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Floating-Point Tricks to Solve Boundary-Value Problems
Faster

W. Kahan, Prof. Emeritus
Math. Dept., and E.E. & Computer Sci. Dept.,
University of California @ Berkeley

For UCB’s Scientific & Engineering Numerical Computing Seminar
11 Sept. 2013

Abstract: Some old tricks are resuscitated to accelerate the numerical solution of certain
discretized boundary-value problems. Without the tricks, half the digits carried by the
arithmetic can be lost to roundoff when the discretization’s grid-gaps get very small. The
tricks can procure adequate accuracy from arithmetic fioéin ~ variables 4-bytes wide
instead ofdouble variables 8-bytes wide that move slower through the computer’s
memory system and pipelines. Tricks are tricky for programs writtenAMLMB™ 7,

JAVA, FORTRAN and post-1985 WsSI C. For the original Kernighan-Ritch@ of the

late 1970s, and for a few implementationsG90 that fully support IEEE Standard 754

for Binary Floating-Point, the tricks are easy or unnecessary. Examples show how well
the tricks work.

For details:www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf
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Computers’ memories have become HUGE
because memory has become CHEAP.

But moving data through the memory system has become COSTLY
in TIME and ENERGY DISSIPATION.

4-byte float S cost half as much as 8-bydeuble s .
This motivates converting computational algorithms,

that used to be performed touble In past decades,
to be performed now imoat  instead..

Why not ?

Gresham’s law:*Bad money drives out th&ood” (from circulation)
Sir Thomas Gresham (1519 - 1579)

Gresham’s law for computing:
“The Fast drives out theSlow, even if theFast is wrong.”

Prof. W. Kahan p. 2/26



File: FIOTrik Floating-Point Tricks ... Problems Faster Version dated September 10, 2013 5:54 pm

Why not supplant albdouble s by float s ? cf. MATLAB’S eps
Arithmetic precision ofdouble : 53 sig. bits ~ 16 sig. dec.e = 2752
of float : 24 sig. bits~ 7 sig. dec.e =223

7 correct sig. dec. is more than adequate accuracy
for almost all computed results used by scientists and engineers.

But what you see is not always what you get.

Roundoff corrupts the solutions of discretized differential equations, both ...

« Initial-value problems: Given T > 0f, andyg,, computey(t) at T =T to satisfy
dy/dt =f(t,y) for 0<t<T and y(0) :=yj,.

« Boundary-value problems: Given p, q,%; and ®;, compute®d(t) to satisfy
div(pgrad(®)) +q® =r for O<st<1 and®d(0) =dgy, P(1) =P, .

and more generally when 1..runsina 2D or 3D region ....

How does roundoff intrude into a discretization?
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Discretizations:
Let 6 be the step-size, or mesh-gap, of a discretization. Norr@aif/very tiny.

Discretization error in computed solutien0 like 6°7%€" | depending upon ... :

Work - o like 1BP'mensiont)-{1,20r3} qenending upon the numerical method.
Roundoff’s intrusion can grow lik&Vork or faster, depending upon ..."

Example: Initial-Value Problem y(1) =y, +I0Tf(Z,y(Z))-dZ IS approximated by ...
Y(t+0) :=Y (1) + F(1,8, Y(...))-® accumulated fort = 0,6, 20, 36, ..., (TB)6,
iIn which F estimates an averade”ef(z,y(Z))-dZ/e by samplingf(..., Y(...)) .

Digits:

YYYYYYY at 1

+ FFFF FFF. 6 as if ffff fff
lost

YYYYYYY at 1+0

A tinier step-sized to get tinier discretization error like®©'e" seems to aggravate the
intrusion into F (and hence intd ) of roundoff’'s uncertainty proportional t&/0 .

This seems to limit the achievable accuracyraf as if some fraction like /@ + Order)
of the arithmetic’s digits of were obscured by roundoff and/or discretization.

Prof. W. Kahan p. 4/26



File: FIOTrik Floating-Point Tricks ... Problems Faster Version dated September 10, 2013 5:54 pm

Y(1+6) := Y (1) + F(1,8, Y(...))-8 in which F= [["9(Zy())-dt/6 + OB°e) .

