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Four Cholesky Factors of Hilbert Matrices and their Inverses

From notes for a 2nd undergradudemerical Analysiscourse by
Prof. W. Kahan
Math. Dept., and Elect. Eng. & Computer Sci. Dept.
University of California at Berkeley

Abstract

Numerical software for matrix inversion and factorization is often tested tfilbert matrices
because, first, they are so nearly singular, the more so as dimensions increase, and secondly
their determinants, inverses afholeskyfactors are computable accurately for comparison
purposes from relatively simple integer recurrences embedded hereundeariinsMprograms.

The N-by-N Hilbert matrices ik treated here have elements\{kf = 1/(i+j+K-1) for

integers K= 0. Examples pit these matrices’ inverses and factors agaiwtABIs inv , chol

and eig functions. Correctness tests turn out much more arduous than the programs tested.
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Introduction
These are lengthy notes.

If you would rather not read them, you should demand and purchase programming languages,
environments and software development systems that support extravagantly wide precision for
floating-point arithmeti@s its default The alternative is to pay occasionally for extra time and
extraordinary mathematical talent that succeeds less often than extravagantly wide precision can
at delivering computed results at least about as accurate as your data deserve. |IEEE Standard 754
(2008) for Floating-Point Arithmetic offers arithmetic 16 bytes wide, with at least about 32

sig. dec. It is extravagant enough to render the effects of roundoff almost surely insignificant.

We should prefer rounding errors so tiny that their effects need not be appraised. Instead they can
degrade results computed nowadays by programs otherwise impeccably correct algebraically.
When degradation is intolerable, what (if not whom) shall we blame? If not the program then
the data. We call a blameworthy program “Numerically Unstable”. We call blameworthy data
“lll-Conditioned”. Such designations are oversimplifications often undeserved, as we shall see.

At least since version 6.5, AVLAB’s programs for its functionswv , chol andeig have been

State of the Artdespite known rare failure modes that deliver misleading results for otherwise
innocuous data. (Some examplesrof ’'s failures appear in lecture notes posted on my web

page at www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf >.) Those failures are

not the subject of the following notes, which are not intended to disparageadis functions

in question. These are designed for matrices whose elements are uncorrelatedly uncertain by at
least a unit in the last sig. bit retained, as if rounded off when stored in the computer's memory.

Uncertainty in data propagates, amplified by appropi@iadition Numbersto uncertainty

inherited in the inverses, Cholesky factors and eigenvaluesmthathol andeig would

produce if executed with infinitely precise arithmetic — no roundoff. Ideally, numerically stable
software would let its roundoff add little more uncertainty than must be inherited anyway; but
practical software falls short of this ideal. Different numerically stable programs differ in their
degradation by roundoff; some programs suffer more roundoff than others do when dimensions
grow; some programs tolerate bigger condition numbers before aborting. We explore programs’
limitations by applying them to test data of increasing dimensions and worsening ill-condition.

Condition numbers of Hilbert matricesyld are known to grow rapidly (exponentially) with

their dimension N They serve as test data fav , chol andeig because their inverses,

Cholesky factors and related eigenvalues are computable accurately from exact integer input data
(N, K) without first computing and rounding off the Hilbert matrices’ elements. These accurate
schemes are early instances of a growing body of “structure-preserving” algorithms that bypass
explicit computations of a matrix whose gross ill-condition is an accident of the choice of one of
many possible mathematical formulations of a problem with structured data. Preserving this
structure faithfully often preserves also a benign relationship between the problem’s solution and
its data; then the ill-condition of that matrix is irrelevant to the benign relationship.

For instance, a problem in which Hilbert matrices can appear but neetlrdss-Squares
approximation of any given function ty( over the interval & 1< 1 by polynomials. Choosing

to represent these as linear combinati&fs) :=  1<j<n §; 11 of power functionst?! is what
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brings in Hilbert matrices. Their ill-condition reflects the maximal growth rate with increasing
degree N-1 of the coefficients of polynomials=(t) of magnitudes=|(t)| restricted by, say,
[E(MII<1 on thatinterval. The growth is exponential for all of the usual norms. |Ch¢josing

a better representation as a linear combinafifr) := 21gjgN XjG-1(1) of polynomials G4(T)
orthogonal on that interval entails milder coefficiegfsand matrices far better conditioned than

Hilbert matrices when degree N-1 gets big. Thus does respect for the Least-Squares problem’s
structure pay off. But since these notes embrace rather than eschew Hilbert matrices, only a
little more will be said later about those orthogonal polynomigls (G .

Cleverness does not guarantee correctness. How can we know whethexrtirs Ndbrograms

offered at the end of this document are accurate? We should prefer proofs. | cannot remember
where | put my proofs a few decades ago; but | do remember that they were so much longer than
the programs in question that the proofs’ capture cross-section for error exceeded the programs’
by far. That is why tests have been included, though they are lengthy too. Tests cannot prove
accuracy, but they can corroborate it, or not. Examples of ineffective tests are included among
the effective tests of triangular factors. Where explicit formulas for eigenvalues are unavailable,
their tests here must be indirect but, alas, executable under only two old versionsLeB M

INTRODUCTION NOT FINISHED YET
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Genesis of Hilbert Matrices
Hilbert matrices arise from (weighted) least-squares fitting of polynoraials to arbitrary
functions yt) over the interval @ 1< 1 as follows (using MrLAB’s vector notation):

Given the function wi) , choose integers X0 (for theweigh) and N >0 (for thedegred,
and then find the column-vectar:= [§1; &o; ...; &y] of coefficientsg; of the unique polynomial

=(1) = 2 1<jen & 71 of degree less than N that minimizes

IE@ - y@OIF =o' 1 E@ - y@)>dr .
Most often K =0 and is then omitted. The minimizing column vegt@atisfies the
Normal Equations  Hy kX =by g

in which column by k := [By; By ---; Bn] has elements; := [o! T 1"K.y@)-dr, and matrix

Hnk has element8; = [o! t1*K=2.qt = 1/(i+j+K-1) inrow #i and column # . This\H is
an N-by-N Hilbert matrix. MATLAB functions to generaté = hilb(N) in the most common

case K =0 have been programmed by Dr. Cleve Moler (his comes witbad) and by Prof.
Nicholas J. Higham, but their programs are not the best to generate test data. Here is why:

Hilbert matrix H, x becomes “ill conditioned” because it approaches singular matrices rapidly
as N increases. Consequently, tiny perturbations that occur when quofierjik41) are
rounded off cause the computed inverse of a perturhgg b change drastically, and more so

as N increases. Hypersensitivity to perturbations is explor&elavant Course Notes Posted
on my Web Page8sted below, and in Higham’s book listed below unBarther Reading

To avoid perturbing the data, a prograitbl(N, K) supplied below computes Y t=Hy

for the least integeL := LCM([K+1, K+2, ..., 2N+K—-1) > 0 whose quotientk /(i+j+K-1) are
all integers computed exactly, except when thisgets so big that it has to be rounded off.

Ideally, if N or K is too big fomilbI(N,K) to be computed accurately, the program should
stop at an error message. It will after the commaysem_dependent(‘setprecision’, 64)

has been executed by PQMAB 6.5 to enable extra-precise accumulation of sufficiently small
matrix products. Otherwise recent versions oATM\B on some hardware may fail to discover
when hilbl(N,K) is wrong. This is due to an unavoidable failuracaf explained in my web
page’s course notes.../Math128/GCD5.pdf>  from which gcd andilcm were obtained. Such
failures would not occur if MrLAB supported thenexact Exception Flagnandated by IEEE
Standard 754 for Floating-Point arithmetic. To preclude such failures, imioki,K)

only with integers N >0 and KO that are not too big; these are tabulated on the next page.

Let Yy and Ly denote the results produced exactly[igyL] = hilbi(N,K) , whence
Hnk = Yn/Lnk s this N-by-N matrix, with elements 1/(i+j+K-1) inits row #i and column
#j , is a block out of a bigger Hilbert matrixyk , and turns out to have only integer elements

in its inverse. Progranmvhilbl below computes this inverse as accurately and as quickly as
MATLAB can.
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Tabulated under each listed K <100 is the biggest N found to be not too biglfeK)

K 0 1 2 3 4 5 6 7 8 9
maxN | 21| 21| 21| 20 20 19 19 18 18 1
K 10 | 11 | 12| 13| 14| 15| 16| 17 18 1
maxN | 17| 16| 16| 15| 15 14 14 183 13 1
K 20 | 21| 22| 23| 24| 25| 26| 27 28 2
maxN | 12| 11| 11| 10| 10 11 10 10 9 9
K 30 [ 31| 32| 33| 34| 35/ 36/ 37 38 39
maxN | 9 10| 9 9 9 8 8 8 10| 9
K 40 | 41 | 42| 43| 44| 45| 46| 47 48 49
max N | 9 9 8 8 8 7 8 8 7 7
K 50 | 51 | 52| 53| 54| 55| 56| 57 58 59
max N | 9 8 8 8 8 7 7 7 7 7
K 60 | 61 | 62| 63| 64| 65| 66| 67 68 69
maxN | 7 7 7 7 6 7 6 6 7 7
K 70 | 71| 72| 73| 74| 75| 76| 77 78 79
max N | 6 6 6 7 7 6 7 6 6 7
K 80 [ 81| 82| 83| 84| 85 86| 87 88 89
maxN | 6 6 6 6 6 6 6 7 7 6
K 90 [ 91| 92| 93| 94| 95/ 96/ 97 98 99
maxN | 6 6 6 6 6 6 6 6 6 6

O 1o Y

Computing Cholesky Factors and Determinants of | andits Inverse :

In principle, Hy™ =L-(L-Hy)™ could be computed using Matlakis/(...) function, but this
incurs rounding errors that cause at least about as much damage as would roundjgig off H

elements. To avoid that damageA™AB provides a special functioinvhilb(N) for use
instead ofinv(hilb(N)) to get an accurate inverse by computing a diagonal matrix D of

integers for which kj‘lz D-Hy-D . The prograninvhilbl(N,K) below takes K into account
too; it uses a recurrence derived from one first published by Dr. Sam Schechter in 1959.

Roundoff poses the same threatdta(H) as toinv(H) , and the threat is avoided the same
way, namely by computing the diagonal matrix D of integers that figures in the formula
H™1=D-H-D whence we get integers detfH= |det(D)| and det(Y) = détH) = |det(-DY)|
from the MATLAB program[dy, L, dhi] = dethilbl(N, K) supplied below.

Upper-triangular Cholesky factors ofylg and its inverse are computed with nearly minimal

rounding errors from mostly integer formulas below more complicated to derive. These produce
results far more accurate (unless N+K is small) than can be obtained somaBNS built-in
chol(hilbl(N,K)) and chol(invhilbl(N,K))
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Closed-form Formulas for Inverses and Triangular Factors of Hilbert Matrices
The element of N-by-N matrix \fk inits row #i and column # is {{l}i; := Y (i+j+K-1) .
In most of our other other matrices tl®mbinatorial Coefficient'Cy := NI/((N-K)!-K!) will

be needed. In the formulas that follow, the subscripts N,K will be taken for granted so that the
abbreviation H can be used fory | and similarly for all other matrices except $ and

whose only subscript would be their dimension Nere $ := Diag([1, -1, 1, -1, ..., (D))
androwu' :=[1,1,1, ...,1]. The N-by-N diagonal matrix D has integer elements

D} ) =ty = (1) NG NG

{H™; = {D-H-D};j = dy ;i O /(i+j+K-1) also has elements all integers;
det(H ) = |det(D)| =[MT; dykl  is an integer that grows huge very fast with N+K .
u-HLu:= Zi'Zj {H‘l}i,j = N-(N+K) is useful to test the accuracy oflH

w-sHLSU = 35 HH Y = (AL N+ (N-1))2) (1 + O((N+K) D) )
as K—> +oo ,

IH 2= 3535 @H )7 = (@N=2) - (N+KPNY(N-11)*) (1 + O((N+K) D) )

as Ko +oo .

