(N))),

   flipud(inv(fliplr(hilb(N))),  round(flipud(inv(fliplr(hilb(N)))), …
for  N = 1, 2, 3, …  in turn to determine when each kind of estimate breaks down,  and how much 
good or harm is done by different sources of roundoff,  epilogs,  column orders,  … .

Exercise:  Compare the output  dhi   of  [dy, L, dhi] = dethilbl(N)   with  1/det(hilb(N))   
and its variations analogous to the previous exercise.

Variations Among Computed Inverses of a Near-Singular Matrix
Recall that the singular matrix  S  nearest  H  is distant from it by  ||H–S|| = 1/||H–1|| .  This is 
proved as  Theorem 7  in the course notes  <…/MathH110/GIlite.pdf> .  The norm  ||…||  here is  

Matlab’s  norm(…)  .  Even a rough computation of  H–1  reveals how near  H  is to singular;  any 

estimate  M ≈ H–1  provides an estimate  ||H–S|| ≈ 1/||M|| .  How widely can estimates  M  vary?

Programs like  MATLAB ’s  inv(…)   compute inverses by  Gaussian Elimination  or,  equivalently,  

triangular factorization whose roundoff can cause  inv(H)   to differ from  H–1  by a little more in 

norm than  (H+∆H)–1  can differ if  ||∆H|| ≈ N·ε·||H|| ,  though usually  (inv(H) )–1 ≠ H+∆H  for 

any such tiny perturbation  ∆H .  Here  ε = eps  = 2–52  is  MATLAB ’s roundoff threshold.  In other 
words,  though a computed  M = inv(H)   need not be the inverse of any matrix  H+∆H  differing 
from  H  by at most about  N  rounding errors in each element of  H ,  the computed inverse  M  is 

almost never much farther from  H–1  than the inverse  (H+∆H)–1  of such a perturbed  H .  And

(H+∆H)–1 – H–1 =  –H–1·∆H·(H+∆H)–1 ,   so   

||(H+∆H)–1 – H–1|| ≤  ||H–1||·||∆H||·||(H+∆H)–1||  ≈  N·ε·||H–1||·||H||·||(H+∆H)–1|| .

With very rare exceptions,  an estimate  M  of  H–1  obtained from  inv(…)   should satisfy roughly

||M – H–1|| ≤  N·ε·||H||·||M||2    provided    N·ε·||H|| << 1/||M|| ≈ ||H–S|| .
The last proviso means  “ H  is much farther than  N  rounding errors from its nearest singular 
matrix  S .”  “Rare exceptions”  mean pathologies like those in  <…/Math128/FailMode.pdf> .

But if  ||H–S||  is not much bigger than  N·ε·||H|| ,  then  M = inv(H)   may well be computed far 

too inaccurately for the bound upon  ||M – H–1||  above to be trusted.  Usually  Matlab  issues a

Warning: Matrix is close to singular or badly scaled.
         Results may be inaccurate. RCOND = 3.572099e-17.”
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The displayed value  RCOND ≈ 1/(||H||·||M||)  is  MATLAB ’s  estimate of   ||H–S||/||H|| ,  but it may 
be wrong by an order of magnitude because  ||H+∆H – S||  may vary by that much or more as  ∆H  

varies by several rounding errors per element of  H .  Consequently  ||(H+∆H)–1|| = 1/||H+∆H – S||  
may vary that much,  and therefore so may  ||M|| ,  and consequently so may  M ,  depending upon 
the rounding errors occurring during its computation.

Exercise:  The last  “consequently …”  follows from the observation that the norm of a matrix can change by no more 
than the norm of its change:  | ||M+∆M|| – ||M|| | ≤ ||∆M|| .  Can you explain why?

In short,  if  H  is too nearly singular,  different computations may yield estimates  M  of  H–1  that 

appear utterly different.  However,  provided all the estimates are scarcely worse than  (H+∆H)–1  
for roundoff-like perturbations  ∆H ,  the diverse estimates  M  usually have this in common:

      They are all approximately scalar multiples one of another.
This is explained on  pp. 3-4  of the course notes  <…/MathH110/jacobi.pdf>  .  An alternative 
explanation in terms of the  Singular Value Decomposition  of  H+∆H  is more illuminating but 
requires enough additional technical machinery to be a story for another day.

Exercise:  Use different formulas,  like those in two previous exercises,  to compute diverse estimates  M1,  M2,  …  
for inverses of   Hilbert  matrices  HN,K  with  N  barely big enough to elicit  MATLAB ’s  “close to singular”  warning.  
To see how nearly two such estimates,  say  M  and  W , come to scalar multiples of each other,  estimate first a scalar 
multiplier  ζ ,  say  ζ := trace(W'·M)/trace(W'·W) ,  and then compute   τ := || M – ζ·W ||/|| M + ζ·W || .  If  N  is so 
big that  τ  is not much smaller than  1 ,  can you explain why?  Reviewing the hypotheses from which the 
aforementioned note’s conclusions were drawn may help;  or else consider  MATLAB ’s  estimate of  N – rank(H) .  

Tests of  Triangular Factors  of  HN,K  and of  HN,K
–1 

MATLAB ’s  function  chol(…)   implements  Cholesky’s  method,  which can be used to compute 

upper-triangular factors  U  and  R  satisfying  U'·U = H  and  R'·R = H–1
 .  No;  R ≠ U–1

 .  Instead,  

R = $·U·D  wherein integer diagonal  D  is the same as figures in the formula  H–1 = D·H·D  used 

by  invhilbl(…)  ,  and integer diagonal  $ := Diag([1, –1, 1, –1, …, (-1)N–1]) .  See  p. 6.

Assays of erosion by roundoff of  chol(…) ’s  accuracy require accurate formulas for  U ,  U–1
 ,  R  

and  R–1
 .  Despite that most of their elements are irrational,  they can be computed in floating-

point arithmetic from hitherto unpublished algorithms accurate in all but their last few sig. bits;  
this accuracy far surpasses  chol(…) ’s  unless dimensions are small.  These algorithms have been 
implemented below in  MATLAB   programs each of which produces an  N-by-N  upper triangle:

 U = chohilbl(N,K)   for  U  satisfying  U'·U = H ;  cf.   chol(hilbl(N,K)) .

 UI = ichohilb(N,K)   for  U–1  satisfying   UI·UI'  = H–1
 .

 R = choihilb(N,K)   for  R  satisfying  R'·R = H–1
 ;  cf.  chol(invhilbl(N,K)) .

 RI = ichihilb(N,K)   for  R–1  satisfying   RI·RI'  = H .

MATLAB ’s  chol(…)   issues a fatal error-message  “Matrix must be positive definite ”  
whenever its argument is indefinite or so nearly so that the factorization’s rounding errors make 
the argument seem indefinite though they damage it no more than would altering its last few sig. 
bits.  On a  68040-based Mac Quadra 950  and on a  PC  that message appeared in these cases:
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    chol(hilb(14)) ,   chol(hilbl(14)) ,  chol(invhilb(13))   and  chol(invhilbl(15)) .
These impose upper bounds upon the dimensions of the  Hilbert  matrices and their inverses for 
which the accuracy of  MATLAB ’s  chol(…)   can be tested.  Besides,  for  N > 12  MATLAB   can 
compute neither  invhilb(N)   nor  invhilbl(N)   exactly before  chol(…)   operates upon them.

The correctness of   U = chohilbl(N,K)  ,   UI = ichohilb(N,K)  ,   R = choihilb(N,K)    and  
RI = ichihilb(N,K)    cannot be assessed simply by checking that residuals like 

     U’ ·U - hilbl(N,K)  ,   UI·UI ’ - invhilbl(N,K)  ,
    R’ ·R - invhilbl(N,K)    and    RI·RI’ - hilbl(N,K)   

are relatively tiny.  Residuals computed from 
   U = chol(Y)/sqrt(L)  ,        UI  = X*chol(X*invhilbl(N,K)*X) ’ *X  ,
   R = chol(invhilbl(N,K))   and    RI  = X*chol(X*Y*X) ’ *X/sqrt(L)   

for   [Y,L] = hilbl(N,K)   (so  Y := L·H  is all integers exactly)  and  X = fliplr(eye(N))   (it 
reverses the order of rows or columns)  are similarly tiny elementwise and in norm though the two 
versions of  U,  UI,  R  and  RI  respectively can differ in norm in as much as about half their sig. 
bits.  Relative elementwise differences are far bigger near those diagonal ends of these triangular 
matrices at which their elements become smallest,  namely the bottoms of  U  and  R ,  and the 
tops of  UI  and  RI .  Here is what happens when  N = 9 ,  K = 13 :  The foregoing residuals are 
about as tiny as if caused solely by rounding off the elements of  U, UI, R, RI, U, UI, R  and  RI  to 
store them;  but  U ’s  smallest elements disagree almost entirely with  U ’s,  and likewise for the 
other pairs.  However,  ||U – U||/||U|| ≈ 1/√eps ,  and likewise for the other psirs,  which means that  
chol(…)   has lost about half the arithmetic’s sig. bits when error is measured normwise.

Whenever I could check,  MATLAB ’s  chol(H)   has always produced an error message or else a relatively tiny residual 
even for arguments  H  so nearly singular that  κ(H)  was of the order of  1/eps  .  Then  chol(H) ’s  result was often 
wrong normwise in about half the sig. bits carried by the arithmetic.  Why were only about half the sig. bits lost 
instead of all of them?  This can be explained when the last diagonal element of  U = chol(H)   is much smaller than 
all others,  in which case the normwise loss of sig. bits is governed mainly by  κ(U) = √κ(H) ≈ 1/ √eps  .  Otherwise a 
loss of almost all sig. bits is to be expected according to error-analyses like  Ji-Guang Sun’s  “Perturbation Bounds for 
the Cholesky and QR Factorizations” in pp. 341-352 of BIT  31 (1991).

More persuasive corroboration of the correctness of our  MATLAB   programs that compute     
U = chohilbl(N,K)  ,   UI  = ichohilb(N,K)  ,   R = choihilb(N,K)    and     RI  = ichihilb(N,K)    
comes from the relative tinyness elementwise and normwise of differences like
[Y, -L*I]*[UI; U ’ ]  ,   [R, -L*I]*[Y; RI’]  ,   [U, -I]*[HI; UI ’ ]  ,    [HI, -I]*[RI; R’]   
and   [U, -UI’]*[R’; RI]    (with  I  = eye(N)  ,   [Y, L]  = hilbl(N,K)  ,  HI  = invhilbl(N,K)  ) 
which turn out to be sensitive to uncorrelated errors in  U,  UI,  R  and  RI .  Here is what happens 
when  N = 9 ,  K = 13 :  For  U, UI, R  and  RI  the differences are barely bigger elementwise and 
normwise than if attributable solely to rounding off those matrices’ elements to store them.  For  
U, UI, R  and  RI  the differences between smaller elements indicate they lost almost all their sig. 
bits;  the norms of the differences indicate a loss of almost half these matrices’ sig. bits.

The numerical results summarized above were obtained from  MATLAB   programs  choteste   and  
chotestn   provided below and run originally under  MATLAB  3.5  on a  386/7-based Intel 302 PC  
and a  68040-based Apple Macintosh Quadra 950  in the early   1990s,  and more recently under  
MATLAB  6.5  on an  IBM T21 ThinkPad laptop  after executing  
system_dependent(‘setprecision’, 64)  .