Digits:
YYYYYYY at 1
+ FFFF FFF-0

YYYYYYY at 1+0

The lost digitsFFF- 6 can be retrieved by @rick: Compensated Summation

Y =VYp; ... Initialization
C:.=o; ... acolumn of zeros o¥ 's dimension
for T=0to T-0 in steps ofo {

oldY =Y

AY =C+F(1,6,Y(...)0;

Y :=oldYy + AY ; ... rounded, losing digit$-FF- 0

C :=(oldY -Y) +AY ;} ... recovers themooN'T REMOVE PARENTHESES)

Can you see why the trick works?  (If ¥p/q< 2 then p-q suffers no roundoff.)

The trick would be unnecessaryYf were rounded %) and stored extra-precisely.

The trick is unnecessary also if the differential equation is so strongly stable that past errors are forgotten,
or if it is so unstable that recent errors’ effects are overwhelmed by the propagation of earlier errors.

Prof. W. Kahan p. 5/26



File: FIOTrik Floating-Point Tricks ... Problems Faster Version dated September 10, 2013 5:54 pm

Example: Over 1<T given T:=65/32=03125, \0) := 229 w0) =0,
solve dv/d=wft, dw/d =-4-(1-1)-(1 +1)-v for \(T).

This singular differential equation has a regular solution obtained by presubstituting /0. for 0

We shall pretend not to know thatTy = 22°-exg—T?) = 866923B90913... .

All other arithmetic is performed in 4-byileat (24 sig.bits).

Numerical Method: Classical 4-s,te|53h drder Runge-Kutta
incrementF(Y(...), 8)-0 =( 2-¢F1 + hF3) + 4nF, + hF,4 )/6 wherein

hFp =3 £(Y); hFp:=2 (Y +hFp); hFg:=6f(Y +hFy); HFy:=6f(Y + hFy);
The chosen number n := 2560 of steps produced a stepsiZén exactly

Numerical Results: V(T) =867448 computed without Compensated Summation

V(T) =866924 computed with Compensated Summation
UT) = 8669240 the true (V) rounded to 24 sig,bits.

Compensated Summation has reduced this example’s loss of accura@y) in V
from over 10 sig.bits to less than 2 of the arithmetic’'s 24.
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Discretization of a Boundary-Value Problem
turns a second-order differential equation like

div(pgrad(®(1))) + gd(t) =r for T inregion Q with ® specified ondQ ,
into an array A-f =b” of difference equations for a columfi whose elements; f

approximate the values @b at grid-points inQ . Matrix A and columrb depend
upon grid-spacing@ and p, d, r, and the specifications®fon the boundaryQ .

We assume p, qand r vary within Q, so “A-f =b” islinearin f .

More generally, p, g and r could vary with too, and then A-f =b” would be nonlinear inf,

which would complicate the exposition without changing the trick we wish to explain; therefore we
assume A-f =b” islinear in f to keep the exposition simpler,

Here is what matters:

As the grid-spacing® gets smaller, so does the discretization e@(@°") |
but matrix As ill-condition grows, exacerbating its sensitivity to roundoff.

Why must A become more ill-conditioned?
Matrix A approximates the unbounded differential operator dxdd(...)) + q.
Smaller singular values of A approximate those of the differential operator, but

I|A]| - o, typically like 167 .
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How to attenuate ill effects of 'A ill-condition upon the solution of A-f =b”:

lterative Refinement:

Let f := computed value of in “A-f=b”, and letf’s Residual be
r . =Af-b.
Let A := computed value oAf in “A-Af =r” as f was computed but faster.

Then, providedr was computedaccurately enough
f —Af = f rather better thah did.

 How accurate a residual is “accurately enough?

“r .= Af—b” must be accumulatesktra-preciselyest it drown in its own roundoff;
and if stored arrays A anbl were rounded off, re-compute thextra-precisel\oo.

Otherwise, though its residual may become smaller/Af can be less accurate th&n

 What if extra-precise arithmetic is unavailable or too slow?
Then a trick must be used to compute residuaccurately enough.