The four N-by-N upper-triangles U and R and their inverses are Cholesky factors of
H=U.U=R%R™? andof H!=R-R=ULU" and, though not generally integer matrices,
can be assembled out of integer matrices starting with these four N-by-N diagonals:

$h =0 My =K+2-1; (&) :=""F2C 4 and Q) =KNIG .
These combine with two N-by-N integer-element upper triangles C and G defined by

{C; =G, and {G}; :="TFKG, ={g¥.cl¥lgy,
to produce the four Cholesky factors and inverses:
U=V¥C-(¥-£)Y, U=£$G$¥, R=3$V¥C$Q=$UD and R=(Q ¥l Gv¥.

MATLAB programchohilbl  below computes Uichohib ~ computes U'; choihilb
computes R and ichihilb computes R.

All these formulas have been adapted more or less directly from formulas found in the literature
cited underFurther Reading For big dimensions N these formulas seem at first to entail work

proportional to N, butin fact H, U, R and their inverses can all be computed from recurrences
that cost work proportional to N these appear in our AVLAB programs. And most of the
arithmetic, if precise enough, produces intermediate results computable exactly as integers. Of

course, for any chosen precision, likexaB’s 53 sig. bits, roundoff will corrupt at least
some of those huge integers when N and/or K gets too big.

Also cited underFurther Readingare formulas and programs more general than ours published
by Prof. Plamen Koev for accurate triangular factors and singular val@esuchy matrices, of
which Hilbert matrices are instances.
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Tests of hilbl , invhilbl , and dethilbl
These programs’ own correctness has to be assessed before they are used to generate data to test
other programs’ accuracies. A testlofL]=hilbl(N, K) confirmed that all the elements of

v=L/Y  were the correct small integers, the reciprocals of the elementg pf, ldxcept when

some of the biggest values of the scale fattogot rounded back to 53 sig. bits, in which case
some of the entries in V differed from integers in their 53rd (last) sig. bit.

W = invhilbl(N, K) was tested by computingorm([Y, L*eye(N)]*[W; -eye(N)]) to

obtain || Y-W L1 || as one matrix product accumulated extra-precisely in 64 sig. bits on an old
68040-based Macintosh Quadra 950. Both norms vanished for small values of N and K but,
beyond these, 64 sig. bits were too few to hold the intermediate products of elements of W and
Y, so roundoff contaminated Y-WAImost the same results were obtained fromTIMB 6.5

on an IBM PC after the commangstem_dependent('setprecision', 64) , without which
roundoff contaminated results sooner and worse. Another test better indicative of (in)correctness
in invhilbl on other computers was needed; it was constructed from the following observation:

Letrow N-vectoru':=[1,1,1,...,1]; theroy := u'-HN,K‘l-u = N-(N+K) after massive
cancellation, the more soas N and K increase; and the computatigrkofjenerates no

intermediate sums bigger in magnitude than the biggest elememﬁ,,@‘1 Hbecause their signs

alternate. Ifu'-Wu # N-(N+K) then surely W HN,K‘l. This is how roundoff’s interference
was inferred to be recorded in the documentatiomwfilbl

[dy, L, dhi] = dethilbl(N, K) was tested for a few small integers N and K by comparing
its outputs with values of the determinants computed exactly by the automated algebra system
DERIVE 4.1 runon an IBM PC. The outputs matched perfectly until they got so big that only
their rounded values displayed byaMAB to 15 sig. dec. could be compared; these matched in
all but at worst the last digit displayed.

Tests of MATLAB 'S inv

The accuracy of any estimate M oﬁ\lﬂ, no matter how MrLAB computes it, can now be

assessed by comparing it withv = invhilbl(N) using arithmetic no more precise than was
used to compute M . What measure of (in)accuracy is suitable? One possilaléynisntwise

First computer = 2x(M-W)./(M+W) , the array of symmetric differences from 1 of ratios of
respective elements of M and;\Wthen m =-log(max(eps/2, max(abs(R(:)))))/log(2)

is the least number m of matching sig. bits between respective elements of M. axd mére
than 53 can match; this is wieps/2 appears there. See the first graph below.

This elementwise measure m is appropriate for inverses of Hilbert matrices because they have
no elements much closer to zero than their neighbors. There are matrices for which elementwise
measures of (in)accuracy are inappropriate; for these a better measure moayiese using
r:=2:[[IM=WH||M+W]|| in place of max|R(:)| above. The choice of norm ||...|| matters less for
inverses of Hilbert matrices than for some others, in particular examples in course notes posted
at <.../Math128/FailMode.pdf>
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Elementwise Accuracies of *inv(hilbl(N)) and inv(hilb(N))
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MATLAB's own biggest-singular-valusorm(...) was chosen for the second graph above; it plots
-log(max( eps/2, 2*norm(M-W)/norm(M+W) ))/log(2)
against N for k¥ N <13, beyond whichilb(N) is too nearly singular for NfLAB’S inv(...) .

The graphs corroborate that roundoff’s effects insig¢..) are comparable with the damage
done by rounding the fractional elements qf kb MATLAB’'s working precision of 53 sig. bits.

Exercise: Use tests like those above to compare withilbi(N) diverse estimates for ,\Fl1

computed by MTLAB from expressions like

inv(hilb(N)), round(inv(hilb(N)), L*inv(hilbl(N)), round(L*inv(hilbI(N))),

flipud(inv(fliplr(hilb(N))), round(flipud(inv(fliplr(hilb(N)))),
for N=1, 2, 3, ... inturn to determine when each kind of estimate breaks down and how much
good or harm is done by different sources of roundoff, epilogs, column orders,

Exercise: Compare the outputhi of [dy, L, dhi] = dethilbl(N) with 1/det(hilb(N))
and its variations analogous to the previous exercise.

Variations Among Computed Inverses of a Near-Singular Matrix

Recall that the singular matrix S nearest H is distant from it by ||H—S||‘=1|[Ll||H4his is
proved as Theorem 7 in the course netegMathH110/Gllite.pdf> . Thenorm ||...|| hereis

Matlab’s norm(...) . Even a rough computation of Hreveals how near H is to singular; any
estimate M= H™! provides an estimate ||H=S[/|[M|| . How widely can estimates M vary?

Programs like MTLAB’s inv(...) compute inverses by Gaussian Elimination or, equivalently,
triangular factorization whose roundoff can cairsgH)  to differ from H? by a little more in
norm than (HAH)™ can differ if WH||= N-:||H|| , though usuallying(H) Y12 H+AH for

any such tiny perturbatiodH . Heree =eps = 2722 is MATLAB’s roundoff threshold. In other
words, though a computed =inv(H)  need not be the inverse of any matrix Mt differing
from H by at most about N rounding errors in each element,othel computed inverse M is

almost never much farther from~Hthan the inverse (I-;NH)‘1 of such a perturbed H. And
(H+AH) L — H1= —H1AH (H+AH) T,
I(HAAH)™ = H4I < (IHY]RHI I (HAH) ] = Nes[[H ] (IHI- [T (HAH) ]
With very rare exceptions, an estimate M of! kbbtained frominv(...) should satisfy roughly
IIM=HY|< Ne|[H[|-|IMfi provided Ne-||H|| << 1/||MK ||H-S]| .
The last proviso means “H is much farther than N rounding errors from its nearest singular
matrix S.” “Rare exceptions” mean pathologies like those:irvMath128/FailMode.pdf>

But if ||H=S|| is not much bigger thaneMH|| , therm =inv(H)  may well be computed far
too inaccurately for the bound upon ||M =1} above to be trusted. Usually Matlab issues a

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.572099e-17."
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The displayed value RCON®1/(|[H||-|[M||) is MrLAB’s estimate of ||H-S]||/||H]||, but it may
be wrong by an order of magnitude because AHH+ S|| may vary by that much or more/ds

varies by several rounding errors per element of Gonsequently |[(H¥H) Y| = 1/||HAH — S||
may vary that much, and therefore so may ||Mijd consequently so may ,Miepending upon
the rounding errors occurring during its computation.

Exercise: The last “consequently ...” follows from the observation that the norm of a matrix can change by no more
than the norm of its change: | ||[&M|| — ||M]|] E |AM|| . Can you explain why?

In short, if H istoo nearly singular, different computations may yield estimates Mlothat

appear utterly different. However, provided all the estimates are scarcely worse th) ¢H+

for roundoff-like perturbationg\H , the diverse estimates M usually have this in common:
They are all approximately scalar multiples one of another.

This is explained on pp. 3-4 of the course netegMathH110/jacobi.pdf> . An alternative

explanation in terms of th&ingular Value Decompositionf H+AH is more illuminating but

requires enough additional technical machinery to be a story for another day.

Exercise: Use different formulas, like those in two previous exercises, to compute diverse estimatels, M.
forinverses of Hilbert matrices\tk with N barely big enough to elicit AMLAB’s “close to singular” warning.

To see how nearly two such estimates, say M anddme to scalar multiples of each other, estimate first a scalar
multiplier {, say Z := trace(W-M)/trace(W-W) , and then computea := || M ={-W |[|| M +Z-W || . If N is so

big that T is not much smaller than 1, can you explain why? Reviewing the hypotheses from which the
aforementioned note’s conclusions were drawn may help; or else considessid estimate of N —rank(H) .

Tests of Triangular Factors of H;k and of I—IN,K‘1

MATLAB’s function chol(...) implements Cholesky’s method, which can be used to compute
upper-triangular factors U and R satisfyingUW=H and RR = H. No; Rz U™L. Instead,

R =$-U-D wherein integer diagonal D is the same as figures in the formti#aD-H-D used

by invhilbl(...) , and integer diagonal $ := Diag([1, -1, 1, -1, ....\-1]) . See p. 6.

Assays of erosion by roundoff @hol(...) 's accuracy require accurate formulas for ul R

and Rl. Despite that most of their elements are irrational, they can be computed in floating-
point arithmetic from hitherto unpublished algorithms accurate in all but their last few sig. bits;
this accuracy far surpasseisol(...) 's unless dimensions are small. These algorithms have been
implemented below in MrLAB programs each of which produces an N-by-N upper triangle:

U = chohilbl(N,K) for U satisfying UU =H; cf. chol(hilb(N,K)).
UI = ichohilb(N,K) for UL satisfying UI-UI=H™L.

R = choihilb(N,K) for R satisfying RR = H™; cf. cholinvhibi(N,K)).
RI = ichihilb(N,K) for R satisfying RI‘-RI=H.

”

MATLAB’s chol(...) issues a fatal error-messageattix must be positive definite
whenever its argument is indefinite or so nearly so that the factorization’s rounding errors make
the argument seem indefinite though they damage it no more than would altering its last few sig.
bits. On a 68040-based Mac Quadra 950 and on a PC that message appeared in these cases:
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chol(hilb(14)) , chol(hilbl(14)) , chol(invhilb(13)) and chol(invhilbl(15))
These impose upper bounds upon the dimensions of the Hilbert matrices and their inverses for
which the accuracy of MLAB’s chol(...) can be tested. Besides, for N > 12TMAB can

compute neithetnvhilb(N) nor invhilbI(N) exactly beforechol(...) operates upon them.
The correctness ofJ = chohilbl(N,K) , Ul = ichohilb(N,K) , R =choihilb(N,K) and
RI = ichihilb(N,K) cannot be assessed simply by checking that residuals like
U -U - hilbl(N,K) , UlLUIl * -invhilbl(N,K) ,
R R - invhilbI(N,K) and RI-RI’ - hilbl(N,K)
are relatively tiny. Residuals computed from
U = chol(Y)/sqrt(L) , UT = X*chol(X*invhilbl(N,K)*X) "X,
R = chol(invhilbl(N,K)) and RT = X*chol(X*Y*X) " *X/sgrt(L)
for [Y,L] = hilbl(N,K) (so Y :=L-H is all integers exactly) and= flipir(eye(N)) (it

reverses the order of rows or columns) are similarly tiny elementwise and in norm though the two
versions of U, Ul, R and RI respectively can differ in norm in as much as about half their sig.
bits. Relative elementwise differences are far bigger near those diagonal ends of these triangular
matrices at which their elements become smallest, namely the bottoms of U, aarttl e

tops of Ul and RI Here is what happens when N =K = 13: The foregoing residuals are

about as tiny as if caused solely by rounding off the elements of U, Ul, R, BI, B and RIto

store them; but ¢ smallest elements disagree almost entirely with, land likewise for the

other pairs. However, [[WU|[||U||= 1~Meps, and likewise for the other psirs, which means that
chol(...) has lost about half the arithmetic’s sig. bits when error is measured normwise.