File: HilbMats               Four Cholesky Factors  …  Hilbert Matrices            August 26, 2011 6:25 am

from Prof. W. Kahan’s  notes for  Math. H110 & 128B             WORK  IN  PROGRESS               Page 12/36

Difficult Eigenproblems
The  Generalized Symmetric Definite Eigenproblem  asks for eigenvectors  b ≠ o  and eigenvalues  
λ  that satisfy  A·b = λ·M·b  for given real symmetric  (or complex  Hermitian)  matrices  A = A'   
and  M = M'   of which the latter must be positive definite;  x'·M·x > 0  for all  x ≠ o .  Since its 
version  3,  MATLAB ’s  function  eig(A, M)   has offered solutions for such problems.  They suffer 
from some pathologies among which is the case that  A  and  M  share a near-nullspace:  If this 
contains a  z  with  ||A·z|| << ||A||·||z||  and  ||M·z|| << ||M||·||z||  then roundoff can contaminate some 
eigenvalue(s)  and eigenvectors severely;  for instance,  eigenvector  b  can be miscomputed as  
b + ζ·z  for a wide range of scalars  ζ  and still satisfy  A·(b + ζ·z) ≈ λ·M·(b + ζ·z)  very nearly.

One way to solve the  Generalized Symmetric Definite Eigenproblem  starts from the  Cholesky  

factorization of  M = U'·U .  It is followed by the computation of  W := U'–1·A·U–1 = W'   whose 

eigendecomposition  W = Q·Λ·Q'  ,  with an orthogonal matrix  Q = Q'–1  of  W ’s  eigenvectors 
and real diagonal  Λ  of  W ’s  eigenvalues  λ ,  is computed from  [Q, Λ] = eig(W)   quickly and 

reliably.  Then the desired eigenvectors  b  are the columns of  B := U–1·Q  ordered the same way 
as are the desired eigenvalues  λ  on the diagonal of  Λ ;  now  A·B = M·B·Λ  except for roundoff’s 
effect.  It is exacerbated thrice by the aforementioned pathology,  first in the factorization that gets  

U = chol(A)  ,  second in the application of  U–1  to get  W = U ' \A/U  ,  and third in  B = U\Q  .

Whatever the way chosen to to solve the  Generalized Symmetric Definite Eigenproblem,  the 
accuracy of its program must be tested by applications to data-sets  {A, M}  with known solutions 
computable accurately some other way.  Nearly pathological test-data-sets should be included.

Offered below is a family of integer-valued data-sets  { A := YN,K+1 ,  M := YN,K }  that approach 
pathological quickly as  N+K  increases.  Here  YN,K = LN,K·HN,K  is a  Hilbert  matrix scaled up 
to have integer elements.  For this family of data-sets  {A, M},  computing the eigenvalues  λ  
quickly and accurately is easy because they are rational multiples by  LN,K+1/LN,K  of the squares 

of the singular values of upper-triangular bidiagonal matrices  FN,K := UN,K+1·UN,K
–1 ;  here  

UN,K  is the upper-triangular  Cholesky  factor of  HN,K .  And  FN,K  is computed directly,  faster 
and more accurately than from   chohilbl(N,K+1)*choihilb(N,K)  ,  from the simpler formula  

FN,K = √¥N,K+1
–1·(JN + K·I)·√¥N,K

–1   in which  N-by-N  diagonal matrix  √¥N,K  has elements  
{ √¥N,K} jj  = √K+2j–1   and bidiagonal  JN  has elements  {JN} ij  := (if  i ≤ j ≤ i+1  then  i  else  0) .
For instance,

  J6 + K·I =  ;     √¥6,K =  .

Since singular values of bidiagonal matrices are computable almost as accurately as the precision 
of the arithmetic,  all the eigenvalues  λ  of the  Generalized Symmetric Definite Eigenproblem  
with integer-valued data-set  { A := YN,K+1 ,  M := YN,K }  are computed far more accurately from 
the squared singular values of  FN,K  than from any other program under test unless  N  is small.

1 K+ 1 0 0 0 0

0 2 K+ 2 0 0 0

0 0 3 K+ 3 0 0

0 0 0 4 K+ 4 0

0 0 0 0 5 K+ 5

0 0 0 0 0 6 K+

K 1+ 0 0 0 0 0

0 K 3+ 0 0 0 0

0 0 K 5+ 0 0 0

0 0 0 K 7+ 0 0

0 0 0 0 K 9+ 0

0 0 0 0 0 K 11+
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MATLAB   program  [A, M, v] = amvhilb(N, K)   below delivers this data-set and its column  v  
of eigenvalues  λ .  As  K  increases this data-set approaches another pathology:  Closely clustered 
eigenvalues undermine the accuracies of computed eigenvectors;  this is a story for another day.

… quis custodiet ipsos Custodes ?   (Juvenal)
 How shall  amvhilb ’s  test-data itself be tested?

To that end,  the eigenvalues in column  v  produced by  [A, M, v] = amvhilb(N, K)   have 
been compared with the columns  u = sort(eig(A, M))   and  w = sort(eig(X*A*X, X*M*X))   
in which  X = flipud(eye(N))   is obtained from the identity matrix by reversing its rows  (or its 
columns).  In the absence of rounding or other error,  u ,  v  and  w  should all be the same;  and 
except for their last few sig. bits they were the same when computed by  MATLAB  6.5  on an  IBM 
T21 laptop PC  for smaller values  N .  As  N  was increased all the columns diverged,  presumably 
impelled by roundoff.  To test this presumption,  another program had to be written:

MATLAB  6.5  program  rndir   supplied below redirects the arithmetic’s rounding in three more 
ways besides the default  “TO NEAREST”;  the three are  “TOWARD ZERO”,  “U P”  and  “DOWN”  
as prescribed by  IEEE Standard 754.  Rerunning the computations of  u,  v  and  w  under the 
three directed roundings provided four values,  one per direction,  of each column.  All four values  
v  agreed in all but at most the last few of the  53  sig. bits computed,  which tends to corroborate 
their accuracies.  As  N  increased,  directed roundings increasingly scattered the columns  u  and  
w  from each other and from  v  by roughly similar amounts,  thus corroborating how inaccurate  u  
and  w  were,  until  N  grew so big that  [A, M, v] = amvhilb(N, K)   no longer generated 
integer-valued data-sets  { A := YN,K+1 ,  M := YN,K }  exactly regardless of rounding’s direction.

Here for example are results for  N = K = 10 .  Columns  u,  v  and  w  were computed with 
arithmetic rounded the default way  TO NEAREST.  Column  ∆uo = uo – u  shows how  u  changed 
when computed with rounding directed  TOWARD ZERO.  Similarly ∆u↑  shows how rounding  UP  
changed  u ,  and  ∆u↓  is for rounding  DOWN.  Likewise for  ∆v…  and  ∆w… .

Repetitions among the  ∆…s  suggest that often a few,  perhaps as few as one or two,  rounding 
errors overwhelmingly dominated the others in their effect upon computed eigenvalues.  This 
phenomenon renders the  Central Limit Theorem  impotent to justify estimating errors from the  
∆…s’  spreads;  they are too likely to be too small when eigenvalues’ errors are exceptionally big.  
More about such phenomena is posted at  <www.eecs.berkeley.edu/~wkahan/improber.pdf> .

u ∆uo ∆u↑ ∆u↓ v ∆vo ∆v↑ ∆v↓ w ∆wo ∆w↑ ∆w↓

 0.255 -0.007 -0.004 -0.389 0.2095058938478430 -3e-16 3e-16 -3e-16 0.247 -0.029 0.002 -0.001

 0.386 -0.060 -0.006 -0.136 0.3239813175038243 -9e-16 7e-16 -9e-16 0.377 -0.101 0.001 -0.000

 0.512 -0.133 -0.006 -0.133 0.4391226809250292 -12e-16 12e-16 -12e-16 0.502 -0.137 0.001 0.001

 0.631 -0.126 -0.006 -0.126 0.5528261852845718 -19e-16 22e-16 -19e-16 0.622 -0.129 0.002 0.002

 0.740 -0.114 -0.005 -0.115 0.6612493756197405 -22e-16 26e-16 -22e-16 0.731 -0.115 0.003 0.004

 0.833 -0.098 -0.004 -0.099 0.7603044306722687 -26e-16 36e-16 -26e-16 0.825 -0.098 0.003 0.005

 0.908 -0.078 -0.002 -0.079 0.8461150279850096 -33e-16 36e-16 -33e-16 0.903 -0.077 0.003 0.005

 0.962 -0.056 -0.001 -0.056 0.9152685078254560 -39e-16 40e-16 -39e-16 0.959 -0.055 -0.052 0.003

 0.993 -0.031 -0.000 -0.032 0.9649935940457747 -40e-16 42e-16 -40e-16 0.992 -0.032 -0.031 0.001

 5.724 -4.732 -3.016 -4.732 0.9932996529571477 -41e-16 44e-16 -41e-16 1.151 -0.159 -0.159 -0.005
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Condition Numbers
Until further notice,  drop the integer subscripts  N ≥ 1  and  K ≥ 0  and use simple abbreviations  

H := HN,K ,  etc.  The  Condition Number  κ(H) := ||H||·||H–1||  is an inverse measure of the relative 
distance between  H  and its nearest singular matrix;  in fact,  the line joining  H  to zero matrix  O  
makes an angle  arcsin(1/κ(H))  with the cone through  O  of singular matrices.  This is explained 
in web-posted class notes  GIlite.pdf  and  NORMlite.pdf   cited below.  Besides subscripts  N  
and  K  now suppressed,  the choice of norm  ||…||  can affect  κ(H) ,  perhaps drastically,  as 
happens to the first example in  <…/Math128/FailMode.pdf> .

The choice matters to us because the condition number reveals how much at worst  (or at least)  an 

infinitesimal perturbation  δH  in  H  can perturb  H–1  when measured by the chosen  ||…|| :

   δ(H–1) := (H+δH)–1 – H–1 = –H–1·δH·H–1   so    1/κ(H) ≤ (||δ(H–1)||/||H–1||)/(||δH||/||H||) ≤ κ(H) ,
and each  “ ≤ ”  can be made  “ = ”  by an appropriate choice of  δH .  Moreover,  error-analyses of 
the programs most often invoked to invert a matrix  H  in floating-point show why,  with very rare 
exceptions,  the program’s roundoff harms its result by little more than if  H  had been perturbed 
first by a pseudo-random  δH  comparable in norm to roundoff in the elements of  H ,  and then 
inversion had been performed exactly.  In short,  with very rare exceptions,  we can expect the 
number of sig. bits lost to roundoff during the inversion program to approximate  log2(κ(H)) ,  
roughly.  How roughly depends upon details including the dimension  N  and the chosen  ||…|| .

For norm  ||…||  let us choose first  MATLAB ’s  norm(…)  ,  which is the biggest  Singular Value:
    ||B|| := maxx≠o ||B·x||2/||x||2 = maxx≠o √((B·x)'·B·x/(x'·x)) = √( biggest eigenvalue of  B'·B ) .
Tabulated below are computed values of  log2( κ(HK,N) )  for some small integers  K  and  N .    

For any fixed  K ≥ 0  and all  N  big enough,  log2( κ(HK,N) ) ≈   ???????????  within  ?????????.

WHY ARE THESE CONDITION NUMBERS IRRELEVANT TO THE LEAST-SQUARES FIT 
OF A POLYNOMIAL  Ξ(τ)  TO A GIVEN FUNCTION  y(τ) ?  See Orthogonal Polynomials.
STILL TO COME:  Correlations of condition numbers with actual computations of inverses and factors.