Let's see how the trick works on a concrete example ...

Prof. W. Kahan p. 8/26



File: FIOTrik Floating-Point Tricks ... Problems Faster Version dated September 10, 2013 5:54 pm

The regular solutionsi(x) of the singular differential equation
(pU) +qu = (XU ) +4x-(1-)-u=0

all have u'(0) = 0 and sau(—x) = u(x) . We wish to compute a regular solution satisfying

the boundary conditionsi(+1) = 1 as if we did not know thati(x) = exp(1-%) . The
computation will be complicated by the differential equation’s singular solutions

V(x) := C-exp(=X)f exp(2X)-dwx = C-exp(=%)-( In(X]) i« (exp(Z?) - 1)-&/E ) .

Their constants C can be different for x > 0 than for x A have a logarithmic pole
at x = 0. The pole can amplify tiny perturbations of the differential equation into a
narrow spike at x = 0 Worse, this singular solution satisfiesv(—x) =v(x) and

v(x1l) = 0, and the differential equation except at x,=<b a discretized analog &{x)
can contaminate a numerical approximation of a regular soluipon unless filtered out.

Also estimated will beu'(x) = uf(x) := (u(x+8) — u(x-0))/(28) = u'(x) +O(6?) .

Graphs ofu(x) , u'(x) andv(x) as computed by a first crude numerical program are
plotted on the next page. What caused the spike at the end of the guibh of ?

Prof. W. Kahan p. 9/26



File: FIOTrik Floating-Point Tricks ... Problems Faster Version dated September 10, 2013 5:54 pm

Computed Graphs ofi = u(x), u¥=u (x) andv=v(x) carrying 24 sig. bits

First Program: 2N+1 = 1025 points 24 sig. bits
3 T T T T T T T T T T T

V(X)

u(x), U(x),

The spike inu* was caused by roundoff; see p. 13..0Math128/FloTrik.pdf
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If a numerical solution exhibits a spike, is it due to roundoff? ... to a singularity? See
...IMath128/FloTrik.pdf for both kinds, and how they were removed Here we infer
lim,_ U (X)/x =u"(0) = -2u(0) from the differential equation to impose an internal

boundary condition that filters(x) out. Thenu(x) =u(—x) need be computed only for
-1<x<0.

Choose integer N >>2, and set grid-gap= 1/N and grid-points jx= -6 -1 for
j=0,1,2,...,N-1, N Now u(x;) will be approximated by elemenf of a columnu

satisfying a linear system (T + Diagj-u =r with discretization err0|O(92) . The
elements of N-by-N symmetric tridiagonal @, andr are provided on p.7 and p.
11 of .../FloTrik.pdf . (Here p.7’s A~ T+DiagQq), f=u, b=r.)

Computed too is column* whose elementﬂij approximate the gradient
u'(x) = uij = (Uj+1 —U_1)/(20) with error O(6?); cf pp. 11 & 25 of ../FloTrik.pdf

A program that used Gaussian Elimination (triangular factorization into bidiagonal
factors) infloat  arithmetic (24 sig.bits) gave results tabulated on the next page ...
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N | erru) |err)-N?| err®) |erru¥)-N?
16/0.009324 239001530 39
24/0.004146 239/ 0.00662 38
32/0.002326 238 000365 37
48/ 0.001028 237/ 000158 36
64| 0.000663 273 000099 40
96/0.0001189 109/ 0.00022 20
128 0.000073 119| 000027 45
192 0.000531 1%6| 0.00102 377
256/0.000095 624| 0.00037 244
384 0.000394 58)9| 0.00107 1573
512/0.000338 889| 000202 5283
768 0.006888 40621001578 931

N =#gaps =8, errQ) = max|uj—u(x)|, err(xi) = may |u¢j —u'(x)] -

When N =10 gets too big, error worsens. The accuracy afiever gets much better

than half the digits carried; and the accurachBffluctuates in a way that undermines
confidence only because we know what the correct values should be.
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lterative Refinement requires the computation of residuasfrom formulas like ...