Whenever | could check, MLAB's chol(H) has always produced an error message or else a relatively tiny residual
even for arguments H so nearly singular tk@tl) was of the order ofi/eps . Thenchol(H) ’'s result was often

wrong normwise in about half the sig. bits carried by the arithmetic. Why were only about half the sig. bits lost
instead of all of them? This can be explained when the last diagonal elemeatiafi(H) is much smaller than

all others, in which case the normwise loss of sig. bits is governed maimlft)y= Vk(H) = 1/ veps . Otherwise a

loss of almost all sig. bits is to be expected according to error-analyses like Ji-Guang Sun’s “Perturbation Bounds for
the Cholesky and QR Factorizations” in pp. 341-35BI8f 31 (1991).

More persuasive corroboration of the correctness of odTLM8 programs that compute

U= chohilbl(N,K) , Ul = ichohilb(N,K) ., R=choihilb(N,K) and RI =ichihilb(N,K)
comes from the relative tinyness elementwise and normwise of differences like

[Y, -L*I]*[Ul; U "1, [R, -L*IM[Y; RI . [U, -IT*[HI; Ul 1, [HI,-]*[RI; R]

and [U, -UI'T*[R’; RI] (with 1 =eye(N) , [Y,L] =hilbl(N,K) , HI = invhilbl(N,K) )

which turn out to be sensitive to uncorrelated errors in U, Ul, R and RI. Here is what happens
when N=9 K=13: For U, Ul,R and RI the differences are barely bigger elementwise and
normwise than if attributable solely to rounding off those matrices’ elements to store them. For
U, Ul, R and Rl the differences between smaller elements indicate they lost almost all their sig.
bits; the norms of the differences indicate a loss of almost half these matrices’ sig. bits.

The numerical results summarized above were obtained freamwAd programschoteste and

chotestn  provided below and run originally underaMAB 3.5 on a 386/7-based Intel 302 PC

and a 68040-based Apple Macintosh Quadra 950 in the early 1990s, and more recently under
MATLAB 6.5 on an IBM T2IThinkPadlaptop after executing

system_dependent(‘setprecision’, 64)
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Difficult Eigenproblems

The Generalized Symmetric Definite Eigenproblem asks for eigenvéxctoosand eigenvalues

A that satisfy A» =A-M-b for given real symmetric (or complex Hermitian) matrices A=A
and M =M of which the latter must be positive definité:M-x > 0 for all x#0. Since its
version 3, MTLAB’s function eig(A, M)  has offered solutions for such problems. They suffer
from some pathologies among which is the case that A and M sheae-aullspace If this
contains az with ||Az|| << ||A||-d| and [|Mg]| << ||M||-H| then roundoff can contaminate some
eigenvalue(s) and eigenvectors severely; for instance, eigenvedan be miscomputed as

b+ {-z for a wide range of scalais and still satisfy Al{+{-z) =A-M-(b +{-z) very nearly.

One way to solve the Generalized Symmetric Definite Eigenproblem starts from the Cholesky
factorization of M = UU. Itis followed by the computation of W :23-A-Ul=W whose
eigendecomposition W = @-Q , with an orthogonal matrix Q =T of W’s eigenvectors

and real diagonal\ of W’s eigenvalues\, is computed fronQ, A] = eig(W) quickly and

reliably. Then the desired eigenvectdrsare the columns of B :=4Q ordered the same way
as are the desired eigenvallen the diagonal of\; now A-B = M-BA except for roundoff’s
effect. Itis exacerbated thrice by the aforementioned pathology, first in the factorization that gets

U=chol(d) , second in the application of Hto getw=uU"\wu , and third inB=U\Q .

Whatever the way chosen to to solve the Generalized Symmetric Definite Eigenproblem, the
accuracy of its program must be tested by applications to data-sets {A, M} with known solutions
computable accurately some other way. Nearly pathological test-data-sets should be included.

Offered below is a family of integer-valued data-sefs:$ Yy k+1, M =Yy} that approach
pathological quickly as N+K increases. Herg /=Ly k-Hy k isa Hilbert matrix scaled up
to have integer elements. For this family of data-sets {A, M}, computing the eigenvalues
quickly and accurately is easy because they are rational multiplbﬁlpyllLN,K of the squares

of the singular values of upper-triangular bidiagonal matriggg UN'K+1-UN,K‘1; here

Un k is the upper-triangular Cholesky factor of k. And Fy k is computed directly, faster
and more accurately than frorehohilbl(N,K+1)*choihilb(N,K) , from the simpler formula
Fuk = V¥uker (3 + K DV¥ 1 inwhich N-by-N diagonal matrix'%y  has elements
{V¥yk}j =VK+2]-1 and bidiagonal \J has elements {}; := (if i<j<i+1 then i else 0).
For instance, _ .

M+K 1 0o o o ol JK+1 0 0 0 0 0
0 24K 2 0 0 © 0 JK+3 0 0 0 0
J+Kl=| 0 0 3+K 3 0 0| . g | 0 o JK+5 o0 0 0
0 0 0 4+K 4 0 ’ 0 0 0 JK+7 0 0
c o o o0 5+K65K 0 0 0 0o JK+9 0
o o ©0 0 o0 6+
- - 0 0 0 0 0 JK+11

Since singular values of bidiagonal matrices are computable almost as accurately as the precision
of the arithmetic, all the eigenvalu@s of the Generalized Symmetric Definite Eigenproblem
with integer-valued data-setA{:= Yy k+1, M =Yy} are computed far more accurately from

the squared singular values of; i than from any other program under test unless N is small.
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MATLAB programiA, M, v] = amvhilb(N, K) below delivers this data-set and its columnn
of eigenvalues\ . As K increases this data-set approaches another pathology: Closely clustered
eigenvalues undermine the accuracies of computed eigenvectors; this is a story for another day.

... qQuis custodiet ipsos Custodes (Juvenal)

How shall amvhilb ’s test-data itself be tested?
To that end, the eigenvalues in columnproduced by[A, M, v] = amvhilb(N, K) have
been compared with the columas: sort(eig(A, M)) andw = sort(eig(X*A*X, X*M*X))
in which X = flipud(eye(N)) is obtained from the identity matrix by reversing its rows (or its
columns). In the absence of rounding or other emgry and w should all be the same; and
except for their last few sig. bits they were the same when computedxbyad16.5 on an IBM
T21 laptop PC for smaller values. Ms N was increased all the columns diverged, presumably
impelled by roundoff. To test this presumption, another program had to be written:

MATLAB 6.5 programrndir  supplied below redirects the arithmetic’s rounding in three more
ways besides the default 6INEAREST'; the three are “OWARD ZERCO', “UP” and “DOWN’

as prescribed by IEEE Standard 754. Rerunning the computatieansvofand w under the

three directed roundings provided four values, one per direction, of each column. All four values
v agreed in all but at most the last few of the 53 sig. bits computed, which tends to corroborate
their accuracies. As N increased, directed roundings increasingly scattered the eolanths

w from each other and from by roughly similar amounts, thus corroborating how inaccurate

and w were, until N grew so big thga, M, v] = amvhilb(N, K) no longer generated
integer-valued data-setsA{=Yy k+1, M =Yy} exactly regardless of rounding’s direction.

Here for example are results for N =K =10. Columnss andw were computed with
arithmetic rounded the default wayo NEAREST ColumnAu, =u,—u shows howu changed

when computed with rounding directe®WARD ZERO. SimilarlyAu, shows how rounding ®J
changedu, andAu, is for rounding @WN. Likewise for Av.  and Aw .

u | Aug | Au, | Au, v Avy | Av, | Av, | w | Awg | Aw, | Aw,

0.255| -Q007| -0004| -0389] 0209505893847843
0.386| -Q060| -Q006| -0136] 0323981317503824

0 -3e-16 3e{l6 -3¢1@40|-0029| Q002| -Q001
3 -9e-16 7eql6 -9¢170|-0101| Q001| -Q000
0.512| -0133| -0006| -0133] 04391226809250292 -12e-16 12e116 -124-1608| -137| Q001| Q001
0.631] -0126| -Q006| -0126] 05528261852845718 -19e-16 22e716 -194-162P -Q129| Q002| Q002
0.740| -Q114| -0005| -Q115| 06612493756197405 -22e-16 26e1l6 -224-1830| -Q115| Q003| Q004

7

6

0

7

0.833| -Q098| -Q004 -0099| 07603044306722687 -26e-16 36e1l6 -264-1628| -Q098| Q003| Q005
0.908| -0078| -0002| -0079] 08461150279850096 -33e-16 36ei16 -33¢-1608| -Q077| Q003| Q005
0.962| -Q056| -Q001| -Q056] 09152685078254560 -39e-16 40e7l6 -39¢-1659| -Q055| -Q052| Q003
0.993| -Q031| -0000| -Q032| 09649935940457747 -40e-16 42e116 -404-169R| -0032| -Q031| Q001
5.724| -4732| -3016| -4732] 09932996529571477 -4le-16 44e:16 -414-1651| -Q159| -Q159| -Q005

Repetitions among thA...s suggest that often a few, perhaps as few as one or two, rounding
errors overwhelmingly dominated the others in their effect upon computed eigenvalues. This
phenomenon renders th@entral Limit Theoremimpotent to justify estimating errors from the
A...s’ spreads; they are too likely to be too small when eigenvalues’ errors are exceptionally big.
More about such phenomena is posteevatw.eecs.berkeley.edu/~wkahan/improber.pdf>
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Condition Numbers

Until further notice, drop the integer subscript2 il and K= 0 and use simple abbreviations
H:=Hyk , etc The Condition Number(H) := ||H||-||F|1|| Is an inverse measure of the relative
distance between H and its nearest singular matrix; in fact, the line joining H to zero matrix O
makes an angle arcsifg{H)) with the cone through O of singular matrices. This is explained
in web-posted class noteslite.pdf and NORMIite.pdf  cited below. Besides subscripts N

and K now suppressed, the choice of norm ||...|| can &ifelyt perhaps drastically, as
happens to the first example #n./Math128/FailMode.pdf>

The choice matters to us because the condition number reveals how much at worst (or at least) an
infinitesimal perturbatiordH in H can perturb ¥ when measured by the chosen ||...|| :

S(H™ 1= (H+SH) ™ —H™ = —H ™ 8H-H™ so 1(H) < (IBHHINHHD/(IBHIMIHD < k(H) ,
and each ¥” can be made £” by an appropriate choice @ . Moreover, error-analyses of
the programs most often invoked to invert a matrix H in floating-point show why, with very rare
exceptions, the program’s roundoff harms its result by little more than if H had been perturbed
first by a pseudo-randordH comparable in norm to roundoff in the elements of H, and then
inversion had been performed exactly. In short, with very rare exceptions, we can expect the
number of sig. bits lost to roundoff during the inversion program to approximaé(lad) ,

roughly. How roughly depends upon details including the dimension N and the chosen ||...||

For norm ||...|| let us choose firstaMAB’s norm(...) , which is the biggesSingular Value
|1B]| := mag, |[IBX|b/|X|b = max., V((Bx)'-Bx/(x' X)) =V( biggest eigenvalue of "B ) .
Tabulated below are computed values of(egHy )) for some small integers K and N .