K N = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 30 50 80 120 170
0 4.27 9.03 13.92 18.86 23.83 28.82 33.83 38.84 43.87 48.89 53.93 58.97 64.01 69.05 94.31 144.92 246.33 398.62 601.81 855.90

1 5.27 10.40 15.49 20.55 25.61 30.66 35.71 40.77 45.82 50.88 55.94 61.00 66.05 71.11 96.43 147.11 248.58 400.92 604.14 858.25

3 6.67 12.60 18.18 23.58 28.88 34.12 39.33 44.50 49.65 54.79 59.92 65.04 70.15 75.26 100.75 151.62 253.25 405.69 608.97 863.12

7 8.35 15.49 21.98 28.09 33.95 39.65 45.23 50.73 56.15 61.53 66.86 72.16 77.44 82.69 108.72 160.18 262.35 415.12 618.60 872.87

1510.18 18.86 26.66 33.90 40.75 47.30 53.64 59.80 65.83 71.74 77.56 83.31 88.98 94.60 122.08 175.31 279.21 433.11 637.28 891.98

3112.09 22.52 31.93 40.65 48.87 56.69 64.20 71.45 78.50 85.36 92.07 98.64 105.10 111.45 142.03 199.55 308.24 465.66 672.15 928.36

6314.04 26.35 37.55 47.98 57.84 67.24 76.26 84.97 93.40 101.61 109.60 117.42 125.07 132.58 168.34 233.98 353.40 520.07 733.40 994.44
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Orthogonal Polynomials  linked to  Hilbert Matrix  H N,K 
The elements  υij   in columns of  U–1  provided by  ichohilb(N,K)   are the coefficients of the 

polynomials  πj–1(τ) = ∑1≤i≤j υij ·τi–1  orthogonal with weight  τK  on  0 ≤ τ ≤ 1  normalized so

   ∫01 τK·πi–1(τ)·πj–1(τ)·dτ  =  ( if i = j  then  1  else  0 ) .  
πn(τ)  differs only by a scalar factor from the more convenient-to-compute monic  Shifted Jacobi 
Polynomial  called  Gn(K+1, K+1, τ)  in line  22.2.2  of the  Handbook …  by  Stegun and 
Abramowitz  cited under  Further Reading.  We shall call this polynomial  Gn,K(τ) ;  then 

 πn(τ) = 2n+KÇn·√2n+K+1·Gn,K(τ) .
But those coefficients  υij   alternate in sign and grow too fast to provide a numerically satisfactory 
way to compute values of  πj–1(τ)  unless  τ  or  j  is small.  Better ways use either the three-term 
recurrence in lines  22.1.4 and 22.7.2  or a scheme like the one in  §22.18  of the  Handbook … .

For a given  K ≥ 0 ,  the simplest less inaccurate way to compute  Gn,K(τ)  by itself at each of a 

diverse multiplicity of values  τ  is the expansion  Gn,K(τ) := ∑0≤j≤n (τ – 1)n–j·(nÇj)
2 / 2n+KÇj .  

MATLAB   program  g1(n, K, t)   below does this.

To best compute sequence  {G0(τ), G1,K(τ), G2,K(τ), G3,K(τ), …},  three-term recurrence  GG  sets 
 G–1(τ) := 0 ;   G0(τ) := 1 ;  and for  n = 0, 1, 2, 3, …  in turn, 
 Gn+1,K(τ) := (τ – an,K)·Gn,K(τ) – cn,K·Gn–1,K(τ)     wherein   c0 := 0  and otherwise  

 cn,K := (n·(n+K)/(2n+K))2/((2n+K)2 – 1) ≤  ,   and 

 an,K :=  + ·K2/((2n+K)·(2n+K+2)) < 1 .

Recurrence  GG  seems numerically stable over the interval  0 ≤ τ ≤ 1  since every  an,K + cn,K ≤ 1 ;  
but  GG  too loses  relative  accuracy to cancellation since  Gn,K(τ)  dwindles and oscillates faster as  

n  increases.  Starting at  G0(τ) ≡ 1 ,  the magnitude of  Gn,K(0) = (–1)n ·((n+K)!)2 /((2n+K)!·K!) 
plummets as  n  increases unless  K  is huge;  and if  K > 0  then as  Gn,K(τ)  oscillates it decays to 

below  Gn,K(1) = n!·(n+K)!  /(2n+K)! .  Maybe  GG  should be run in extra-precise arithmetic,  but it 
was unavailable when  GG’s  MATLAB   program  gr(n, K, t)   below was first written.

Recurrence  GG ’s  [G0(τ), G1,K(τ), G2,K(τ), …, GN–1,K(τ)]  serves in lieu of  [1, τ, τ2, …, τN–1]  to 

obtain the least-squares-fitted polynomial  Ξ(τ) = ∑1≤j≤N χj·Gj–1,K(τ) = ∑1≤j≤N ξj·τj–1  of degree 

less than  N  that minimizes  ∫01 τK·(Ξ(τ) – y(τ))2·dτ  .  The coefficients  {χj}  are obtained by 

solving a linear system of  Normal Equations  with  Diag{1/( 2j+K–2Çj–1·√2j+K–1 )2}  in lieu of 

the  Hilbert  matrix  HN,K ,  and with  ∫01 τK·Gi–1,K(τ)·y(τ)·dτ  in lieu of  ∫01 τi–1+K·y(τ)·dτ  on the 

right-hand side.  Consequently  χj := (2j+K–2Çj–1)2·(2j+K–1)·∫01 τK·Gj–1,K(τ)·y(τ)·dτ  .

With coefficients  {an,K},  { cn,K}  and  {χj}  in hand,  computations of  Ξ(τ) = ∑1≤j≤N χj·Gj–1,K(τ)  
at diverse arguments  τ  in  0 ≤ τ ≤ 1  are probably best performed without first computing the 
polynomials  G…(τ)  explicitly;  instead use  C.W. Clenshaw’s  recurrence thus:

1
12
------

1
2
--- 1

2
---
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Start   ηN := 0 ,  ηN–1 := χN ,   and for  m = N–2, N–3, …, 2, 1, 0  in turn 
compute  ηm := (τ - am,K)·ηm+1 – cm+1,K·ηm+2 + χm+1  to obtain  Ξ(τ) := η0 .

(Variants of  Clenshaw’s  recurrence  are explored in  §5.5  of  Numerical Recipes in Fortran 2d ed. (corrected) by 
W.H. Press, S.A. Teukolsky, W.T. Vetterling & B.P. Flannery (1994),  or in  §5.4.2  of the 3d ed. (2007),  Cambridge 
Univ. Press.)

Gn,K(τ)  has  n  simple zeros  {τ = ζj}  all between  0  and  1 .  As  K  increases they crowd near  1 .  
If  n > 2  they are computed easiest as the  n  eigenvalues  {ζj}  of a symmetric tridiagonal matrix  

Tn,K :=  

assembled from the coefficients of the three-term recurrence  GG .  Program  zg(n,K)   below gets 
these eigenvalues and does so surprisingly accurately  (only for some old  MATLAB   versions)  by 
refining away most of the rounding errors committed within  eig(T)  .  With accurate eigenvalues  
{ ζj}  in hand,  Gn,K(τ) := ∏1≤j≤n (τ – ζj)  is by far the most accurate fast way to compute it.

a0 K, c1 K, ˚̇ ˚ ˚ ˚ ˚

c1 K, a1 K, c2 K, ˚ ˚ ˚ ˚

˚ c2 K, a2 K, … ˚ ˚ ˚

˚ ˚ … … … ˚ ˚

˚ ˚ ˚ … an-3,K cn-2,K ˚

˚ ˚ ˚ ˚ cn-2,K an-2,K cn-1,K

˚ ˚ ˚ ˚ ˚ cn-1,K an-1,K
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==========================================

To be used for asymptotic estimates of  Condition Numbers:
Stirling’s  well-known  Asymptotic  approximation to  Ln(n!)  accurate for  n >> 1 :

Ln(n!) ≈  Ln(2π) + (n + )·Ln(n) – n + 1/(12n) – 1/(360n3) + 1/(1260n5) – 1/(1680n7) + O(1/n9) .

===========================================================

||HN,K||  is the largest eigenvalue as well as singular value of  HN,K .  For any fixed integer  N > 0 ,  
obviously  ||HN,K|| ↘ 0  slowly as  K ↗ +∞ .  For any fixed integer  K ≥ 0 ,  unobviously  
||HN,K|| ↗ π  slowly as  N ↗ +∞ ;  see  Choi [1983].

===========================================================

Let  D  be the diagonal matrix in  invhilbl ’s  formula  H–1 = D·H·D  and let  $ := signum(D)  be 
a diagonal matrix of alternating  ±1’s,  so that  |D| = $·D ;  and set  A := √|D|·H·√|D| .  This has  

A–1 = $·A·$ ,  which differs from  A  only in its checker-board pattern of  ± signs.  Consequently  

||A–1|| = ||A||  for each matrix norm  ||…|| = norm(…, …)   that  MATLAB   offers,  and  κ(A) = ||A||2 .  
Cholesky  factors of  A  and of its inverse are the same except for the checkerboard sign pattern.  
Alas,  A  has irrational elements,  so it cannot be stored exactly in floating-point numbers and 
consequently cannot serve as test data for matrix software.

===========================================================

1
2
--- 1

2
---
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Further Reading

“On the Inverses of Certain Matrices”  by  Dr. Samuel Schechter,  pp. 73-77 in  MTAC 13 #66, 
Apr. 1959,  supplied the algorithms used in  invhilbl   and  dethilbl   here.

“Tricks or Treats with the Hilbert Matrix”  by  Prof. Man-Duen Choi,  pp. 301-312  in  Amer. 
Math. Monthly 90 #5, May 1983,  surveys much of the lore about  Hilbert  matrices of finite and 
infinite dimensions,  and includes an extensive list of references.

Prof. D.E. Knuth’s  book  The Art of Computer Programming 3rd. ed. (1997, Addison-Wesley)  
treats Hilbert matrices in §1.2.3 Ex. 45 on p. 38 as special cases of  Cauchy  matrices  {1/(xi + yj)}  

for which his  Ex. 44  presents a precursor of our test formula  u'·HN,K
–1·u = N·(N+K) .

“The condition numbers of real Vandermonde, Krylov and positive definite Hankel matrices” by 
Bernhard Beckermann, pp. 553-577 of Numerische Mathematik 85 (2000),  assembles estimates 

of which one,  in  Example 3.3  on p. 570,  is  κ(HN) ≈ Constant·(1 + √2)4N/√N  for large  N .

“Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices”  by  Prof. Plamen Koev in pp. 
1-23 of SIAM J. MATRIX ANAL. APPL. 27 #1 (2005)  discusses a peculiar bidiagonal factorization  
(his equations  (3.6) on p. 7)  of the Cholesky factor  U  of  H  (treated as a  Cauchy  matrix)  from 
which fully accurate eigenvalues of  H  of widely disparate magnitudes are computed without 
recourse to more than  MATLAB ’s  working precision.  Rectangular nonnegative matrices are 
treated in his paper  “Accurate Computations with Totally Nonnegative Matrices” in pp. 731-751 
of ibid. 29 #3 (2007).  Prof. Koev  is now in the  Math. Dept.  at  San Jose State University;  see  
<www.math.sjsu.edu/~koev>  .

Orthogonal polynomials are surveyed in  ch. 22  of the  Handbook of Mathematical Functions … 
ed. by Milton Abramowitz† & Irene A. Stegun, Nat’l Bureau of Standards (now N.I.S.T.) Appl. 
Math. Series #55 (1964),  reprinted in paperback with  many  corrections by Dover, N.Y.