§ =rj—8-1Uj_1—gUj— U1 " (Crude residual)

inwhich g1, g and g:=q;—§-1—3g are coefficients in a row of T + Diag(q) .
But g is rounded so, even ifs is accumulated extra-precisely, iterative refinement

never improves the accuracieswfand u¥ much.

Thetrick evaluates a more accurate residual this way instead: j)(no g

“§ =1 = g1 ((U1 —Up) = Ujrr — 1) = (G =80 U1 — 1) —0jU; "
HONOR PARENTHESES
This expression takes advantage of exact cancellation among differences between nearby

floating-point values of slowly varying functions. = Cost: five extra subtractions.

Results from M passes of iterative refinement using the tricky formula are exhibited on
the next page.

oooooo 1_100ooooooooooooooooooo.oooo
(Yes, a simpler way to solve this example’s boundary-value problerbi®ating Method

which converts the problem into an initial-value problem. That is the first example on p. 6 ;
its 1)/v(1) =u(-t) here. But no shooting method will work on the example after this one.)
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N | M | erru) |erru)-N2| erru®) |erru®)N2| M | N
16/0 & 1] 0.00932 239 00153 39 0&1 16
24/0 & 1|0.00414 239 0.0066 38 0&1 24
32/0 & 1/0.002326 238 0.00365 37 0&1 32
48, 0 |0.001028 237 000158 36 0

1&2{0.0010349 238 0001612 371 1&2| 48
64| 0 |0.000663 273 0.00099 40 0
1 & 2(0.0005821 238 0000904 370 1&2| 64
96/ 0 |0.000118 109 000022 20 0
1 & 2(0.0002586 238 0000393 362 1&2 96
128/ 0O |0.000073 119 000027 45 0
1 & 2{0.0001456 239 0.000206 338 1&2| 128
192 O |0.000531 1%6 | 000102 377 0
1 & 2{0.0000646 238 0.000107 3094 1&2| 192
256/ 0 |[0.000095 24 000037 244 0
1&2{0.0000364 239 0000061 400 1&2| 256
384/ 0O |0.000394 5809 |000107 1573 0
1 ]0.0000162 239 0.000049 27 1
2 & 3/0.0000162 239 0000053 781 2&3| 384
512 O |0.000338 8&%9 |000202 528 0
1 |0.0000091 238 0000061 1611 1
2 & 3|0.0000092 241 0.000065 1802 2&3| 512
768, O [0.006888 | 406Z1 | 001578 931 0
1 |0.0000156 20 0000089 550 1
2 & 3/0.0000041 21 0.000088 5175 2&3| 768

N =#gaps = B, M = #refinements, eu] := max |u;—u(x)| err(¥) := max |u¢j —u' (%) -

Prof. W. Kahan
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Iterative refinement with an accurate residual added one to three sig.de@nd ut .

Why do we care about the accuracy of the gradient approximataa [y

“No man is anlsland, entire of itself.
. And therefore
never send to know for whom theell tolls:

It tolls for thee”
Meditations XVII
John Donne (~1571 - 1631)

Donne’s adage for computing:

“No computation is arsland, entire of itself.”
It is always a means to some other end,
often via more computation.

The solutions of boundary-value problems are followed by estimates of gradients that
represent strain caused by loads, electric field intensity, velocity of fluid flow, ... .
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Two-Dimensional Boundary-Value Problem: Laplace’s Equation
d(x, y) is given on the boundadQ of a unit square [0, & [x, y] <[1, 1].
2D := PdD(X, y)*X + d%D(X, y)/d%y = 0 inside the squar® .

For our numerical example we choose.16& d(x, y) := log( (x+1/8% + y*) < 0.82 .
Then 13 < ||Grad®(x, y))||< 16 .

Discretization:
Approximate ®(x, y) by F(x,y) taking values on the intersections of a Mesh;

Mesh breaks unit square into small squares éazh1l/N on a side.

Approximate Differential operator 0°® by a Differenceoperator

a® = ( D(x=H, y) + D(x+6, y) — 4D(X, y) + D(X, y-0) + D(x, y+8) )/6?
=0°0 +0O(0%), so F will satisfyaF =0 insideQ ... = Af=b.
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—4.16 <d(X, y) = log( (x+1/8% + y*) < 0.82

Phi (X, Y)
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Problems Faster

Floating-Point Tricks ...