N=2 3| 4| 5| 6| 7, 8 9/ 10 1y 12 183 14 15 20 30 50 80 120 470

4.27|903(13921886/2383 2882 338338844387 4889 | 5393| 5897| 6401| 6905| 9431|14492246333986260181/85590

5.27 {1040 15492055 2561{3066/3571{4Q77/4582 5088| 5594 | 6100| 6605| 7111| 9643|14711/24858 4009260414 85825

6.67 112601818 235828883412393344504965 5479| 5992| 6504| 7015| 7526|10075151622532540569 6089786312

Nl w| R | oA

8.35|1549 21982809 339539654523 50735615 6153| 6686| 7216| 77.44| 8269|1087216018262354151261860 87287

10.18|1886{2666 339040754730 536459806583 7174| 7756| 8331| 8898 | 9460|1220817531)27921433116372889198

12.09|2252/3193 406548875669 6420 71457850 8536| 9207 | 9864|105101114514203 1995530824 465666721592836

314.04| 263537554798/ 57.84{67.24 7626[8497/934010161/10960 11742 12507,13258 16834 2339835340 52007/ 73340 99444

WHY ARE THESE CONDITION NUMBERS IRRELEVANT TO THE LEAST-SQUARES FIT

OF A POLYNOMIAL =(t) TO A GIVEN FUNCTION y¢) ? See Orthogonal Polynomials.
STILL TO COME: Correlations of condition numbers with actual computations of inverses and factors.
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Orthogonal Polynomials linked to Hilbert Matrix Hy
The elementsuij in columns of 0! provided byichohilb(N,K) are the coefficients of the
polynomials Tg_(T) = 3 1<i<j Uj 11 orthogonal with weightX on 0<t<1 normalized so

Jo' ™ m g (1) m_y(0)-dt = (ifi=] then 1 else P.
(1) differs only by a scalar factor from the more convenient-to-compute n&hifted Jacobi
Polynomial called G(K+1, K+1,1) in line 22.2.2 of the Handbook... by Stegun and
Abramowitz cited undefurther Reading We shall call this polynomial (x(1) ; then

(1) = 2"CV2NHKFL Gy k() -

But those coefficients;; alternate in sign and grow too fast to provide a numerically satisfactory
way to compute values af_;(t) unlesst or j is small. Better ways use either the three-term
recurrence in line22.1.4and22.7.2 or a scheme like the one ir2Z18 of the Handbook... .

Fora given k=0, the simplest less inaccurate way to computg(6 by itself at each of a

diverse multiplicity of valuest is the expansion (Gc(1) := 3 ojen (T — 1T‘j-(“Cj)2/2”+KCj .
MATLAB programgi(n, K, t) below does this.

To best compute sequence 8, Gy k(1), Gy k(1), G3 k(1), ...}, three-term recurrenc& sets
G_4(1):=0; G(t):=1; andfor n=0,1, 2,3, ... inturn,
G k(1) == (T —an k) Gy k(1) —Ch k'Gr-1 k(1) whereincy := 0 and otherwise

Cn = (n-(n+K)/(2n+K)Z/((2n+KY - ) < £, and

an K =3 +3 K/((2n+K)-(2n+K+2) < 1.
RecurrenceG seems numerically stable over the interval 1 1 since eveng,  + ¢,k < 1;
but G too losesrelative accuracy to cancellation sincg, (1) dwindles and oscillates faster as
n increases. Starting ato@®) = 1, the magnitude of G(0) = (-1J-((n+K))?/((2n+K)!-K!)
plummets as n increases unless K is huge; andif K> 0 thepds) @scillates it decays to

below G, k(1) = n-(n+K)! /(2n+K)! . Maybe G should be run in extra-precise arithmetic, but it
was unavailable whei®’s MATLAB programagr(n, K, t) below was first written.

RecurrenceG’s [Gy(1), Gy k(T), Gy k(T), ..., Gy-1.k(T)] serves in lieu of [1r, 7 ..., ™ to
obtain the least-squares-fitted polynomii) = > 1<j<n Xj*Gi-1 k(1) = 2 1<j<N & U1 of degree
less than N that minimizefg! 1 (=(1) - y@))?-dt . The coefficients )} are obtained by
solving a linear system aflormal Equationswith Diag{1/( 4**~2C;_;v2j+K-1)? in lieu of
the Hilbert matrix Ik, and with o1 ™¢-G_; k(1)-y@)-dt in lieu of [o! t=1*K.y(0)-dr on the
right-hand side. Consequentky := (4*72C,_;)% (2j+K-1)fo' T°-G_1 k(1)-y(@)-clt .

With coefficients &, k}, {chk}t and {x;} in hand, computations c£(t) = XJSJ-SN Xj*G-1,k(0)

at diverse arguments in 0st<1 are probably best performed without first computing the
polynomials G (1) explicitly; instead use C.W. Clenshaw’s recurrence thus:
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Start ny: =0, NN_p:=Xn. andfor m=N-2,N-3, ..., 2,1,0 inturn
computenm := (T - 8m k) NMm+1~Cm+1,kNm+2 + Xm+1 10 obtain=(1) :=ng .
(Variants of Clenshaw’s recurrence are explored ifv 8 Numerical Recipes in FortraPd ed. (corrected) by

W.H. Press, S.A. Teukolsky, W.T. Vetterling & B.P. Flannery (1994), or id.Z3%f the 3d ed. (2007), Cambridge
Univ. Press.)

Gn k(1) has n simple zerost £ ¢j} all between 0 and .1As K increases they crowd near 1
If n>2 they are computed easiest as the n eigenvalje®f{a symmetric tridiagonal matrix

o o o o o

A,k +C1k

NCL Kk @k NGk ’ ’ ’ ’
° [Cr kB k ° ° °

an-3,K /\/Cn-z,K
NCn2Kk @n2k A/Cnik
NCn-1K An1K |

assembled from the coefficients of the three-term recurr&ceProgramzg(n,k)  below gets
these eigenvalues and does so surprisingly accurately (only for somenoldBMiversions) by
refining away most of the rounding errors committed witkiggT) . With accurate eigenvalues
{¢} inhand, G k(1) := Hjsjsn (t—¢) is by far the most accurate fast way to compute it.
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To be used for asymptotic estimates of Condition Numbers:
Stirling’s well-known Asymptotic approximation to Lhjnaccurate for n>>1:

Ln(n!) = 2 Ln(2m) + (n+ 2)-Ln(n)—n + 1/(12n)— 1/(360r7) + 1/(12607) — 1/(1680rf) + O(1/n°) .

[IH\ k|l is the largest eigenvalue as well as singular valuggf HFor any fixed integer N >,0
obviously [|H k||, O slowly as K~ +c. For any fixed integer & 0, unobviously
|IHnkll 7 T slowly as N +o0; see Choi [1983].

Let D be the diagonal matrix iimvhilbl  ’s formula Hl=D-H-D and let $ := signum(D) be
a diagonal matrix of alternatingjl’s, so that |D| = $-Dand set A :=/|D|-H«|D|. This has

A~1=$.A-$, which differs from A only in its checker-board patters sfgns. Consequently

||A‘1|| = ||A|| for each matrix norm |[|...[heFm(..., ... ) that MATLAB offers, andk(A) = ||A|F.
Cholesky factors of A and of its inverse are the same except for the checkerboard sign pattern.
Alas, A has irrational elements, so it cannot be stored exactly in floating-point numbers and
consequently cannot serve as test data for matrix software.
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Further Reading

“On the Inverses of Certain Matrices” by Dr. Samuel Schechter, pp. 73MTATC 13 #66,
Apr. 1959, supplied the algorithms usediimhilbl and dethilbl here.

“Tricks or Treats with the Hilbert Matrix” by Prof. Man-Duen Choi, pp. 301-312\nmer.
Math. Monthly90 #5, May 1983, surveys much of the lore about Hilbert matrices of finite and
infinite dimensions, and includes an extensive list of references.

Prof. D.E. Knuth’s booKThe Art of Computer Programmirgyd. ed. (1997, Addison-Wesley)
treats Hilbert matrices in $13 Ex. 45 on p. 38 as special cases of Cauchy matrices {1y

for which his Ex. 44 presents a precursor of our test formUIdN,K‘l-u = N-(N+K) .

“The condition numbers of real Vandermonde, Krylov and positive definite Hankel matrices” by
Bernhard Beckermann, pp. 553-57 Mafmerische Mathemat86 (2000), assembles estimates

of which one, inExample 3 on p. 570, is«(Hy) = Constant-(1 42)*N/VN for large N .

“Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices” by Prof. Plamen Koev in pp.
1-23 of SAM J. MATRIXANAL. APPL. 27 #1 (2005) discusses a peculiar bidiagonal factorization
(his equations (8) on p. 7) of the Cholesky factor U of H (treated as a Cauchy matrix) from
which fully accurate eigenvalues of H of widely disparate magnitudes are computed without
recourse to more than AVILAB’s working precision. Rectangular nonnegative matrices are
treated in his paper “Accurate Computations with Totally Nonnegative Matrices” in pp. 731-751
of ibid. 29#3 (2007). Prof. Koev is now in the Math. Dept. at San Jose State University; see
<www.math.sjsu.edu/~koev>

Orthogonal polynomials are surveyed in ch. 22 ofitadbook of Mathematical Functions
ed. by Milton AbramowitZ & Irene A. Stegun, Nat'| Bureau of Standards (now N.1.SApI.
Math. Serieg#55 (1964), reprinted in paperback wittany corrections by Dover, N.Y.

Prof. Nicholas J. Higham’s bookccuracy and Stability of Numerical Algorithiag. ed. (2002,
SIAM, Philadelphia) is a well-written 680 page encyclopedia about the intricacies of rounding-
error-analysis including a vast bibliography. Hilbert matrices appear in pp. 512-515 .
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Relevant Course Notes Posted on my Web Pageswww.cs.berkeley.edu/~wkahan/...>

<...IMathH110/GCD5.pdf> “Euclid's GCD Algorithms/s Programs” uses matrices to simplify
explanations of the Extended Euclidean Algorithm, continued fractions, Lamé’s Theorem and a
process attributed to Hermite that speeds the evaluation of integer matrices’ determinants using
only integer arithmetic. Then a few AVLAB programs are presented to compute GCDs and
LCMs and test their correctness for some version af LB on each of the computers most
popular in their time. These programs are complicated ByLMs’s denial of access to the

Inexact Flag mandated by IEEE Standard 754 for floating-point arithmetic.

<...IMathH110/Gllite.pdf> “Huge Generalized Inverses of Rank-Deficient Matrices” explores
the reciprocal relation between the norm of a possibly generalized inverse of a matrix and its
distance from the nearest matrix of the same dimensions but lower rank.

<...MathH110/jacobi.pdf> “Jacobi’'s Formula for the Derivatice of a Determinant” proves it
and applies it to th&Vronskian to the derivative of a simple eigenvalue, and to the peculiarities
of the inverses of almost all nearly singular matrices.

<.../MathH110/LstSqrs.pdf> “Least-Squares Approximation and Bilinear Forms” explains,
among other things, why the symmetric positive definite matrix of a least-squares problem’s
Normal Equationsrepresents a linear operator not from a vector space to itself but rather from a
vector space to its dual space. This influences our choices of norms and of diagonal scaling.

<.../MathH110/NORMlite.pdf> “Notes on Vector and Matrix Norms” explains their properties
deemed most important for their applications to analysis in finite-dimensional linear spaces.

<.../Math128/FailMode.pdf> “Do MATLAB’S Iu(...) ,inv(...) ,/ and\ have Failure Modes ?”
Yes; and the simplest way to cope with them is routinely to invté@tive Refinementvith
residuals computed extra-precisely if this is feasible for your hardware and versiosT oAeM
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Discrepancies

Despite that floating-point hardware and programming languages’ compilers may conform to all
applicable standards, these are not tight enough to prevent troublesome discrepancies from being
observed among results from the same program run on different versiongiofBMor the same

version on different hardware. Usually these discrepancies are so tiny that they are ignored by all
but the conscientious individual who worries that they may portend a fatal flaw somewhere in her
software or hardware. Whatse could generate these discrepancies?Optimizations

Optimizations are intended to enhance speed without degrading accuracy excessively, we hope.

Since MATLAB 6.X, its matrix multiplication operations have been optimized to nearly minimize
the incidence of cache misses and page faults that severely retarded previous versions’ operations
upon matrices too big to fit comfortably into the microprocessor’s cache(s). Now big matrices get
broken into blocks (submatrices) of sizes that depend upon the parameters of the computer’s
memory hiearchy. These blocks are multiplied and their products added in an order influenced
also, perhaps, by the hardware’s capacity for concurrency. Discrepancies induced by these
influences are usually ignored; they are perceptible only so far as roundoff makes floating-point
addition depart slightly from associativity. Discrepancies are noticed most often in a residual like

R :=A-X-B-Y, computed perhaps as one matrix prodRiet[A, -B]*[X; Y] , that so nearly
cancels to zero as leaves the computed R dominated by the rounding errors committed during its
computation. This is how iterative refinement programs, which depend crucially upon residuals,
can get discrepant results from different computers and different versionstaRsB/

The Math Library of programs to compute functions like log and cos is another source of
small discrepancies. Usually this library is incorporated in the compiler for whatever lanGuage,

or Java the developers of MLAB used to program it. The speeds of computers are gauged by
benchmarks that exercise the Math Library, so it gets optimized by the vendors of hardware and
compilers who exploit every advantageous hardware feature. Thus sped up, the library’s Math
functions may produce results different in their last bits for some relatively few input arguments.