Prof. Nicholas J. Higham’s book  Accuracy and Stability of Numerical Algorithms 2d. ed. (2002,  
SIAM, Philadelphia)  is a well-written  680  page encyclopedia about the intricacies of rounding-
error-analysis including a vast bibliography.  Hilbert  matrices appear in  pp. 512-515 .
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Relevant Course Notes Posted on my Web Pages     <www.cs.berkeley.edu/~wkahan/...>  :

 <…/MathH110/GCD5.pdf>   “Euclid’s  GCD  Algorithms vs. Programs”  uses matrices to simplify 
explanations of the  Extended Euclidean Algorithm,  continued fractions,  Lamé’s Theorem  and a 
process attributed to  Hermite  that speeds the evaluation of integer matrices’ determinants using 
only integer arithmetic.  Then a few  MATLAB   programs are presented to compute  GCDs  and  
LCMs  and test their correctness for some version of  MATLAB   on each of the computers most 
popular in their time.  These programs are complicated by  MATLAB ’s  denial of access to the  
Inexact Flag  mandated by  IEEE Standard 754  for floating-point arithmetic.

 <…/MathH110/GIlite.pdf>   “Huge Generalized Inverses of Rank-Deficient Matrices”  explores 
the reciprocal relation between the norm of a possibly generalized inverse of a matrix and its 
distance from the nearest matrix of the same dimensions but lower rank.

 <…/MathH110/jacobi.pdf>   “Jacobi’s Formula for the Derivatice of a Determinant”  proves it 
and applies it to the  Wronskian,  to the derivative of a simple eigenvalue,  and to the peculiarities 
of the inverses of almost all nearly singular matrices.

 <…/MathH110/LstSqrs.pdf>   “Least-Squares Approximation and Bilinear Forms”  explains,  
among other things,  why the symmetric positive definite matrix of a least-squares problem’s  
Normal Equations  represents a linear operator not from a vector space to itself but rather from a 
vector space to its dual space.  This influences our choices of norms and of diagonal scaling.

 <…/MathH110/NORMlite.pdf>   “Notes on Vector and Matrix Norms”  explains their properties 
deemed most important for their applications to analysis in finite-dimensional linear spaces.

 <…/Math128/FailMode.pdf>   “Do MATLAB ’s  lu(…) , inv(…) , /  and \   have Failure Modes ?”  
Yes;  and the simplest way to cope with them is routinely to invoke  Iterative Refinement  with 
residuals computed extra-precisely if this is feasible for your hardware and version of  MATLAB .
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Discrepancies
Despite that floating-point hardware and programming languages’ compilers may conform to all 
applicable standards,  these are not tight enough to prevent troublesome discrepancies from being 
observed among results from the same program run on different versions of  MATLAB   or the same 
version on different hardware.  Usually these discrepancies are so tiny that they are ignored by all 
but the conscientious individual who worries that they may portend a fatal flaw somewhere in her 
software or hardware.  What  else  could generate these discrepancies?  …  Optimizations :

Optimizations are intended to enhance speed without degrading accuracy excessively,  we hope.

Since  MATLAB  6.x,  its matrix multiplication operations have been optimized to nearly minimize 
the incidence of cache misses and page faults that severely retarded previous versions’ operations 
upon matrices too big to fit comfortably into the microprocessor’s cache(s).  Now big matrices get  
broken into blocks  (submatrices)  of sizes that depend upon the parameters of the computer’s 
memory hiearchy.  These blocks are multiplied and their products added in an order influenced 
also,  perhaps,  by the hardware’s capacity for concurrency.  Discrepancies induced by these 
influences are usually ignored;  they are perceptible only so far as roundoff makes floating-point 
addition depart slightly from associativity.  Discrepancies are noticed most often in a residual like  
R := A·X – B·Y ,  computed perhaps as one matrix product  R = [A, -B]*[X; Y]  ,  that so nearly 
cancels to zero as leaves the computed  R  dominated by the rounding errors committed during its 
computation.  This is how iterative refinement programs,  which depend crucially upon residuals,  
can get discrepant results from different computers and different versions of  MATLAB .

The  Math Library  of programs to compute functions like  log  and  cos  is another source of 
small discrepancies.  Usually this library is incorporated in the compiler for whatever language,  C  
or  Java,  the developers of  MATLAB   used to program it.  The speeds of computers are gauged by 
benchmarks that exercise the  Math Library,  so it gets optimized by the vendors of hardware and 
compilers who exploit every advantageous hardware feature.  Thus sped up,  the library’s  Math  
functions may produce results different in their last bits for some relatively few input arguments.

Optimizations intended to enhance accuracy may introduce discrepancies too.  Intel  processors 
and their clones can,  if so enabled,  accumulate matrix products in a few registers carrying  64 
sig. bits before  MATLAB   stores them rounded again to  53 sig. bits.  Some compilers achieve 
concurrency by computing a quotient and sometimes a product in one of these few wider registers 
while computing other products in registers with only  53 sig. bits.  This is how a quotient and/or 
product may get rounded twice,  which will change its last  (53rd) sig. bit stored with probability 
roughly  1/4000  if all but its leading few bits are random and independent.  Something else can 
happen with  IBM Power-PC  processors used also for a decade in  Apple Power-Macs,  G4s,  
G5s  and  iMacs.  These processors’  Fused Multiply-Add  operation can compute expressions like  
x ± y·z  with at most one rounding error instead of two.  Whether such extra-precise capabilities 
have been enabled and where they have been employed by a  MATLAB   program can be difficult to 
ascertain before they affect  [Y, L] = hilbl(N, K)   for good or ill at the largest  N  and/or  K  at 
which  hilbl   does not balk.  The  MATLAB   program  dblrnd   supplied here ???? reveals how 
many times some artfully chosen products and quotients got rounded during its explorations.
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MATLAB ™  Programs
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [Y, L] = hilbl(N,K)
%HILBL  is a  Hilbert matrix,  or one scaled up to integers.
%  H = hilbl(N, K)  is an  N-by-N  Hilbert  matrix:  H(i,j) = 1/(i+j+K-1)
%    but rounded to  53 sig. bits.  If omitted,  K  defaults to  K = 0 ,
%    and then  hilbl(N) = hilb(N) .  If  K  is a nonnegative integer,
%  [Y, L] = hilbl(N,K)  produces  Y = L*H  with  L = lcm([K+1: 2N+K-1]') 
%    so all elements  Y(i,j) = L/(i+j-1+K)  are integers computed exactly.
%    Again,  if  K  is omitted it defaults to  K = 0 .
%  Ideally,  if  N  or  K  is too big,  [Y, L] = hilbl(N,K)  should balk
%    rather than deliver any element of  Y  wrong because of roundoff;  
%    but some versions of  Matlab  on some computers are not ideal.  See
%    W.K.'s  enhanced versions of  gcd,  lcm  and perhaps  r0und.  Also
%  see  DETHILBL  and  INVHILBL.         W. Kahan,  1996 - 13 Jan. 2009.

L = 1 ;  bigL = 0 ;  if  (nargin < 2),  K = 0 ;  end
if  (nargout > 1)  % ... we need  L = lcm(…) > 1 :
if  (K < 0) | (K ~= round(K)), bad_K = K
    error( '  hilbl(N, K)  requires a nonnegative integer  K .'),  end
%  Compute scale-factor  L = lcm([K+1:2N-1+K]')  accurately enough:
if (N<2),  Y = ones(N) ;  L = (K+1)*Y ;  return, end
L = lcm([K+1: 2*N-1+K]') ;  %... only for  W.K.'s  version of  lcm(...)
bigL = ( isinf(L) & (K > 0) ) ;  if bigL
    L = lcm(lcm([K+1: 2*N-2+K]'), 2*N-1+K) ;  end %...  maybe rounded.
if  isinf(L),  N_K = [N, K]
    disp(' N or K  is too big to compute  hilbl(N,K)  accurately.') %<<<<<<<<
  end,  end  %...  of  nargout > 1  and computation of  L > 1 .
y = [1:N] + (K-1)*0.5 ;  Y = y(ones(N,1),:) ;  Y = L./(Y + Y') ;
if bigL,  Y = round(Y) ;  end %... tries to compensate for rounded  L .
%  Replace buggy  round  by  r0und  in  386-Matlab 3.5 & PC-Matlab 4.2 !

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  W = invhilbl(N, K)
%INVHILBL  accurate inverse of a segment of the  Hilbert  matrix
%  invhilbl(N, K)  is the inverse of an  N-by-N  matrix  H  whose elements
%    are  H(i,j) = 1/(i+j-1+K) EXACTLY.  ( Rounded elements may be obtained
%    from  [Y,L] = hilbl(N,K)  via  H = Y/L .)  If omitted,  K = 0 ;  then
%    H  is the notoriously ill-conditioned  Hilbert  matrix.  Like  invhilb,
%    invhilbl  is computed not from  Matlab's  inv(H)  but from an elegant
%    (and faster)  formula published by  Sam Schechter  in  MTAC (1959)  to
%    compute the diagonal matrix  D  from which we get  invhilbl = D*H*D .
%    Its result is accurate despite ill-condition.  If  K  is a nonnegative
%    integer,  all  invhilbl(N, K)'s  elements are correct nonzero integers,
%    except perhaps for roundoff that must interfere if  (N,K)  lies beyond
%        (12,0) - (12,2) - (11,5) - (10,8) - (9,10) - (8,15) - (7,27) -
%        (6,39) - (5,73) - (4,195) - (3,1287) - (2,262142) - (1, 2^53)
%    for  Matlab's  53-sig.-bits IEEE 754  floating-point arithmetic.
%    See also  hilb,  invhilb,  hilbl  and  dethilbl .
%                                           W. Kahan,  1994 - 28 Oct. 2008
if  ( nargin < 2 ),  K = 0 ;  end
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u = K+1 ;
if  (N == 1),  W = u ;  return,  end
if  (N == 2),  %...  avoid unnecessarily big intermediate integers
    p = (u+1)*(u+1) ;  q = -u*(u+1)*(u+2) ;
    W = [p*u, q;  q, p*(u+2)] ;  return,  end
x = [0:N-1] ;  y = (x+u).' ;
if ( K == 0 ) ,
      p = N ;  %  ...  The most common case is the fastest:
   elseif ((0 < K) & (K == round(K)) & (K < N)),
      p = N*(N+1) ;  for  j = 2:K ,  p = (p/j)*(N+j) ;  end
   else,  % ...  The most general case is the slowest:
      p = u ;  for  j = 1:N-1,  p = (p/j)*(u+j) ;  end
   end
d = [ p ,  zeros(1,N-1) ] ;  %...  to become  diag(D)
for  j = 1:N-1,  d(j+1) = (( (d(j)/(j+K))*(j-N) )/j)*(N+j+K) ;  end
W = (d.'*d)./( x(ones(N,1),:) + y(:,ones(1,N)) ) ;  % = D*H*D
if ((0 <= K) & (K == round(K))),  W = round(W) ;  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [dy, L, dhi] = dethilbl(N, K)
%DETHILBL  integer determinants of a scaled  Hilbert  matrix and inverse
%  [dy, L, dhi]  computes integer-valued determinants related to the
%  N-by-N  scaled  Hilbert matrix  Y  produced by  [Y,L] = hilbl(N,K) :
%  dy = det(Y)  and  dhi = det(inv(Y/L))  except that  dethilbl  uses,
%  instead of  Matlab's  det  and  inv,  a method far less vulnerable 
%  to roundoff based upon a formula published by  Sam Schechter  in 
%  MTAC (1959).  K  must be a nonnegative integer which,  if omitted,
%  defaults to  K = 0 ,  and then  H = Y/L  is the familiar  Hilbert
%  matrix with elements  H(i,j) = 1/(i+j-1)  .  The integer scale factor
%  L = lcm([K+1:2*N+K-1]')  is computed accurately only if  N  and  K 
%  are not too big;  otherwise  L  may be wrong but  dhi  should be 
%  approximately right and then  dy = (L^N)/dhi .  See also  INVHILBL.
%  Needs  W. K.'s  modified  gcd and lcm,  and maybe  r0und  too.
%                                        W. Kahan,  1996 - 26 Oct. 2008