Optimizations intended to enhance accuracy may introduce discrepancies too. Intel processors
and their clones can, if so enabled, accumulate matrix products in a few registers carrying 64
sig. bits before MTLAB stores them rounded again to 53 sig. bits. Some compilers achieve
concurrency by computing a quotient and sometimes a product in one of these few wider registers
while computing other products in registers with only 53 sig. bits. This is how a quotient and/or
product may get rounded twice, which will change its last (53rd) sig. bit stored with probability
roughly 1/4000 if all but its leading few bits are random and independent. Something else can
happen with IBMPower-PC processors used also for a decade in Applger-Maes, G4s,

Gb5s andiMacs. These processorBused Multiply-Addoperation can compute expressions like

X x£y-z with at most one rounding error instead of two. Whether such extra-precise capabilities
have been enabled and where they have been employed AyLaBViprogram can be difficult to
ascertain before they affeft, L] = hilbl(N, K) for good or ill at the largest N and/or K at
which hilbl  does not balk. The MLAB programdbirnd supplied here ???7? reveals how
many times some artfully chosen products and quotients got rounded during its explorations.
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MATLAB ™ Programs

function [Y, L] = hilbl(N,K)

%HILBL is a Hilbert matrix, or one scaled up to integers.

% H =hilbl(N, K) isan N-by-N Hilbert matrix: H(i,j) = 1/(i+j+K-1)

% but rounded to 53 sig. bits. If omitted, K defaultsto K=0,

% and then hilbl(N) = hilb(N) . If K is a nonnegative integer,

% [Y, L] = hilbl(N,K) produces Y =L*H with L =lcm([K+1: 2N+K-1]")

% so all elements Y(i,j) = L/(i+j-1+K) are integers computed exactly.

% Again, if K is omitted it defaultsto K=0.

% Ideally, if N or K istoo big, [Y, L] = hilbl(N,K) should balk

% rather than deliver any element of Y wrong because of roundoff;

% but some versions of Matlab on some computers are not ideal. See
% W.K.'s enhanced versions of gcd, Icm and perhaps rOund. Also
% see DETHILBL and INVHILBL. W. Kahan, 1996 - 13 Jan. 2009.

L=1; bigL=0; if (nargin<2), K=0; end
if (nargout>1) % ...weneed L=Ilcm(...)>1:
if (K<0)|(K~=round(K)), bad_ K=K
error(" hilbl(N, K) requires a nonnegative integer K."), end
% Compute scale-factor L = lcm([K+1:2N-1+K]") accurately enough:
if (N<2), Y =ones(N); L= (K+1)*Y; return, end
L = lem([K+1: 2*N-1+K]) ; %... only for W.K.'s version of lcm(...)
bigL = (isinf(L) & (K >0) ) ; if bigL
L = lem(lem([K+1: 2*N-2+K]"), 2*N-1+K) ; end %... maybe rounded.
if isinf(L), N_K =[N, K]
disp(' N or K is too big to compute hilbl(N,K) accurately.") %<<<<<<<<
end, end %... of nargout >1 and computationof L>1.
y =[L:N] + (K-1)*0.5; Y =y(ones(N,1),:); Y=LJ(Y +Y");
if bigL, Y =round(Y) ; end %... tries to compensate for rounded L .
% Replace buggy round by rOund in 386-Matlab 3.5 & PC-Matlab 4.2 !

function W = invhilbl(N, K)

%INVHILBL accurate inverse of a segment of the Hilbert matrix

% invhilbl(N, K) is the inverse of an N-by-N matrix H whose elements

% are H(i,j) = 1/(i+j-1+K) EXACTLY. ( Rounded elements may be obtained
% from [Y,L] = hilbl(N,K) via H=Y/L.) If omitted, K=0; then

% H is the notoriously ill-conditioned Hilbert matrix. Like invhilb,

% invhilbl is computed not from Matlab's inv(H) but from an elegant

% (and faster) formula published by Sam Schechter in MTAC (1959) to
% compute the diagonal matrix D from which we get invhilbl = D*H*D .
% Its result is accurate despite ill-condition. If K is a honnegative

% integer, all invhilbl(N, K)'s elements are correct nonzero integers,

% except perhaps for roundoff that must interfere if (N,K) lies beyond

% (22,0) - (12,2) - (11,5) - (10,8) - (9,10) - (8,15) - (7,27) -

% (6,39) - (5,73) - (4,195) - (3,1287) - (2,262142) - (1, 2"53)

% for Matlab's 53-sig.-bits IEEE 754 floating-point arithmetic.

% See also hilb, invhilb, hilbl and dethilbl .

% W. Kahan, 1994 - 28 Oct. 2008

if (nargin<2), K=0; end
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u=K+1;
if (N==1), W=u; return, end
if (N==2), %... avoid unnecessarily big intermediate integers
p = (u+l)*(u+1) ; q=-u*(u+1)*(u+2);
W = [p*u, q; g, p*(u+2)]; return, end
X =[O:N-1]; y = (x+u).";
if(K==0),
p=N; % ... The most common case is the fastest:
elseif ((0 < K) & (K == round(K)) & (K < N)),
p=N*(N+1); for j=2:K, p=(p/j)*(N+j); end
else, % ... The most general case is the slowest:
p=u; for j=1:N-1, p = (p/j))*(u+j) ; end
end
d=[p, zeros(1,N-1)]; %... to become diag(D)
for j=1:N-1, d(j+1) = (( (d()/(+K))*(-N) )j)*(N+j+K) ; end
W = (d.”d)./( x(ones(N,1),:) + y(:,ones(1,N)) ) ; % = D*H*D
if (0 <=K) & (K == round(K))), W = round(W) ; end

function [dy, L, dhi] = dethilbl(N, K)

%DETHILBL integer determinants of a scaled Hilbert matrix and inverse
% [dy, L, dhi] computes integer-valued determinants related to the

% N-by-N scaled Hilbert matrix Y produced by [Y,L] = hilbl(N,K) :

% dy = det(Y) and dhi = det(inv(Y/L)) except that dethilbl uses,

% instead of Matlab's det and inv, a method far less vulnerable

% to roundoff based upon a formula published by Sam Schechter in

% MTAC (1959). K must be a nonnegative integer which, if omitted,

% defaultsto K=0, and then H=Y/L is the familiar Hilbert

% matrix with elements H(i,j) = 1/(i+j-1) . The integer scale factor
% L = lecm([K+1:2*N+K-1]") is computed accurately only if N and K

% are not too big; otherwise L may be wrong but dhi should be

% approximately right and then dy = (L"N)/dhi. See also INVHILBL.

% Needs W. K.'s modified gcd and lcm, and maybe rOund too.

% W. Kahan, 1996 - 26 Oct. 2008

if (nargin<2), K=0; end
if (K<0)|(K~=round(K)), N__K=|N, K]
error( ' dethilbl(N,K) requires a nonnegative integer K."), end

u=K+1; m=2*N+K-1; L =Ilcm(u: m]); %... Correct if finite.
if isinf(L) %... compute instead an approximate L :
L = u*(u+l);
for j=u+2:m, L =j*L/gcd(L,)); end
% Now L =lcm(K+1, K+2, ..., 2*N+K-1) but for roundoff if too big.
N_K_ L=[NK,L]
disp(WARNING: N and/or K are so big in [dy,L,dhi] = dethilbl(N, K) that)
disp(L may be wrong because of roundoff though dhi is approximately right.")
% This is the best | can do without IEEE Standard 754's Inexact Flag.
end
% x=[L:N]; H=x(ones(N,1),:); hilbl(N,K) = round(L./( H+H' + (K-1))) ;

if(K==0),
p=N; % ... The most common case is the fastest:
elseif (K < N),
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p=N*(N+1); for j=2:K, p=(p/j)*(N+j); end
else, % ... The most general case is the slowest:
p=u; for j=1:N-1, p = (p/j))*(u+j) ; end
end
d=[p, zeros(1,N-1) ] ; %... to become |diag(D)|
for j=1:N-1, d(j+1) = (( (d()/(+K))*(N-}) )/j)*(N+j+K) ; end
dhi = round(prod(d)) ; dy = round(prod(L./d)) ;
% Replace buggy round in 386-Matlab 3.5 & PC-Matlab 4.2 by rOund .

function [U, L] = chohilbl(N, K)

%CHOHILBL Cholesky factor of a Hilbert matrix, or it scaled up to integers.
% U = chohilbl(N,K) is the upper-triangular Cholesky factor of Hilbert
% matrix H = hilb(N,K) that Matlab would get from U = chol(H) if

% only the last one or two of the 53 sig. bits of U suffered from the

% effects of roundoff in hilb() and chol() . Instead a neat algorithm

% delivers U = chohilbl(N,K) faster and far more accurately than can

% U = chol(hilb(N,K)) unless dimension N is small. Both versions of

% U have aresidual U™*U - H so tiny it drowns in its own roundoff.

% [UI, L] = chohilbl(N,K) produces the upper-triangular Cholesky factor
% Ul of the scaled Hilbert matrix Y = L*H whose elements are integers
% obtained exactly from [Y, L] = hilbl(N,K) . Ul = U*sqrt(L) comes out
% faster and far more accurately than chol(Y) can unless N is small.
% Nonnegative integer K defaults to zero if omitted.

% Floating-point operations are so ordered as to generate exact integer
% intermediate results (no rounding errors) about as often as possible.
% RESTRICTION: If N+K istoo big, [UI, L] = chohilbl(N,K) should balk
% rather than deliver scale factor L very wrong because of roundoff.

% See also DETHILBL, HILBL, INVHILBL ICHOHILB and CHOIHILB.
% L needs W. Kahan's improved GCD and LCM. 17 Sept. 2010.

if (nargin<2), K=0; end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)), N_K =[N, K]
error(' chohilbl(N,K) needs integers N>0 and K>=0"), end
if (nargout==1), L=1; else
% First compute scale-factor L =Icm([K+1:2N+K-1]) > 1 accurately:
L = lem([K+1: 2*N+K-1]") ; %... works only with W.K.'s Icm(...)
if isinf(L)
L = lem(lem([K+1: 2*N+K-2]"), 2*N+K-1) ; end %... maybe rounded
if isinf(L), bigNplusK = N+K
error(' N+K is too big to compute [UIl,L] = chohilbl(N,K) accurately.")
end, end %... of computation of L >1

dr = sqrt( L¥[K+1:2:K+2*N-1]' ) ; %... column
f=ones(1,N) + K;
fori=1:N-1, f(i+1) = (((FO)/i)*(K+2%))/(K+i))*(K+2*i+1) ; end
f=1.0./f; %...row
U=eyeN);
for j=2:N
g=U(j);
for i=j-1:-1:1, g(i) = (g(i+1)/(-))*(K+i+j) ; end
U(j)=g; end
U = U.*(dr*) ;
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function Ul = ichohilb(N, K)

%ICHOHILB Inverse of the Cholesky factor of a Hilbert matrix.

% Ul = ichohilb(N,K) is the inverse of the upper-triangular Cholesky

% factor of an N-by-N Hilbert matrix H = hilbl(N,K) that Matlab

% would get from Ul = inv(chol(H)) if only the last one or two of

% the 53 sig. bits of Ul suffered from the effects of roundoff in

% hilbl(), chol() and inv() . Instead a neat algorithm delivers

% Ul =ichohilb(N,K) far faster and far more accurately than can

% inv(chol(H)) unless N is small. Consequently, compared with

% UI*UI', the residual UI*UI'- invhilbl(N,K) is very tiny.

% Nonnegative integer K defaults to zero if omitted.

% NOTE: Generally Ul ~= choihilb(N,K) even if computed exactly.