if  ( nargin < 2 ),  K = 0 ;  end
if  (K < 0) | (K ~= round(K)),  N__K = [N, K]
    error( ' dethilbl(N,K)  requires a nonnegative integer  K .'), end

u = K+1 ;  m = 2*N+K-1 ;  L = lcm([u: m]') ;  %...  Correct if finite.
if  isinf(L)  %...  compute instead an approximate  L :
    L = u*(u+1) ;
    for  j = u+2:m ,  L = j*(L/gcd(L,j)) ;  end
    % Now  L = lcm(K+1, K+2, ..., 2*N+K-1) but for roundoff if too big.
    N__K__L = [N, K, L]
  disp('WARNING: N and/or K  are so big in  [dy,L,dhi] = dethilbl(N, K)  that')
  disp('L  may be wrong because of roundoff though  dhi  is approximately right.')
  %  This is the best I can do without  IEEE Standard 754's Inexact Flag.
  end
%  x=[1:N];  H=x(ones(N,1),:);  hilbl(N,K) = round(L./( H+H' + (K-1) )) ;

if ( K == 0 ) ,
      p = N ;  %  ...  The most common case is the fastest:
   elseif (K < N),
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      p = N*(N+1) ;  for  j = 2:K ,  p = (p/j)*(N+j) ;  end
   else,  % ...  The most general case is the slowest:
      p = u ;  for  j = 1:N-1,  p = (p/j)*(u+j) ;  end
   end
d = [ p, zeros(1,N-1) ] ;  %...  to become  |diag(D)|
for  j = 1:N-1,  d(j+1) = (( (d(j)/(j+K))*(N-j) )/j)*(N+j+K) ;  end
dhi = round(prod(d)) ;  dy = round(prod(L./d)) ;
%  Replace buggy  round  in  386-Matlab 3.5  &  PC-Matlab 4.2  by  r0und .

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [U, L] = chohilbl(N, K)
%CHOHILBL  Cholesky factor of a Hilbert matrix, or it scaled up to integers.
%  U = chohilbl(N,K)  is the upper-triangular  Cholesky  factor of  Hilbert
%   matrix  H = hilb(N,K)  that  Matlab  would get from  U = chol(H)  if
%   only the last one or two of the  53  sig. bits of  U  suffered from the
%   effects of roundoff in  hilb()  and  chol() .  Instead a neat algorithm
%   delivers  U = chohilbl(N,K)  faster and far more accurately than can
%   U = chol(hilb(N,K))  unless dimension  N  is small.  Both versions of
%   U  have a residual  U`*U - H  so tiny it drowns in its own roundoff. 
%  [Ul, L] = chohilbl(N,K)  produces the upper-triangular  Cholesky  factor
%   Ul  of the scaled  Hilbert  matrix  Y = L*H  whose elements are integers 
%   obtained exactly from  [Y, L] = hilbl(N,K) .  Ul = U*sqrt(L)  comes out
%   faster and far more accurately than  chol(Y)  can unless  N  is small.
%  Nonnegative integer  K  defaults to zero if omitted.
%  Floating-point operations are so ordered as to generate exact integer 
%   intermediate results  (no rounding errors)  about as often as possible.
%  RESTRICTION:  If  N+K  is too big,  [Ul, L] = chohilbl(N,K)  should balk 
%   rather than deliver scale factor  L  very wrong because of roundoff.
%  See also  DETHILBL,  HILBL,  INVHILBL  ICHOHILB  and  CHOIHILB.
%  L  needs  W. Kahan's  improved  GCD and LCM.          17 Sept. 2010.

if  ( nargin < 2 ),  K = 0 ;  end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)),  N_K = [N, K]
    error(' chohilbl(N,K)  needs integers  N > 0  and  K >= 0 '),  end
if (nargout == 1),  L = 1 ;  else
%  First compute scale-factor  L = lcm([K+1:2N+K-1]') > 1  accurately:
   L = lcm([K+1: 2*N+K-1]') ; %... works only with  W.K.'s  lcm(...)
   if  isinf(L)
       L = lcm(lcm([K+1: 2*N+K-2]'), 2*N+K-1) ;  end %...  maybe rounded
   if  isinf(L),  bigNplusK = N+K
       error(' N+K is too big to compute  [Ul,L] = chohilbl(N,K)  accurately.')
     end,  end  %... of computation of  L > 1

dr = sqrt( L*[K+1:2:K+2*N-1]' ) ;  %... column
f = ones(1,N) + K ;
for i = 1:N-1,  f(i+1) = (((f(i)/i)*(K+2*i))/(K+i))*(K+2*i+1) ;  end
f = 1.0./f ;  %... row
U = eye(N) ;
for  j = 2:N
    g = U(:,j) ;
    for  i = j-1:-1:1,  g(i) = (g(i+1)/(j-i))*(K+i+j) ;  end
    U(:,j) = g ;  end
U = U.*(dr*f) ;
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= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  UI = ichohilb(N, K)
%ICHOHILB  Inverse of the  Cholesky  factor of a  Hilbert  matrix.
%  UI = ichohilb(N,K)  is the inverse of the upper-triangular  Cholesky
%   factor of an  N-by-N  Hilbert  matrix  H = hilbl(N,K)  that  Matlab
%   would get from  UI = inv(chol(H))  if only the last one or two of
%   the  53  sig. bits of  UI  suffered from the effects of roundoff in
%   hilbl(),  chol()  and  inv() .  Instead a neat algorithm delivers
%   UI = ichohilb(N,K)  far faster and far more accurately than can
%   inv(chol(H))  unless  N  is small.  Consequently,  compared with 
%   UI*UI' ,  the residual  UI*UI'- invhilbl(N,K)  is very tiny. 
%  Nonnegative integer  K  defaults to zero if omitted.
%  NOTE:  Generally  UI ~= choihilb(N,K)  even if computed exactly.
%  Floating-point operations are so ordered as to generate exact integer
%   intermediate results  (no rounding error)  about as often as possible.
%  See also  W.K's  DETHILBL,  HILBL,  INVHILBL,  CHOHILBL  and  CHOIHILB.
%                                              W. Kahan,   19 Sept 2010.

if (nargin < 2),  K = 0 ;  end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)),  N_K = [N, K]
    error(' ichohilb(N,K)  needs integers  N > 0  and  K >= 0 '),  end
p = -cumprod(-ones(N,1)) ;  %... column  [1, -1, 1, -1, ...]'
dr = sqrt( [K+1:2:K+2*N-1] ).*p' ;  %... row of square roots
for i = 1:N-1,  Ki = K+i ;  Ki2 = Ki+i ;
    p(i+1) = round(( round((p(i)*(1-Ki2))/i)*Ki2 )/Ki) ;
   end  %... of column of integers
UI = eye(N) ;
for  i = 1:N-1 ,  g = UI(i,:) ;  i1 = i-1 ;
    for  j = i:N-1,  g(j+1) = round((g(j)*(K+j+i1))/(j-i1)) ;
       end  %...  of row of integers
    UI(i,:) = g ;  end  %... of upper triangle of integers
UI = UI.*(p*dr) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  R = choihilb(N, K)
%CHOIHILB  Cholesky  factor of the inverse of an  N-by-N  Hilbert  matrix.
%  R = choihilb(N,K)  is the upper-triangular  Cholesky  factor of the
%   inverse of a  Hilbert  matrix  H = hilbl(N,K)  that  Matlab  would get
%   from  R = chol(invhilbl(N,K))  if only the last one or two of its  53
%   sig. bits suffered from the effects of roundoff in  chol() .  Instead
%   a neat algorithm produces  R = choihilb(N,K)  faster and far more
%   accurately than  R = chol(invhilbl(N,K))  can unless dimension  N  is
%   small.  Both versions of  R  make residual  R`*R - invhilbl(N,K)  tiny
%   enough to drown in roundoff accumulated in the huge computed  R'*R .
%  Nonnegative integer  K  defaults to zero if omitted.
%  NOTE:  R  and  chohilbl(N,K)  are  NOT  each the inverse of the other.
%  Floating-point operations are so ordered as to generate exact integer
%   intermediate results  (no rounding error)  about as often as possible.
%  See also  W.K's  DETHILBL,  HILBL,  INVHILBL,  CHOHILBL  &  ICHOHILB.
%                                               W. Kahan,   17 Sept. 2010
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if (nargin < 2),  K = 0 ;  end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)),  N_K = [N, K]
    error(' choihilb(N,K)  needs integers  N > 0  and  K >= 0 '),  end
q = -cumprod(-ones(1,N)) ;  %... row  [1, -1, 1, -1, ...]
dr = sqrt( [K+1:2:K+2*N-1]' ).*q' ;  %... column of square roots
for j = N:-1:2 ,  j2 = j+j ;
    q(j-1) = round((round((q(j)*(K+j2-1))/(N+K+j-1))*(j2+K-2))/(j-N-1)) ;
   end  %...  of row  q  of integers alternating in sign
R = eye(N) ;
for  j = 2:N ;  g = R(:,j) ;
    for  i = j-1:-1:1,  g(i) = round((g(i+1)*(i+j+K))/(j-i)) ;  end
    R(:,j) = g ;  end  %... of upper triangle of integers
R = R.*(dr*q) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  RI = ichihilb(N, K)
%ICHIHILB  Inverse of  Cholesky  factor of an inverse  Hilbert  matrix
%  RI = ichihilb(N,K)  is the inverse of the upper-triangular  Cholesky
%   factor of the inverse of  N-by-N  Hilbert  matrix  H = hilbl(N,K)
%   that  Matlab  would get from  RI = inv(chol(inv(H)))  if only the
%   last one or two of the  53  sig. bits of  RI  suffered from the
%   effects of roundoff in  hilbl(),  chol()  and  inv() .  Instead a
%   neat algorithm delivers  RI = ichihilb(N,K)  far faster and far
%   more accurately than  inv(chol(inv(H)))  can unless  N  is small.
%   Consequently residual  RI*RI'- hilbl(N,K)  is very tiny.
%  Nonnegative integer  K  defaults to zero if omitted.
%  NOTE:  Generally  RI ~= chohilbl(N,K)  even if computed exactly.
%  Floating-point operations are so ordered as to generate exact integer
%   intermediate results  (no rounding error)  about as often as possible.
%  See too  W.K's  DETHILBL, HILBL, INVHILBL, CHOHILBL, CHOIHILB, ICHOHILB
%                                              W. Kahan,   19 Sept 2010.

if (nargin < 2),  K = 0 ;  end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)),  N_K = [N, K]
    error(' ichihilb(N,K)  needs integers  N > 0  and  K >= 0 '),  end

dr = sqrt( [K+1:2:K+2*N-1] ) ;  %... row of square roots
p = [zeros(N-1,1); K+2*N-1] ;
for i = N-1:-1:1,  K2i = K+2*i ;
    p(i) = round( round(p(i+1)/(K+N+i))*K2i/(N-i) )*(K2i-1) ;
   end  %... of column of integers
p = 1.0./p ;  %...  column of integers' reciprocals
RI = eye(N) ;
for  i = 1:N-1 ,  g = RI(i,:) ;  i1 = i-1 ;
    for  j = i:N-1,  g(j+1) = round((g(j)*(K+j+i1))/(j-i1)) ;
       end  %...  of row of integers
    RI(i,:) = g ;  end  %... of upper triangle of integers
RI = RI.*(p*dr) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  Res = choteste(N,K)
%  Res = choteste(N,K)  tests  chohilb, ichohilb, choihilb, ichihil
%   and MATLAB's chol  for elementwise accuracy on  N-by-N  Hilbert
%   matrices and their inverses.  The upper-triangular matrices tested are
%   U = chohilbl(N,K)  vs.  Ub = chol(Y)/sqrt(L)  at  [Y,L] = hilbl(N,K)
%   UI = ichohilb(N,K)  vs  UIb = X*chol(X*HI*X)'*X
%   R = choihilb(N,K)  vs.  Rb = chol(HI)  at  HI = invhilbl(N,K)
%   RI = ichihilb(N,K)  vs.  RIb = X*chol(X*Y*X)'*X/sqrt(L)
%   where  X = flipud(eye(N))  reverses rows or columns,  and
%   Y = hilbl(N,K)*L  is all integers exactly.  If omitted,  K = 0 .
%   Then these residuals' worst elements are computed at  H = Y/L :
%     rU = |U'*U - H|./H ,        rUb = |Ub'*Ub - H|./H ,
%   rUI = |UI*UI' - HI|./(|UI|*|UI|') ,  rUIb = |UIb*UIb' - HI|./(|UI|*|UI|') ,
%     rR = |R'*R - HI|./(|R|'*|R|) ,   rRb = |Rb'*Rb - HI|./(|R|'*|R|) ,
%     rRI = |RI*RI' - H|./H ,     rRIb = |RIb*RIb' - H|./H .
%   Computed also are worst elements of differences     (I = eye(N))
%     dU = |U - Ub|./U ,        dUI = |UI - UIb|./|UI| ,
%     dR = |R - Rb|./|R| ,        dRI = |RI - RIb|./RI ,
%     dYUI = |[Y, -L*I]*[UI; U']|./(Y*|UI|) ,
%                      dYUIb = |[Y, -L*I]*[UIb, Ub']|./(Y*|UIb|) ,
%     dRY = |[R, -L*I]*[Y; RI']|./(|R|*Y) ,
%                      dRYb = |[Rb, -L*I]*[Y; RIb']|./(|Rb|*Y) ,
%     dUHI = |[U, -I]*[HI; UI']|./(U*|HI|) ,
%          dUHIb = |[Ub, -I]*[HI; UIb']|./(|Ub|*|HI|) ,
%     dHIRI = |[HI, -I]*[RI; R']|./(|HI|*RI) ,
%           dHIRIb = |[HI, -I]*[RIb; Rb']|./(|HI|*|RIb|) ,
%     dUR = |[U, -UI']*[R', RI]|./(U*|R|' + |UI|'*RI) ,
%          dURb = |[Ub, -UIb]*[Rb', RIb]|./(|Ub|*|Rb|' + |UIb|'*|RIb|) .
%   Finally  Res = worst elements of  [rU,    rUb;
%                                      rUI,   rUIb;
%                                      rR,    rRb;
%                                      rRI,   rRIb;
%                                      dU,    dUI;
%                                      dR,    dRI;
%                                      dYUI,  dYUIb;
%                                      dRY,   dRYb;
%                                      dUHI,  dUHIb;
%                                      dHIRI, dHIRIb;
%                                      dUR,   dURb]/eps
%  Limits:  Under each  N  is the biggest  K  this program has accepted.
%    N:      2       3    4    5    6   7   8   9  10  11  12  13
%    K:  67145771  9262  535  129  51  40  18  11   7   4   2   0
%   (Programmed originally for a  Mac  with a small memory,  by  W. Kahan)

if (nargin < 2),  K = 0 ;  end
I = eye(N) ;  X = flipud(I) ;  z = 0.5^1023 ;  %... to prevent .../0
[Y, L] = hilbl(N,K) ;  H = Y/L ;  HI = invhilbl(N,K) ;

U = chohilbl(N,K) ;   Ub = chol(Y)/sqrt(L) ;
UI = ichohilb(N,K) ;  UIb = X*chol(X*HI*X)'*X ;
R = choihilb(N,K) ;   Rb = chol(HI) ;
RI = ichihilb(N,K) ;  RIb = X*chol(X*Y*X)'*X/sqrt(L) ;

rU = abs(U'*U - H)./H ;  mrU = max(rU(:)) ;                clear rU
rUb = abs(Ub'*Ub - H)./H ;  mrUb = max(rUb(:)) ;           clear rUb
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aUI = abs(UI) ;  UIUI = aUI*aUI' ;
rUI = abs(UI*UI' - HI)./UIUI ;  mrUI = max(rUI(:)) ;       clear rUI
rUIb = abs(UIb*UIb' - HI)./UIUI ;  mrUIb = max(rUIb(:)) ;  clear rUIb UIUI

aR = abs(R)+z ;  RR = aR'*aR ;
rR = abs(R'*R - HI)./RR ;  mrR = max(rR(:)) ;              clear rR
rRb = abs(Rb'*Rb - HI)./RR ;  mrRb = max(rRb(:)) ;         clear rRb RR
rRI = abs(RI*RI' - H)./H ;  mrRI = max(rRI(:)) ;           clear rRI
rRIb = abs(RIb*RIb' - H)./H ;  mrRIb = max(rRIb(:)) ;      clear rRIb

aUI = abs(UI)+z ;
dU = abs(U - Ub)./(U+z) ;  mdU = max(dU(:)) ;              clear dU
dUI = abs(UI - UIb)./aUI ;  mdUI = max(dUI(:)) ;           clear dUI
dR = abs(R - Rb)./aR ;  mdR = max(dR(:)) ;                 clear dR
dRI = abs(RI - RIb)./(RI+z) ;  mdRI = max(dRI(:)) ;        clear dRI

aHI = abs(HI) ;  mLI = -L*I ;
dYUI = abs([Y, mLI]*[UI; U'])./(Y*aUI) ;
                          mdYUI = max(dYUI(:)) ;      clear dYUI
dYUIb = abs([Y, mLI]*[UIb; Ub'])./(Y*abs(UIb)) ;
                        mdYUIb = max(dYUIb(:)) ;      clear dYUIb
dRY = abs([R, mLI]*[Y; RI'])./(abs(R)*Y) ;
                        mdRY = max(dRY(:)) ;          clear dRY
dRYb = abs([Rb, mLI]*[Y; RIb'])./(abs(Rb)*Y) ;
                       mdRYb = max(dRYb(:)) ;         clear dRYb
dUHI = abs([U, -I]*[HI; UI'])./(U*aHI) ;
                          mdUHI = max(dUHI(:)) ;      clear dUHI
dUHIb = abs([Ub, -I]*[HI; UIb'])./(abs(Ub)*aHI) ;
                         mdUHIb = max(dUHIb(:)) ;     clear dUHIb
dHIRI = abs([HI, -I]*[RI; R'])./(aHI*RI) ;
                         mdHIRI = max(dHIRI(:)) ;     clear dHIRI
dHIRIb = abs([HI, -I]*[RIb; Rb'])./(aHI*abs(RIb)) ;
                       mdHIRIb = max(dHIRIb(:)) ;     clear dHIRIb
dUR = abs([U, -UI']*[R'; RI])./([U, abs(UI)']*[abs(R)'; RI]) ;
                          mdUR = max(dUR(:)) ;        clear dUR
dURb = abs([Ub, -UIb']*[Rb'; RIb])./(abs([Ub, UIb'])*abs([Rb'; RIb])) ;
                         mdURb = max(dURb(:)) ;       clear dURb

Res1 = [mrU, mrUb;  mrUI, mrUIb;  mrR, mrRb;  mrRI, mrRIb;  mdU, mdUI] ;
Res2 = [mdR, mdRI;  mdYUI, mdYUIb;  mdRY, mdRYb;  mdUHI, mdUHIb] ;
Res3 = [mdHIRI, mdHIRIb;  mdUR, mdURb] ;
Res = ceil([ Res1; Res2; Res3 ]/eps) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  Res = chotestn(N,K)
%  Res = chotestn(N,K)  tests  chohilb, ichohilb, choihilb, ichihil
%   and MATLAB's chol  for normwise accuracy on  N-by-N  Hilbert matrices
%   and their inverses.  The upper-triangular matrices tested are
%   U = chohilbl(N,K)  vs.  Ub = chol(Y)/sqrt(L)  at  [Y,L] = hilbl(N,K)
%   UI = ichohilb(N,K)  vs  UIb = X*chol(X*HI*X)'*X
%   R = choihilb(N,K)  vs.  Rb = chol(HI)  at  HI = invhilbl(N,K)
%   RI = ichihilb(N,K)  vs.  RIb = X*chol(X*Y*X)'*X/sqrt(L)
%   where  X = flipud(eye(N))  reverses rows or columns,  and
%   Y = hilbl(N,K)*L  is all integers exactly.  If omitted,  K = 0 .
%   In what follows we abbreviate  {B} = norm(B)  and  |B| = abs(B) .
%   Then these residual norms' ratios are computed at  H = Y/L :
%     rU = {U'*U - H}/{H} ,        rUb = {Ub'*Ub - H}/{H} ,
%   rUI = {UI*UI' - HI}/{|UI|*|UI|'} ,  rUIb = {UIb*UIb' - HI}/{|UI|*|UI|'} ,
%     rR = {R'*R - HI}/{|R|'*|R|} ,   rRb = {Rb'*Rb - HI}./{|R|'*|R|} ,
%     rRI = {RI*RI' - H}./{H} ,     rRIb = {RIb*RIb' - H}/{H} .
%   Computed also are ratios of norms of differences     (I = eye(N))
%     dU = {U - Ub}/{U} ,        dUI = {UI - UIb}/{UI} ,
%     dR = {R - Rb}/{R} ,        dRI = {RI - RIb}/{RI} ,
%     dYUI = {[Y, -L*I]*[UI; U']}/{Y*|UI|} ,
%                      dYUIb = {[Y, -L*I]*[UIb, Ub']}/{Y*|UIb|} ,
%     dRY = {[R, -L*I]*[Y; RI']}/{|R|*Y} ,
%                      dRYb = {[Rb, -L*I]*[Y; RIb']}/{|Rb|*Y} ,
%     dUHI = {[U, -I]*[HI; UI']}/{U*|HI|} ,
%          dUHIb = {[Ub, -I]*[HI; UIb']}/{|Ub|*|HI|} ,
%     dHIRI = {[HI, -I]*[RI; R']}/{|HI|*RI} ,
%          dHIRIb = {[HI, -I]*[RIb; Rb']}/{|HI|*|RIb|'} ,
%     dUR = {[U, -UI']*[R'; RI]}/{U*|R|' + |UI|'*RI} ,
%    dURb = {[Ub, -UIb']*[Rb'; RIb]}/{|Ub|*|R|' + |UIb|'*|RIb|} .
%   Finally  Res = ceil( [rU,    rUb;
%                         rUI,   rUIb;
%                         rR,    rRb;
%                         rRI,   rRIb;
%                         dU,    dUI;
%                         dR,    dRI;
%                         dYUI,  dYUIb;
%                         dRY,   dRYb;
%                         dUHI,  dUHIb;
%                         dHIRI, dHIRIb;
%                         dUR,   dURb]/eps ) .
%  Limits:  Under each  N  is the biggest  K  this program has accepted.
%    N:      2       3    4    5    6   7   8   9  10  11  12  13
%    K:  67145771  9262  535  129  51  40  18  11   7   4   2   0
%                                                  W. Kahan,  28 June 2011

if (nargin < 2),  K = 0 ;  end
I = eye(N) ;  X = flipud(I) ;
[Y, L] = hilbl(N,K) ;  H = Y/L ;  HI = invhilbl(N,K) ;  sL = sqrt(L) ;