% Floating-point operations are so ordered as to generate exact integer
% intermediate results (no rounding error) about as often as possible.
% See also W.K's DETHILBL, HILBL, INVHILBL, CHOHILBL and CHOIHILB.
% W. Kahan, 19 Sept 2010.

if (nargin<2), K=0; end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)), N_K =[N, K]
error(' ichohilb(N,K) needs integers N>0 and K>=0"), end
p = -cumprod(-ones(N,1)) ; %... column [1,-1,1,-1,..]
dr = sqrt( [K+1:2:K+2*N-1] ).*p' ; %... row of square roots
fori=1:N-1, Ki=K+i; Ki2 =Ki+i;
p(i+1) = round(( round((p(i)*(1-Ki2))/i)*Ki2 )/Ki) ;
end %... of column of integers
Ul =eye(N) ;
for i=1:N-1, g=UI(,:); i1=i-1;
for j=1i:N-1, g(j+1) = round((g(j)*(K+j+i1))/(j-i1)) ;
end %... of row of integers
Ul(i,:) =g ; end %... of upper triangle of integers
Ul = UL*(p*dr) ;

function R = choihilb(N, K)

%CHOIHILB Cholesky factor of the inverse of an N-by-N Hilbert matrix.
% R = choihilb(N,K) is the upper-triangular Cholesky factor of the

% inverse of a Hilbert matrix H = hilbl(N,K) that Matlab would get

% from R = chol(invhilbl(N,K)) if only the last one or two of its 53

% sig. bits suffered from the effects of roundoff in chol() . Instead

% a neat algorithm produces R = choihilb(N,K) faster and far more

% accurately than R = chol(invhilbl(N,K)) can unless dimension N is

% small. Both versions of R make residual R™*R - invhilbl(N,K) tiny

% enough to drown in roundoff accumulated in the huge computed R*R .
% Nonnegative integer K defaults to zero if omitted.

% NOTE: R and chohilbl(N,K) are NOT each the inverse of the other.
% Floating-point operations are so ordered as to generate exact integer
% intermediate results (no rounding error) about as often as possible.

% See also W.K's DETHILBL, HILBL, INVHILBL, CHOHILBL & ICHOHILB.
% W. Kahan, 17 Sept. 2010

from Prof. W. Kahan’s notes for Math. H110 & 1288 WORK IN PROGRESS Page 24/36



File: HilbMats Four Cholesky Factors ... Hilbert Matrices  August 26, 2011 6:25 am

if (nargin<2), K=0; end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)), N_K =[N, K]
error(* choihilb(N,K) needs integers N>0 and K>=0"), end
q = -cumprod(-ones(1,N)) ; %...row [1,-1,1,-1,..]
dr = sgrt( [K+1:2:K+2*N-1]' ).*q" ; %... column of square roots
forj=N:-1:2, j2=j+j;
q(-1) = round((round((q()*(K+j2-1))/(N+K+j-1))*(j2+K-2))/(}-N-1)) ;
end %... ofrow q of integers alternating in sign
R =eye(N);
for j=2:N; g=R(,);
for i=j-1:-1:1, g(i) = round((g(i+1)*(i+j+K))/(j-i)) ; end
R(:,j)) =g ; end %... of upper triangle of integers
R = R.*(dr*q) ;

function RI = ichihilb(N, K)

%ICHIHILB Inverse of Cholesky factor of an inverse Hilbert matrix
% RI =ichihilb(N,K) is the inverse of the upper-triangular Cholesky

% factor of the inverse of N-by-N Hilbert matrix H = hilbl(N,K)

% that Matlab would get from RI = inv(chol(inv(H))) if only the

% last one or two of the 53 sig. bits of RI suffered from the

% effects of roundoff in hilbl(), chol() and inv(). Instead a

% neat algorithm delivers RI = ichihilb(N,K) far faster and far

% more accurately than inv(chol(inv(H))) can unless N is small.

% Consequently residual RI*RI'- hilbl(N,K) is very tiny.

% Nonnegative integer K defaults to zero if omitted.

% NOTE: Generally Rl ~= chohilbl(N,K) even if computed exactly.

% Floating-point operations are so ordered as to generate exact integer
% intermediate results (no rounding error) about as often as possible.
% Seetoo W.K's DETHILBL, HILBL, INVHILBL, CHOHILBL, CHOIHILB, ICHOHILB
% W. Kahan, 19 Sept 2010.

if (nargin<2), K=0; end
if ~((N==round(N))&(N>0)&(K==round(K))&(K>=0)), N_K =[N, K]
error(’ ichihilb(N,K) needs integers N>0 and K>=0"), end

dr = sqrt( [K+1:2:K+2*N-1] ) ; %... row of square roots
p = [zeros(N-1,1); K+2*N-1] ;
fori=N-1:-1:1, K2i=K+2%;
p(i) = round( round(p(i+1)/(K+N+i))*K2i/(N-i) )*(K2i-1) ;
end %... of column of integers
p=1.0./p; %... column of integers' reciprocals
RI =eye(N) ;
for i=1:N-1, g=RI(,); i1=i1;
for j=1i:N-1, g(j+1) = round((g(j)*(K+j+i1))/(j-i1)) ;
end %... of row of integers
RI(i,)) =g ; end %... of upper triangle of integers
RI = RL*(p*dr) ;
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function Res = choteste(N,K)

% Res = choteste(N,K) tests chohilb, ichohilb, choihilb, ichihil

% and MATLAB's chol for elementwise accuracy on N-by-N Hilbert
% matrices and their inverses. The upper-triangular matrices tested are
% U = chohilbl(N,K) vs. Ub = chol(Y)/sqrt(L) at [Y,L] = hilbl(N,K)
% Ul =ichohilb(N,K) vs Ulb = X*chol(X*HI*X)"*X

% R = choihilb(N,K) vs. Rb =chol(HI) at HI =invhilbl(N,K)

% RI =ichihilb(N,K) vs. Rlb = X*chol(X*Y*X)*X/sqrt(L)

% where X =flipud(eye(N)) reverses rows or columns, and

% Y = hilbl(N,K)*L is all integers exactly. If omitted, K=0.

% Then these residuals' worst elements are computed at H=Y/L :
% rU=|U"*U-H|./H, rUb = |[Ub™*Ub - H|./H ,

% rUl = |UI*UI' - HI|/(UIF|UIY , rUIb = [UIb*Ulb' - HI|/(JUI*[UIJY ,

% rR=|R*R - HI./(R[*IR]) , rRb=|Rb*Rb - HI|./(|R]|*R]),

% rRI=|RI*RI'-H|./H, rRIb=]|RIb*RIb"-H|./H .

% Computed also are worst elements of differences (I = eye(N))
% dU=|U-Ubl/U, dul = |UI - Ulb]./|U]|,

% dR=|R-Rb|/R|, dRI=|RI-RIb./RI,
% dYUI = [[Y, -L*]*[UL; UT/CYHUI)

% dYUlb = [[Y, -L*]*[Ulb, Ub|./(Y*UIb]) ,
% dRY =|[R, -L*IIM[Y; RITIJ(R*Y)

% dRYb = [[Rb, -L*J[Y; RIb]|/(Rb[*Y) ,

%  dUHI = [[U, -I]*[HI; UI'|./(U*H1) ,

% dUHIb = |[Ub, -I]*[HI; UIb"[./(JUb[*HI|) ,

% dHIRI = [[HI, -II*[RI; R]|/(HI*RI) ,

% dHIRIb = |[HI, -I]*[RIb; Rb[./(JHI[*|RIb]) ,

% dUR = |[U, -UI'*[R', RIJ./(U*IR]" + |UI|*RI) ,

% dURD = [[Ub, -UIb]*[Rb', RIb]|./(JUbJ*|Rb|" + |UIb|*|RIb]) .
% Finally Res = worst elements of [rU, rUb;

% rul, ruUlb;

% rR, rRb;

% rRI, rRib;

% du, dul;

% drR, dRI;

% dYUl, dYUlb;

% dRY, dRYb;

% dUHI, dUHIb;

% dHIRI, dHIRIb;

% dUR, dURDb]/eps

% Limits: Under each N is the biggest K this program has accepted.

% N:. 2 3 4 5 6 7 8 910 11 12 13

% K: 67145771 9262 535 129 51 40 18 11 7 4 2 O

% (Programmed originally for a Mac with a small memory, by W. Kahan)

if (nargin<2), K=0; end
I =eye(N); X =flipud(l); z=0.5"1023; %... to prevent .../0
[Y, L] = hilbl(N,K) ; H=Y/L; HI =invhilbl(N,K) ;

U = chohilbl(N,K) ; Ub = chol(Y)/sqrt(L) ;

Ul = ichohilb(N,K) ; Ulb = X*chol(X*HI*X)"*X ;

R = choihilb(N,K) ; Rb = chol(HI) ;

RI = ichihilb(N,K) ; RIb = X*chol(X*Y*X)*X/sqrt(L) ;

ru = abs(U*U - H)./H ; mrU = max(ru()) ; clear rU
rub = abs(Ub™Ub - H)./H ; mrUb = max(rUb()) ; clear rUb
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aUl = abs(Ul) ; UIUI = aUl*aUl';
rUl = abs(UI*UI' - HI)./UIUL ; mrUI = max(rUl(}));  clear rUl
rUlb = abs(Ulb*Ulb' - HI)./UIUI ; mrUlb = max(rUlb(:)) ; clear rUlb UIUI

aR = abs(R)+z; RR =aR"*aR;

rR = abs(R"*R - HI)./RR ; mrR = max(rR(?)) ; clear rR
rRb = abs(Rb™Rb - HI)./RR ; mrRb = max(rRb()) ; clear rRb RR
rRI = abs(RI*RI' - H)./H ; mrRI = max(rRI(3)) ; clear rRI

rRIb = abs(RIb*RIb' - H)./H ; mrRIb = max(rRIb(:));  clear rRIb
aUl = abs(U+z ;

dU = abs(U - Ub)./(U+2) ; mdU = max(dU()) ; clear dU
dUl = abs(Ul - Ulb)./aUl ; mdUIl = max(dUI(})) ; clear dUI
dR = abs(R - Rb)./aR ; mdR = max(dR(})) ; clear dR

dRI = abs(RI - RIb)./(RI+2) ; mdRI = max(dRI(})) ; clear dRI

aHl = abs(HI) ; mLI =-L* ;
dYUI = abs([Y, mLIJ*[Ul; U)./(Y*aUl) ;
mdYUI = max(dYUI(})) ;  clear dYUI
dYUIb = abs([Y, mLIJ*[Ulb; Ub7)./(Y*abs(UIb)) ;
mdYUIb = max(dYUlb(:)) ;  clear dYUIb
dRY = abs([R, mLIJ[Y; RIT)./(abs(R)*Y) :

mdRY = max(dRY()) ; clear dRY
dRYb = abs([Rb, mLIJ*[Y; RIbY])./(abs(Rb)*Y) ;
mdRYb = max(dRYb(})) ; clear dRYb

dUHI = abs([U, -IJ*[HI; UI')./(U*aHI) ;

mdUHI = max(dUHI(})) ;  clear dUHI
dUHIb = abs([Ub, -[*[HI; UIbY)./(abs(Ub)*aHI) :

mdUHIb = max(dUHIb(})) ;  clear dUHIb
dHIRI = abs([HI, -I]*[RI; R)./(aHI*RI) ;

mdHIRI = max(dHIRI(:)) ;  clear dHIRI
dHIRIb = abs([HI, -I*[RIb; Rb7)./(aHI*abs(RIb)) ;

mdHIRIb = max(dHIRIb(:)) ; clear dHIRIb

dUR = abs([U, -UI'T*[R"; RI])./([U, abs(UI)]*[abs(R)"; RI]) ;

MdUR = max(dUR()) ; clear dUR
dURD = abs([Ub, -UIb'T[Rb"; RIb])./(abs([Ub, Ulb])*abs([Rb"; RIb])) ;

mdURb = max(dURb(;));  clear dURb

Resl1 = [mrU, mrUb; mrUl, mrUlb; mrR, mrRb; mrRI, mrRIb; mdU, mdUl] ;
Res2 = [mdR, mdRI; mdYUI, mdYUlb; mdRY, mdRYb; mdUHI, mdUHIb] ;
Res3 = [mdHIRI, mdHIRIb; mdUR, mdURD] ;

Res = ceil([ Resl; Res2; Res3 ]/eps) ;
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function Res = chotestn(N,K)

% Res = chotestn(N,K) tests chohilb, ichohilb, choihilb, ichihil

% and MATLAB's chol for normwise accuracy on N-by-N Hilbert matrices
% and their inverses. The upper-triangular matrices tested are

% U = chohilbl(N,K) vs. Ub = chol(Y)/sqrt(L) at [Y,L] = hilbl(N,K)
% Ul =ichohilb(N,K) vs Ulb = X*chol(X*HI*X)"*X

% R = choihilb(N,K) vs. Rb =chol(HI) at HI =invhilbl(N,K)

% RI =ichihilb(N,K) vs. Rlb = X*chol(X*Y*X)*X/sqrt(L)

% where X =flipud(eye(N)) reverses rows or columns, and

% Y = hilbl(N,K)*L is all integers exactly. If omitted, K=0.