U = chohilbl(N,K) ;   Ub = chol(Y)/sqrt(L) ;
UI = ichohilb(N,K) ;  UIb = fliplr(flipud(chol(fliplr(flipud(HI)))')) ;
R = choihilb(N,K) ;   Rb = chol(HI) ;
RI = ichihilb(N,K) ;  RIb = fliplr(flipud(chol(fliplr(flipud(Y)))'))/sL ;

nU = norm(U) ;  nRI = nU ;  nH = nU*nU ;  nY = L*nH ;
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nUI = norm(UI) ;  nR = nUI ;  nHI = nR*nR ;  % ...= n|HI| etc.

rU = norm(U'*U - H)/nH ;        rUb = norm(Ub'*Ub - H)/nH ;
rUI = norm(UI*UI' - HI)/nHI ;   rUIb = norm(UIb*UIb' - HI)/nHI ;

rR = norm(R'*R - HI)/nHI ;      rRb = norm(Rb'*Rb - HI)/nHI  ;
rRI = norm(RI*RI' - H)/nH ;     rRIb = norm(RIb*RIb' - H)/nH ;

dU = norm(U - Ub)/nU ;
dUI = norm(UI - UIb)/nUI ;
dR = norm(R - Rb)/nR ;
dRI = norm(RI - RIb)/nRI ;

aUI = abs(UI) ;  aHI = abs(HI) ;  mLI = -L*I ;
aUIb = abs(UIb) ;  aUb = abs(Ub) ;
dYUI = norm([Y, mLI]*[UI; U'])/norm(Y*aUI) ;
dYUIb = norm([Y, mLI]*[UIb; Ub'])/norm(Y*aUIb) ;
dRY = norm([R, mLI]*[Y; RI'])/norm(abs(R)*Y) ;
dRYb = norm([Rb, mLI]*[Y; RIb'])/norm(abs(Rb)*Y) ;
dUHI = norm([U, -I]*[HI; UI'])/norm(U*aHI) ;
dUHIb = norm([Ub, -I]*[HI; UIb'])/norm(aUb*aHI) ;
dHIRI = norm([HI, -I]*[RI; R'])/norm(aHI*RI) ;
dHIRIb = norm([HI, -I]*[RIb; Rb'])/norm(aHI*abs(RIb)) ;
dUR = norm([U, -UI']*[R'; RI])/norm([U, abs(UI)']*[abs(R)'; RI]) ;
dURb = norm([Ub, -UIb']*[Rb'; RIb])/norm(abs([Ub, UIb'])*abs([Rb'; RIb])) ;

Res1 = [rU, rUb;  rUI, rUIb;  rR, rRb;  rRI, rRIb;  dU, dUI;  dR, dRI] ;
Res2 = [dYUI, dYUIb; dRY, dRYb;  dUHI, dUHIb;  dHIRI, dHIRIb;  dUR, dURb] ;
Res = ceil([ Res1; Res2 ]/eps) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function L = lcm(a,b,x)
%LCM    Least Common Multiple,  with optional correctness test.
%   L = lcm(A,B) = lcm(abs(A), abs(B)) >= 0  is an array of  Least
%   Common Multiples  of corresponding elements of integer arrays
%   A and B.  They must have the same size unless one is a scalar.
%   WARNING:  Roundoff may have spoiled  L  wherever  L >= 2/eps .
%
%   L = lcm(A,B,x)  substitutes the scalar  x  for any element of
%   L >= 2/eps  that fails an optional appended correctness test.
%   Among plausible choices  x  are  0, Inf  and  NaN,  depending
%   upon how  lcm's  user will respond to these error-indicators.
%
%   Alas,  some errors can evade detection by the test.  It works
%   best when  Matlab  accumulates matrix products either with
%   Fused Multiply-Adds,  as it does on  Power Macs,  or else
%   extra-precisely as do versions 3.5-5.2 on  680x0-based Macs,
%   and versions 3.5-4.2 on a PC,  and version 6.5 on a PC after
%   it executes the command  system_dependent('setprecision',64).
%   Then  lcm(A,B,x)  should detect any erroneous  L < 2048/eps .
%
%   L = lcm(A)  is a row whose every element is the  LCM  of the
%   corresponding column of the array  A  of integers.   WARNING:
%   Wherever  L >= 2/eps  roundoff may make  L  utterly erroneous
%   though  lcm(A)  tries to substitute  Inf  for each such error
%   unless aborted by a  NaN  produced by  lcm(0,Inf) .  Wherever
%   lcm(flipud(A))  differs from  lcm(A) ,  both may be wrong.
%
%   Requires  gcd(...)  as modified by  W.K.  after  1990.
%                                 W. Kahan,  1990 - 14 Sept. 2008

if any(imag(a(:)))
    error('lcm(A,...)  accepts no complex argument.'),  end
a = abs(a) ;
if (nargin > 1)  %...  Cases  lcm(a,b)  and  lcm(a,b,x)
if any(imag(b(:)))
    error('lcm(A,B,...)  accepts no complex argument.'),  end
b = abs(b) ;
% Do scalar expansion if necessary
sza = size(a) ;  szb = size(b) ;  %...  Matlab 3.5 - 6.5 compatible
if (sza == 1),   a = a(ones(szb(1),szb(2))) ;
  elseif (szb == 1),   b = b(ones(sza(1),sza(2))) ;  end

%  Gcd(A,B)  will expose other erroneous inputs,  namely ...
%     input arrays  A  and  B  of different sizes,  or
%     any element in  |A|  or  |B|  not an integer.
%     Gcd  deems  Inf  an integer,  but not  NaN .

g = gcd(a,b) ;  g = g+(g==0) ;  Lg = isinf(g) ;
if any(Lg(:)),  g(Lg) = Lg(Lg) ;  end  %...  lcm(inf, inf) = inf .
a = a./g ;  L = a.*b ;
if (nargin == 2),  return,  end  %...  of  Case  lcm(a,b)

%  Case  lcm(a,b,x)'s test:
if (L(~Lg) < 2/eps),  return,  end  %...  no further test needed
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if (length(x(:)) ~= 1),  x = x
  error('x  in  lcm(A,B,x)  must be a scalar,  not array.'),  end
%   What follows substitutes poorly for  IEEE 754's INEXACT flag:
g = g(:) ;  b = b(:)./g ;  a = a(:) ;  Lg = isinf(a)|isinf(b) ;
[m,n] = size(L) ;  mn = m*n ;
L = L(:) ;  q = round(L./g) ;
for  j = 1:mn  %...  seek erroneous finite  L(j)  only where ...
  if ~Lg(j)    %...  both  a(j)  and  b(j)  are finite:
    if ( [L(j), q(j)]*[-1; g(j)]~=0 ),  L(j) = x ;  %...  L  is wrong
    elseif ( [q(j), a(j)]*[-1; b(j)]~=0 ),  L(j) = x ;  end %... " "
   end, end  %...  of finite  a(j)  and  b(j) ,  and of  j
L = reshape(L, m,n) ;  return
end  %...  of  Case  lcm(a,b,x)

%  Case  lcm(A)  treated tail-recursively:
L = a(1,:) ;  [isr, isc] = size(a) ;
for  k = 2:isr ,  L = lcm(L, a(k,:), Inf) ;  end
%  end of  Case lcm(A)

%  For  Matlab 3.5,  isinf(x) = ~( finite(x)|isnan(x) ) .  For
%  386-Matlab 3.5,  use  W.K's  r0und  instead of buggy  round .

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function [g,c,d] = gcd(a,b)
%GCD    Greatest Common Divisor.
%   G = gcd(A,B)  is an array of  Greatest Common Divisors  of the
%   corresponding elements of  A  and  B .  These arrays must contain
%   only integers and must have the same size unless one is a scalar.
%   By convention  gcd(x, 0) = gcd(x, Inf) = |x| ;  gcd(0, Inf) = 0 .
%   Otherwise  gcd  is a finite positive integer computed correctly,
%   despite roundoff no matter how big elements of  A and B  may be,
%   only under circumstances discussed in the fourth paragraph below.
%   Correct values of  gcd(3, 2^80) = gcd(28059810762433, 2^53) = 1 .
%
%   G = gcd(A)  is a row of which each element is the  GCD  of the
%   corresponding column of the array  A  of integers.
%
%   [G,C,D] = gcd(A,B)  also returns C and D so that  A.*C + B.*D = G
%   and  |C|.*G <= |B|  and  |D|.*G <= |A|  with equality only rarely.
%   [C, D]  is useful for solving Diophantine equations and computing
%   Hermite transformations.  Note that another possibility for pair
%   [C, D]  is  [C, D] - [S.*B./G, -S.*A./G]  where  S = sign(B.*C) ;
%   one pair  [C,D]  may suit your application better than the other.
%
%   Roundoff can spoil  A.*C + B.*D = G  unless  |A.*C| < 2/eps  and
%   |B.*D| < 2/eps .  Wherever  max(|A|,|B|) > 2/eps  there  [G,C,D]
%   MAY BE WRONG  except on  Power Macs,  whose  G  is always correct
%   even if  [C,D]  is not.  If  max(|A|,|B|) <= 2048/eps ,  or if
%   min(|A|,|B|) <= 2048 ,  then  G  (if not  [C,D])  is correct also
%   on old  680x0-based  Macs,  and also on  Intel-based  PCs  with
%   64-sig.-bit accumulation of matrix products enabled via  Matlab
%   6.x's  invocation  " system_dependent('setprecision', 64) " .
%
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%   See also  LCM  and,  for  Matlab 3.5,  reshape,  isinf  and,
%   for  386-Matlab,  r0und,  all as modified by  W.K.

%   Algorithm: See Knuth Volume 2, Section 4.5.2, Algorithm X sped up
%   Original Author: John Gilbert, Xerox PARC;  sped up by  W. Kahan
%   Original Copyright (c) 1984-98 by The MathWorks, Inc.
%   Original Revision: 5.9   Original Date: 1997/11/21 23:45:38
%   First modified by  W.K.  in  1990  to fix  gcd(3, 2^80) = 3 .
%   $Revision: 6.5.W.K. $  $Date: 2008/09/14 06:09:59 $

if (nargin == 2)  %...  Case  gcd(a,b)
% Do scalar expansion if necessary
sza = size(a) ;  szb = size(b) ;  %...  Matlab 3.5 - 6.5 compatible
if (sza == 1),   a = a*ones(szb(1),szb(2)) ;  %...  "  "  "
  elseif (szb == 1),   b = b*ones(sza(1),sza(2)) ;  end

sza = size(a) ;  if  any(sza - size(b))
    error('Arrays input to  gcd(A,B)  must have the same size.')
  else
    a = a(:) ;  b = b(:) ;
  end;

if  any(round(a) ~= a)|any(round(b) ~= b)|any(imag(a))|any(imag(b))
    error('gcd(A,B) requires all inputs to be real integers.')
  end  %...  Inf  is deemed an integer,  but  NaN  is not.

if  (nargout < 2)  % ...  save time by omitting  c  and  d
    Y = [a, b]' ;  g = b ;  L = [0, 1; 1, 0] ;
    for  k = 1:length(a)
        x = Y(:,k) ;  %... = [a(k); b(k)]
        if any(isinf(x)),   g(k) = min(abs(x(:))) ;
        else   %...  finite operands
        while  x(2)  % ... ~= 0 ;  MOD(x(1),x(2))  and  REM(...)  could
            L(2,2) = -round(x(1)/x(2)) ; %  be wrong if  x(1)  is  huge
            x = L*x ;  % ...  new |x(2)| <= old |x(2)|/2
          end % ... of inner loop traversed fewer than  40  times
        g(k) = abs(x(1)) ;  end %...  of usual finite case
      end  % ... of  k
    g = reshape(g, sza) ;
    return
  end  % ...  of  Case  gcd(A,B)  with  nargout < 2

%  Case  [G,C,D] = gcd(A,B)  with  nargout == 3 ,  presumably.
Y = [a, b, b] ;  % ...  initialized to the right size
I = eye(2) ;  L = flipud(I) ;

for  k = 1:length(a)
    X = [I, Y(k,1:2)'] ; % ... = [1, 0, a(k);  0, 1, b(k)].
    if  isinf(X(1,3)),  X = flipud(X) ;  elseif ~isinf(X(2,3))
        while X(2,3)  % ... ~= 0  and everything is finite ...
            L(2,2) = -round(X(1,3)/X(2,3)) ;
            X = L*X ; % ... new |X(2,3)| <= old |X(2,3)|/2
          end  % ... of inner loop traversed fewer than  40  times.
      end  % ...  of finite  a(k)  and  b(k)
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    if  (X(1,3) < 0),  X = -X ;  end  % ...  invert  g(k) < 0 .
    Y(k,:) = X(1,:) ;
  end  % ...  of  k

g = reshape(Y(:,3), sza) ;
c = reshape(Y(:,1), sza) ;
d = reshape(Y(:,2), sza) ;
return
%  end of Case  [G,C,D] = gcd(A,B)

elseif  (nargin == 1)  %...  Case  gcd(A)  treated recursively
if (nargout > 1)
    error('G = gcd(A)  has just one output.'),  end
g = a(1,:) ;  [isr, isc] = size(a) ;
for  k = 2:isr,  g = gcd(g, a(k,:)) ;  end
return
%  end of  Case gcd(A)

else  error('gcd(A,B)  accepts just one or two arguments.')

%  For  Matlab 3.5,  isinf(x) = ~( finite(x)|isnan(x) ) ,  and
%  retrofitted  reshape(X, size(...))  works.
%  For  386-Matlab 3.5,  use  r0und  instead of buggy  round .
end  %...  of  gcd

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  y = r0und(x)
%  r0und(x) = integer "nearest"  x ,  fixing a bug in  round.m :
%  386-Matlab 3.5's  and  PC-Matlab 4.2's  buggy  round(x)  yields
%  x + sign(x)  whenever  odd  |x| > 2^52  (and therefore
%  |x| < 2^53  too).  This fixes  gcd.m,  lcm.m,  etc.
%                                   W. Kahan  22 Sept. 2008
y = round(x) ;  J = (abs(x) > 1/eps) ;
if any(J(:)),  y(J) = x(J) ;  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [A, M, v1, v2, v3, v4] = amvhilb(N,K)
%AMVHILB  N-by-N Hilbert matrix test data for  eig(A,M)
%  [A,M,v] = amvhilb(N,K)  invokes  [A,L1] = hilbl(N,K+1)  and
%   [M,L0] = hilbl(N,K)  to generate integer-valued test data
%   for the Generalized Symmetric Definite Eigenproblem  
%   A*b = lambda*M*b  solved by  Lambda = sort(eig(A, M)) .
%   Its computed column  Lambda  of approximate eigenvalues is
%   to be compared with the fairly accurate column  v .
%
%  [A,M, v1,v2,v3,v4] = amvhikb(N,K)  computes four versions of
%   v  stemming from the  SVD  of a bidiagonal matrix,  its 
%   transpose,  and their reversals.  The spread among these 
%   four reflects effects of roundoff upon Matlab's  svd(...) .

%                                    W. Kahan    15 Jan. 2011
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[A,L1] = hilbl(N,K+1) ;  [M,L0] = hilbl(N,K) ;  LL = L1/L0 ;
J2 = [1:N] ;  J1 = J2 + K ;  %... = [1+K, 2+K, 3+K, ...]
Y1 = J2 + J1 ;  Y = Y1 - 1 ; %... = [1+K, 3+K, 5+K, ...]
J1 = J1./sqrt(Y.*Y1) ;
J2 = J2(1:N-1)./sqrt( Y(2:N).*Y1(1:N-1) ) ;
F = diag(J1) + diag(J2,1) ;   %...  bidiagonal upper triangle
v = sort(svd(F)) ;  v1 = v.*v*LL ;
if (nargout > 3)
    v = sort(svd(F')) ;  v2 = v.*v*LL ;
    F = flipud(fliplr(F)) ;
    v = sort(svd(F)) ;  v3 = v.*v*LL ;
    v = sort(svd(F')) ;  v4 = v.*v*LL ;  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [r,p] = rndir(R)
%  RNDIR  sets the direction of rounding for  MATLAB 6.5
%  r = rndir(R)  swaps out the old rounding direction  r
%   of  MATLAB 6.5's  floating-point arithmetic and then
%   replaces it by the new direction  R  chosen from one of
%       R = 0.5         round to nearest (the default),
%           0.0         round towards zero (chop),
%           +inf        round towards  +infinity  (up),
%           -inf        round towards  -infinity  (down).
%  Invoke  rndir(r)  to restore the old rounding direction.
%  Omit  R  to get the current rounding direction  r = rndir.
%  [r,p] = rndir(...)  reveals the precision  p  of  MATLAB's
%    arithmetic other than matrix multiply;  p = 24 or 53 .
%  Though  rndir  is unaffected by this  p ,  to sense it via
%   precn.m,  q.v.,  rounding must be the default to nearest.

%  Whether  rndir(R)  works correctly for  MATLAB 7  is unclear.
%  However,  [r,p] = rndir  works for earlier MATLAB versions.

%                                      W. Kahan  20 Dec. 2010

E = 8388608 ;  E3 = E*3 ;  E8 = E*8 ;  %... E = 2^23
precns = [24, 53] ;  dirns = [-inf, 0, 0.5, +inf] ;
p = E8/5 ;  m = (-E8)/5 ;  %...  both rounded,  but how?
p = p - E ;  m = m + E ;
p = (p*4 - E3) + p ;  m = (m*4 + E3) + m ;  %... EXACTLY!
if ((p==0)|(m==0))
   error(' Compiler over-optimization has ruined  rndir(...).')
  end
r = dirns( sign(p) + (sign(m) + 5)/2 ) ;  %... direction
p = precns( 1 + (abs(p)<1) ) ;            %... precision

if nargin > 0
  if ~((R==-inf)|(R==0)|(R==0.5)|(R==inf)),  R = R
    error('rndir(R)  takes  R  only from  {-inf, 0, 0.5, inf} .')
   else  %...  set the new direction of rounding:
    system_dependent('setround', R) ;  end,  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  [G, dG] = g1(n,k,t)
%  G1 =  Shifted Jacobi Orthogonal Polynomial  from powers of  t - 1 .
%  [G, dG] = g1(n, k, t)  evaluates a Shifted Jacobi Orthogonal Polynomial
%  over a column  t  of real numbers typically all between  0  and  1  by
%  expanding  G(...)  in powers of  t - 1 .  G  is the column of values of
%  G[n](k+1,k+1,t),  the Jacobi polynomial of degree  n  in the notation
%  of line  22.2.2  of the  Handbook of Math. Functions ed. by Stegun &
%  Abramowitz.  dG*eps  is a very rough estimate of the uncertainty in
%  G  due to roundoff.

%                                               W. Kahan,  10 Mar. 2011

t1 = t(:) - 1 ;  at = abs(t1) ;
if (n==0)
    G = ones(length(t1),1) ;  dG = zeros(length(t1),1) ;  return, end
C = cumprod([1, n:-1:1]) ;  C = C.*C ;
D = cumprod([1, [1:n].*[2*n+k:-1:n+k+1]]) ;
C = C./D ;  %... coefficients of polynomial  G
G = polyval(C,t1) ;  dG = polyval(C,at) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [G, dG, a, c] = gr(n,k,t)
%  GR =  Shifted Jacobi Orthogonal Polynomials  from a 3-term recurrence.
%  [G, dG] = gr(n, k, t)  evaluates  Shifted Jacobi Orthogonal Polynomials
%  over a column  t  of real numbers typically all between  0  and  1  by
%  running a recurrence  G(:,j+1) = (t - a(j)).*G(:,j) - c(j)*G(:,j-1) .
%  G(:,j+1)  for  0 <= j <= n  is the column of values of  G[j](k+1,k+1,t),
%  the Jacobi polynomial of degree  j  in the notation of line  22.2.2
%  of the  Handbook of Math. Functions ed. by Stegun & Abramowitz.  dG*eps
%  is a very rough estimate of the uncertainty in  G  due to roundoff.  The
%  coefficient rows  a = [a0,a1,a2,...,an-1]  and  c = [c1,c2,c3,...,cn-1]
%  are available too from  [G, dG, a, c] = gr(n, k, t) .

%                                               W. Kahan,  13 Mar. 2011

t = t(:) ;  G = ones(length(t),n+1) ;  dG = zeros(length(t),n+1) ;
a = [0:n-1] ;  ak2n = a+a+k ;  c = [1:n-1] ;  ck2n = c+c+k ;
c = c.*(c+k)./ck2n ;  c = c.*c./( (ck2n+1).*(ck2n-1) ) ;
a = 0.5 + (0.5*k*k)./(ak2n.*(ak2n+2)) ;

G(:,2) = t - a(1) ;  dG(:,2) = abs(t - a(1)) + a(1) ;
for  j = 3:n+1
    G(:,j) = (t - a(j-1)).*G(:,j-1) - c(j-2)*G(:,j-2) ;
    dG(:,j) = a(j-1)*abs(G(:,j-1)) ;
    dG(:,j) = dG(:,j) + abs(t - a(j-1)).*dG(:,j-1) + c(j-2)*dG(:,j-2) ;
  end %... j

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  z = zg(n,k)
%  ZG = zeros of a shifted Jacobi orthogonal polynomial.
%  z = zg(n,k)  is a column of the  n  zeros of the  Shifted Jacobi
%  Orthogonal Polynomial  G[n](k+1,k+1,t)  found on line  22.2.2  of
%  the  Handbook of Math. Functions ed. by Stegun & Abramowitz,  and
%  computed by  Matlab  program  g1(n,k,z)  or else  gr(n,k,z),  q.v.
%  Zeros  z  are the eigenvalues of a tridiagnal matrix  T  drawn from
%  coefficient rows  a  and  c  generated in  gr.  Rounding errors in
%  eig(T)  are mostly eliminated when  zg  runs in  386 Matlab 3.5,
%  in  Matlab 5.2 on a Mac Quadra 950,  or in  PC Matlab 6.5  after
%  " system_dependent('setprecision', 64) "  has been executed.

%                                          W. Kahan,  15 March 2011

[g,dg,a,c] = gr(n,k,0) ;  c = sqrt(c) ;
T = diag(a) + diag(c,1) + diag(c,-1) ;
[Q,E] = eig(T) ; %... diagonals  E = Q'*T*Q  &  eye = Q'*Q  nearly
dz = sum(Q.*([T,Q]*[Q;-E]))./sum(Q.*Q) ;  %...  refinement
z = diag(E) + dz' ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  p = p0(z, t)
%  P0:  a monic polynomial's values given its zeros.
%  p = p0(z, t)  is the column of values,  at each element of
%  column  t ,  of the monic polynomial whose zeros are in row
%  z ;  i.e.,  p = (t - z(1)).*(t - z(2)).*(t - z(3)).*(...) .

%                                     W. Kahan,  15 March 2011

t = t(:).' ;   z = z(:) ;
nt = length(t) ;  nz = length(z) ;
tz = t(ones(nz,1),:) - z(:,ones(1,nt)) ;
p = prod(tz).' ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