% In what follows we abbreviate {B} = norm(B) and |B| =abs(B) .
% Then these residual norms’ ratios are computed at H = Y/L :

% rU={U*U - HY/{H}, rUb = {Ub™*Ub - H}/{H} ,

% rUl = {UI*UI' - HIZ{JUI*|UI'}, rUIb = {Ulb*UIb" - HI}{|UI*[UI|'} ,
% rR={R*R - HI}{|R|*|R]}, rRb={Rb*Rb - HI}.{|R|*|R]|},

% rRI={RI*RI'- H}.{H}, rRIb ={RIb*RIb' - H}/{H}.

% Computed also are ratios of norms of differences (I = eye(N))
% dU ={U - Ub}{U}, dul = {Ul - Ulb}{uU1},

% dR ={R - Rb}{R}, dRI ={RI - RIb}{RI},

% dYUI = {[Y, -L*IJ*[Ul; UT{Y* UL},

% dYUIb = {[Y, -L*J*[UIb, Ub'JY{Y*UIb]} ,
% dRY ={[R, -L*JF[Y; RIT|R[*Y},
% dRYb = {[Rb, -L*IJ*[Y; RIbTM{|Rb[*Y} ,

%  dUHI = {[U, -I]*[HI; UITY{U*HI|} ,

% dUHIb = {[Ub, -I]*[HI; UIb'T}{JUb|*|HI|} ,

%  dHIRI = {[HI, -I]*[RI; RT}{|HI|*RI},

% dHIRIb = {[HI, -I]*[RIb; RE']}{|HI|*|RIb]|'} ,

% dUR = {[U, -UIT[R"; RI}{U*R|' + |UI|*RI} ,

% dURDb = {JUb, -Ulb*[Rb"; RIb]}{|UbJ*|R|" + |UIb|*|RIb]} .
% Finally Res =ceil([rU, rUb;

% rul, rUlb;

% rR, rRb;

% rRI, rRIb;

% du, dul;

% drR, dRI;

% dYUI, dYUIb;

% dRY, dRYb;

% dUHI, dUHIb;

% dHIRI, dHIRIb;

% dUR, dURD]/eps).

% Limits: Under each N is the biggest K this program has accepted.
% N:. 2 3 4 5 6 7 8 910 11 12 13

% K: 67145771 9262 535 129 51 40 18 11 7 4 2 O

% W. Kahan, 28 June 2011

if (nargin<2), K=0; end
I = eye(N); X=flipud(l);
[Y, L] = hilbI(N,K) ; H=Y/L; HI =invhilbl(N,K) ; sL = sqrt(L) ;

U = chohilbl(N,K) ; Ub = chol(Y)/sqrt(L) ;

Ul = ichohilb(N,K) ; Ulb = flipIr(flipud(chol(flipIr(flipud(HI)))")) ;
R = choihilb(N,K) ; Rb = chol(HI) ;

RI = ichihilb(N,K) ; RIb = fliplr(flipud(chol(fliplr(flipud(Y)))")/sL ;

nU =norm(U) ; nRI=nU; nH=nU*nU ; nY =L*nH ;
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nUI = norm(Ul) ; nR =nUl ; nHI =nR*nR ; % ...= n|HI| etc.

rU = norm(U*U - H)/nH ; rUb = norm(Ub™*Ub - H)/nH ;
rul = norm(UI*UI' - HI)/nHI ;  rUIb = norm(UIb*Ulb' - HI)/nHI ;

rR = norm(R"*R - HI)/nHI;  rRb = norm(Rb™*Rb - HI)/nHI ;
rRlI = norm(RI*RI' - H)/nH ;  rRIb = norm(RIb*RIb' - H)/nH ;

dU =norm(U - Ub)/nU ;
dUl = norm(UlI - Ulb)/nUI ;
dR =norm(R - Rb)/nR ;
dRI = norm(RI - RIb)/nRI ;

aul = abs(Ul) ; aHI = abs(HI); mLI =-L*I;

aUlb = abs(Ulb) ; aUb = abs(Ub) ;

dYUI = norm([Y, mLI]*[UI; UT)/norm(Y*aUl) ;

dYUlb = norm([Y, mLI]*[UIb; UbT)/norm(Y*aUlb) ;

dRY = norm([R, mLI]*[Y; RIT)/norm(abs(R)*Y) ;

dRYb = norm([Rb, mLI]*[Y; RIb'])/norm(abs(Rb)*Y) ;

dUHI = norm([U, -I]*[HI; UIT)/norm(U*aHl) ;

dUHIb = norm([Ub, -I]*[HI; UIb])/norm(aUb*aH]) ;

dHIRI = norm([HI, -I]*[RI; RT)/norm(aHI*RI) ;

dHIRIb = norm([HI, -1]*[RIb; RbT)/norm(aHI*abs(RIb)) ;

dUR = norm([U, -UIT*[R"; RI])/norm([U, abs(Ul)T*[abs(R)'; RI]) ;
dURDb = norm([Ub, -UIbT*[Rb’; RIb])/norm(abs([Ub, Ulb7)*abs([Rb'; RIb])) ;

Resl = [rU, rUb; rUI, rUlb; rR, rRb; rRI, rRIb; dU, dUI; dR, dRI];

Res2 = [dYUI, dYUIb; dRY, dRYb; dUHI, dUHIb; dHIRI, dHIRIb; dUR, dURD];

Res = ceil([ Res1; Res2 ]/eps) ;

August 26, 2011 6:25 am
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function L = Icm(a,b,x)

%LCM Least Common Multiple, with optional correctness test.
% L =Ilcm(A,B) =lcm(abs(A), abs(B)) >= 0 is an array of Least
% Common Multiples of corresponding elements of integer arrays
% A and B. They must have the same size unless one is a scalar.
% WARNING: Roundoff may have spoiled L wherever L >=2/eps.
%

% L =Ilcm(A,B,x) substitutes the scalar x for any element of

% L >=2/eps that fails an optional appended correctness test.

% Among plausible choices x are 0, Inf and NaN, depending
% upon how Icm's user will respond to these error-indicators.

%

% Alas, some errors can evade detection by the test. It works

% best when Matlab accumulates matrix products either with

% Fused Multiply-Adds, as it does on Power Macs, or else

% extra-precisely as do versions 3.5-5.2 on 680x0-based Macs,
% and versions 3.5-4.2 on a PC, and version 6.5 on a PC after

% it executes the command system_dependent('setprecision’,64).
% Then Icm(A,B,x) should detect any erroneous L < 2048/eps .
%

% L =Icm(A) is arow whose every element is the LCM of the

% corresponding column of the array A of integers. WARNING:
% Wherever L >= 2/eps roundoff may make L utterly erroneous
% though lcm(A) tries to substitute Inf for each such error

% unless aborted by a NaN produced by lcm(0,Inf) . Wherever
% Icm(flipud(A)) differs from Icm(A), both may be wrong.

%

% Requires gcd(...) as modified by W.K. after 1990.

% W. Kahan, 1990 - 14 Sept. 2008
if any(imag(a(:)))

error(lcm(A,...) accepts no complex argument.’), end
a=abs(a);
if (nargin > 1) %... Cases Icm(a,b) and Icm(a,b,x)
if any(imag(b(:)))

error(lcm(A,B,...) accepts no complex argument.’), end
b = abs(b) ;

% Do scalar expansion if necessary
sza = size(a) ; szb =size(b) ; %... Matlab 3.5 - 6.5 compatible
if (sza==1), a=a(ones(szb(1),szb(2))) ;

elseif (szb == 1), b =b(ones(sza(l),sza(2))); end

% Gcd(A,B) will expose other erroneous inputs, namely ...
% input arrays A and B of different sizes, or

% anyelementin |A| or |B| not an integer.

% Gcd deems Inf an integer, but not NaN .

g =gcd(a,b); g=9g+(g==0); Lg =isinf(g) ;

if any(Lg(:)), g(Lg) = Lg(Lg); end %... lcm(inf, inf) =inf.
a=a.Jlg; L=a*;

if (nargin == 2), return, end %... of Case lcm(a,b)

% Case Icm(a,b,x)'s test:
if (L(~Lg) < 2/eps), return, end %... no further test needed

from Prof. W. Kahan’s notes for Math. H110 & 1288 WORK IN PROGRESS Page 30/36



File: HilbMats Four Cholesky Factors ... Hilbert Matrices  August 26, 2011 6:25 am

if (length(x(:)) ~=1), x=X
error(’x in lcm(A,B,x) must be a scalar, not array."), end
% What follows substitutes poorly for IEEE 754's INEXACT flag:
g=9(); b=Db()./g; a=a(); Lg=isinf(a)|isinf(b) ;
[m,n] =size(L) ; mn=m*n;
L=L(:); g=round(L./g);
for j=1:mn %... seek erroneous finite L(j) only where ...
if ~Lg(j) %... both a(j) and b(j) are finite:
it ([LG), a)I*-1; 9()]~=0), L() =x; %... L iswrong
elseif ([q(), a()I*[-1; b())]~=0), L({) =x; end %...""
end, end %... of finite a(j) and b(j), and of |
L = reshape(L, m,n) ; return
end %... of Case lcm(a,b,x)

% Case Icm(A) treated tail-recursively:
L=a(l,); [isr, isc] = size(a) ;

for k= 2:isr, L =Icm(L, a(k,:), Inf) ; end
% end of Case Icm(A)

% For Matlab 3.5, isinf(x) = ~( finite(x)|isnan(x) ) . For
% 386-Matlab 3.5, use W.K's rOund instead of buggy round .

function [g,c,d] = gcd(a,b)

%GCD Greatest Common Divisor.

% G =gcd(A,B) is an array of Greatest Common Divisors of the

% corresponding elements of A and B . These arrays must contain
% only integers and must have the same size unless one is a scalar.
% By convention gcd(x, 0) = ged(X, Inf) = |x| ; gcd(0, Inf)=0.

% Otherwise gcd is a finite positive integer computed correctly,

% despite roundoff no matter how big elements of A and B may be,
% only under circumstances discussed in the fourth paragraph below.
% Correct values of gcd(3, 280) = gcd(28059810762433, 2°53) = 1.
%

% G =gcd(A) is a row of which each element is the GCD of the

% corresponding column of the array A of integers.

%

% [G,C,D] =gcd(A,B) also returns C and D so that A*C+B.*D=G
% and |C|.*G <=|B| and |D|.*G <= |A| with equality only rarely.

% [C, D] is useful for solving Diophantine equations and computing
% Hermite transformations. Note that another possibility for pair

% [C, D] is [C, D]-[S.*B./G, -S.*A./IG] where S =sign(B.*C) ;

% one pair [C,D] may suit your application better than the other.

%

% Roundoff can spoil A.*C + B.*D =G unless |A.*C| < 2/eps and
% |B.*D| < 2/eps . Wherever max(|A|,|B|) > 2/eps there [G,C,D]

% MAY BE WRONG except on Power Macs, whose G is always correct
% evenif [C,D] is not. If max(|A|,|B|) <= 2048/eps , or if

% min(|A|,|B|]) <= 2048, then G (if not [C,D]) is correct also

% onold 680x0-based Macs, and also on Intel-based PCs with
% 64-sig.-bit accumulation of matrix products enabled via Matlab

% 6.x's invocation " system_dependent('setprecision’, 64) " .

%
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% Seealso LCM and, for Matlab 3.5, reshape, isinf and,
% for 386-Matlab, rOund, all as modified by W.K.

% Algorithm: See Knuth Volume 2, Section 4.5.2, Algorithm X sped up
% Original Author: John Gilbert, Xerox PARC; sped up by W. Kahan
% Original Copyright (c) 1984-98 by The MathWorks, Inc.

% Original Revision: 5.9 Original Date: 1997/11/21 23:45:38

% First modified by W.K. in 1990 to fix gcd(3, 2"80) =3 .

% $Revision: 6.5.W.K. $ $Date: 2008/09/14 06:09:59 $

if (nargin ==2) %... Case gcd(a,b)
% Do scalar expansion if necessary
sza = size(a) ; szb =size(b) ; %... Matlab 3.5 - 6.5 compatible
if (sza == 1), a=a*ones(szb(1),szb(2)); %... " " "
elseif (szb == 1), b = b*ones(sza(l),sza(2)) ; end

sza = size(a) ; if any(sza - size(b))
error(‘Arrays input to gcd(A,B) must have the same size.")
else
a=a(); b=b();
end;

if any(round(a) ~= a)|any(round(b) ~= b)|any(imag(a))|any(imag(b))
error(‘gcd(A,B) requires all inputs to be real integers.")
end %... Inf is deemed an integer, but NaN is not.

if (nargout <2) % ... save time by omitting ¢ and d
Y=[ab]'; g=b; L=]0,1;1,0];
for k = 1:length(a)
x=Y(,K); %... = [a(k); b(K)]
if any(isinf(x)), g(k) = min(abs(x(}))) ;
else %... finite operands
while x(2) % ... ~=0; MOD(x(1),x(2)) and REM(...) could
L(2,2) = -round(x(1)/x(2)) ; % be wrong if x(1) is huge
X =L*; % ... new [x(2)|] <= old |x(2)|/2
end % ... of inner loop traversed fewer than 40 times
g(k) = abs(x(1)) ; end %... of usual finite case

end % ... of k
g = reshape(g, sza) ;
return

end % ... of Case gcd(A,B) with nargout < 2

% Case [G,C,D]=gcd(A,B) with nargout ==3, presumably.
Y =Ja, b, b]; % ... initialized to the right size
I =eye(2); L="flipud(l);

for k = 1:length(a)
X=1I, Y(k1:2)];% ... =[1, 0, a(k); 0, 1, b(k)].
if isinf(X(1,3)), X =flipud(X) ; elseif ~isinf(X(2,3))
while X(2,3) % ... ~= 0 and everything is finite ...
L(2,2) = -round(X(1,3)/X(2,3)) ;
X=L*X; % ... new |X(2,3)| <= old |X(2,3)|/2
end % ... of inner loop traversed fewer than 40 times.
end % ... of finite a(k) and b(k)
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if (X(1,3)<0), X=-X; end % ... invert g(k)<0.
Y(k,)) = X(1,) ;
end % ... of k

g = reshape(Y(:,3), sza) ;

c =reshape(Y(;,1), sza) ;

d = reshape(Y(:,2), sza) ;

return

% end of Case [G,C,D]=gcd(A,B)

elseif (nargin ==1) %... Case gcd(A) treated recursively
if (nargout > 1)
error('G = gcd(A) has just one output.’), end
g=a(l,); [isr, isc] = size(a) ;
for k = 2:isr, g=gcd(g, a(k,})) ; end
return
% end of Case gcd(A)

else error('gcd(A,B) accepts just one or two arguments.")

% For Matlab 3.5, isinf(x) = ~( finite(x)|isnan(x) ) , and

% retrofitted reshape(X, size(...)) works.

% For 386-Matlab 3.5, use rOund instead of buggy round .
end %... of gcd

function y = rOund(x)

% rOund(x) = integer "nearest" x, fixing a bugin round.m :

% 386-Matlab 3.5's and PC-Matlab 4.2's buggy round(x) yields
% X + sign(x) whenever odd [x| >2"52 (and therefore

% |x| <253 too). This fixes gcd.m, lcm.m, etc.

% W. Kahan 22 Sept. 2008

y =round(x) ; J= (abs(x) > 1/eps) ;

if any(J(:)), y(J) =x(@); end

function [A, M, v1, v2, v3, v4] = amvhilb(N,K)

%AMVHILB N-by-N Hilbert matrix test data for eig(A,M)

% [A,M,v] = amvhilb(N,K) invokes [A,L1] = hilbI(N,K+1) and

% [M,LO] = hilbI(N,K) to generate integer-valued test data

% for the Generalized Symmetric Definite Eigenproblem

% A*b = lambda*M*b solved by Lambda = sort(eig(A, M)) .

% Its computed column Lambda of approximate eigenvalues is
% to be compared with the fairly accurate column v .

%

% [A,M, v1,v2,v3,v4] = amvhikb(N,K) computes four versions of
% v stemming from the SVD of a bidiagonal matrix, its

% transpose, and their reversals. The spread among these

% four reflects effects of roundoff upon Matlab's svd(...) .

% W. Kahan 15 Jan. 2011
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[A,L1] = hilbl(N,K+1) ; [M,LO] = hilbI(N,K) ; LL =L1/LO;
J2=[1:N]; J1=J2+K; %... = [1+K, 24K, 3+K, ...]
Y1=J2+J1; Y=Y1-1;%..=[1+K, 3+K, 5+K, ...]
J1 =J1./sqgrt(Y.*Y1) ;
J2 = J2(1:N-1)./sqrt( Y(2:N).*Y1(1:N-1) ) ;
F =diag(J1) + diag(J2,1) ; %... bidiagonal upper triangle
v =sort(svd(F)) ; v1=v.*Vv*LL;
if (nargout > 3)

v =sort(svd(F')) ; v2=Vv.*V*LL;

F = flipud(fliplr(F)) ;

v =sort(svd(F)) ; v3 =V.*V*LL;

v = sort(svd(F)) ; v4 =v.*v*LL ; end

function [r,p] = rndir(R)

% RNDIR sets the direction of rounding for MATLAB 6.5
% r =rndir(R) swaps out the old rounding direction r

% of MATLAB 6.5's floating-point arithmetic and then
% replaces it by the new direction R chosen from one of

% R=05 round to nearest (the default),
% 0.0 round towards zero (chop),

% +inf round towards +infinity (up),
% -inf round towards -infinity (down).

% Invoke rndir(r) to restore the old rounding direction.

% Omit R to get the current rounding direction r = rndir.
% [r,p] = rndir(...) reveals the precision p of MATLAB's
% arithmetic other than matrix multiply; p =24 or 53.

% Though rndir is unaffected by this p, to sense it via
% precn.m, g.v., rounding must be the default to nearest.

% Whether rndir(R) works correctly for MATLAB 7 is unclear.
% However, [r,p] = rndir works for earlier MATLAB versions.

% W. Kahan 20 Dec. 2010

E =8388608; E3=E*3; E8B =E*8; %... E =223
precns = [24, 53] ; dirns = [-inf, 0, 0.5, +inf] ;
p =E8/5; m=(-E8)/5; %... both rounded, but how?
p=p-E; m=m+E;
p=(p*4-E3)+p; m=(m*4+E3)+m; %.. EXACTLY!
if (p==0)|(m==0))

error(* Compiler over-optimization has ruined rndir(...)."

end
r = dirns( sign(p) + (sign(m) + 5)/2) ; %... direction
p = precns( 1 + (abs(p)<1) ) ; %... precision
if nargin >0

if ~((R==-inf)|(R==0)|(R==0.5)|(R==inf)), R=R
error('rndir(R) takes R only from {-inf, 0, 0.5, inf} .")
else %... setthe new direction of rounding:
system_dependent(‘'setround’, R) ; end, end

from Prof. W. Kahan’s notes for Math. H110 & 1288 WORK IN PROGRESS Page 34/36



File: HilbMats Four Cholesky Factors ... Hilbert Matrices  August 26, 2011 6:25 am

function [G, dG] = gl(n,k,t)

% G1 = Shifted Jacobi Orthogonal Polynomial from powers of t-1.

% [G, dG] = gl1(n, k, t) evaluates a Shifted Jacobi Orthogonal Polynomial
% over a column t of real numbers typically all between 0 and 1 by
% expanding G(...) in powers of t-1. G is the column of values of

% G[n](k+1,k+1,t), the Jacobi polynomial of degree n in the notation

% of line 22.2.2 of the Handbook of Math. Functions ed. by Stegun &
% Abramowitz. dG*eps is a very rough estimate of the uncertainty in

% G due to roundoff.

% W. Kahan, 10 Mar. 2011

t1=t(:)-1; at=abs(tl);
if (n==0)
G = ones(length(tl1),1) ; dG = zeros(length(tl1),1) ; return, end
C = cumprod([1, n:-1:1]) ; C=C.*C;
D = cumprod([1, [1:n].*[2*n+k:-1:n+k+1]]) ;
C=C./ID; %... coefficients of polynomial G
G = polyval(C,t1) ; dG = polyval(C,at) ;

function [G, dG, a, c] = gr(n,k,t)

% GR = Shifted Jacobi Orthogonal Polynomials from a 3-term recurrence.
% [G, dG] = gr(n, k, t) evaluates Shifted Jacobi Orthogonal Polynomials
% over a column t of real numbers typically all between 0 and 1 by

% running a recurrence G(:,j+1) = (t - a(j)).*G(:,j) - c()*G(:,j-1) .

% G(:,j+1) for 0 <=j<=n is the column of values of G[j]J(k+1,k+1,t),

% the Jacobi polynomial of degree j in the notation of line 22.2.2

% of the Handbook of Math. Functions ed. by Stegun & Abramowitz. dG*eps
% is a very rough estimate of the uncertainty in G due to roundoff. The
% coefficient rows a =[a0,al,a2,...,an-1] and c =[c1,c2,c3,...,cn-1]

% are available too from [G, dG, a, c] =gr(n, k, t) .

% W. Kahan, 13 Mar. 2011

t=1(); G =ones(length(t),n+1) ; dG = zeros(length(t),n+1) ;
a=[0:n-1]; ak2n = a+a+tk; c =[1:n-1]; ck2n = c+c+k ;

¢ = c.*(c+k)./ck2n ; ¢ =c.*c./( (ck2n+1).*(ck2n-1) ) ;

a = 0.5 + (0.5*k*k)./(ak2n.*(ak2n+2)) ;

G(,2)=t-a(l); dG(;,2) = abs(t- a(1)) + a(1) ;
for j=3:n+1
G(:)) = (t- a(-1)).*G(:,j-1) - ¢(-2)*G(:,j-2) ;
dG(:)) = a(-1)*abs(G(:,j-1)) ;
dG(:,j) =dG(:,)) + abs(t - a(j-1)).*dG(:,j-1) + c(j-2)*dG(:,j-2) ;
end %... j
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function z = zg(n,k)

% ZG = zeros of a shifted Jacobi orthogonal polynomial.

% z =1zg(n,k) is a column of the n zeros of the Shifted Jacobi

% Orthogonal Polynomial G[n](k+1,k+1,t) found on line 22.2.2 of
% the Handbook of Math. Functions ed. by Stegun & Abramowitz, and
% computed by Matlab program gl(n,k,z) orelse gr(nk,z), q.v.
% Zeros z are the eigenvalues of a tridiagnal matrix T drawn from
% coefficientrows a and ¢ generated in gr. Rounding errors in
% eig(T) are mostly eliminated when zg runsin 386 Matlab 3.5,
% in Matlab 5.2 on a Mac Quadra 950, orin PC Matlab 6.5 after
% " system_dependent('setprecision’, 64) " has been executed.

% W. Kahan, 15 March 2011

[9.dg.a,c] = gr(nk,0); c=sart(c) ;

T =diag(a) + diag(c,1) + diag(c,-1) ;

[Q.E] = eig(T) ; %... diagonals E = Q*T*Q & eye = Q™*Q nearly
dz = sum(Q.*([T,QI*[Q;-E]))./sum(Q.*Q) ; %... refinement

z =diag(E) + dz';

function p =p0(z, t)

% PO: a monic polynomial's values given its zeros.

% p =p0(z, t) is the column of values, at each element of

% column t, of the monic polynomial whose zeros are in row
% z; i.e., p=(t-2z(2).xt-z(2).x(t- z(3).*..) .

% W. Kahan, 15 March 2011

t=t()."; z=2();

nt = length(t) ; nz = length(z) ;

tz = t(ones(nz,1),:) - z(:,ones(1,nt)) ;
p = prod(tz).';
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