File: FIOTrik

13 < ||Grad®(x, y))||< 16

—~

/ /
© ©

A X)) lud pero ||

The coordinates’ origin lies behind and under the surface.

p. 18/26
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Let’'s solve Af =b for column f =[ Values of F(X,y)] giverb = [Boundary Values]
using float  arithmetic ( 24 sig.bits) ,
and mesh-ga® = 1/N on each of the square’s sides.

Tabulated below are the worst error difference E = | F(x®:-y) |, and E-N,
True E from truef, or E from Computedf ,
and under IitE after one iterative refinement,
which used aricky residualR, or acrude residual R .

N | Etrue2| ...N2 | Etrick2 | ....N? | Ecrude2| .. . .N2

128 2.030e-4| 3326 2025e-4| 3318

7.481e-5 1226 | 7.472e-5 1224 7.816e-5 1281

256 7.440e-5| 4876 1.766e-5 5089
1.872e-5| 1227 | 1.879e-5| 1231 | 508le-5| 33’3

512 1.878e-5| 4924 | 5076e-5 131

4.681e-6 1227 | 4.787e-6 1255 4434e-5 1162

1024 4.912e-6 5151 4440e-5 4666

1.170e-6 1227 | 1.285e-6 1348 3363e-5 37

2048 1.488e-6 6240 3386e-5 142
2.926e-7 1227 | 4.085e-7 1713 | 3.394e-5| 1424

Worsé
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What is the trick ?

The crude residual was computed from the difference operator literally thus:
o F =( Fx-9,y) + Fx+6, y) — 4-Rx, y) + F(x, y-0) + F(x, y+6) )/6°

The trick computed that residual entirelydouble arithmetic uponfloat operands,
or else infloat  arithmetic thus: ( Honor parenthese$

o F=( ((F(x+8, y)—F(x, y)) — (X, y)—F(x-8, y)) ) +
+((F(x, y+8)—F(x, y)) — (R, y)—F(x, y-9)) ) )/6?

Can you see why this trick works? Cost: three extrdess one

It also improves the accuracy of the gradient computed from differences of F. And
when “Af =b"” is solved by iteration the trick reduces the amplitud®dahering;
see www.eecs.berkeley.edu/~wkahan/Math128/Slowlter.pdf

And a similar trick works for many finite-elements’ difference operators.

What about the Gradient?
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The simplest approximation to the derivati®é(x, y) is the Central Divided Difference
D¥(x,y) = [D(x+0,y) - D(x-B,y), D(x,y+6)—P(x,y—6)]/(26)
= ' (xy) + O8?),

This will be approximated by *(—'x,y) , thus incurring error from three sources:
e O inherited from®*, and

e error E—oF = (F —CD)i due to the differential equation’s discretization, and
o atleastO(e-FB) due to roundoff’s contamination of.F

The relative importance of these error-sources is hardly ever knowable in advance.

The last source, roundoff, depends upon algorithmic details and tricks.

The second-last, (an)i, is usually much smaller than (FP)}6 because the
discretization error (F @) is usually smoothlyPillow-Shaped

The first source O(6%) , overwhelmingly dominates in this example.

How can this dominance be revealed?

Compute F more accurately at larger mesh-dgaps..
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A 6th-order (9-point) discretization of the Laplacian:

sD(X,y) :=( P(x-0,y+0) + 4D(x,y+0) + O(x+0,y+0) +
4-P(x-0,y) — 20dP(x,y) + 4-O(x+0,y) +
P(x—0,y-0) + 4D(x,y—0) + P(x+0,y—0) )/(6-67)
=[2d(x,y) + O*D(x,y)-0%12 +( O%D(x,y) + 20%0%d(x,y)/9x%dy? )-6%360 +O(6°)

= O(6°) if D°®=0.
F was recomputed to satisfy®F =0 " instead of #F=0".

The trick to attenuate roundoff replaced the crude formulafabove by the tricky ...

#F(x,y) = (4-@%4 F(x.y)) + (F(x-8.y+6) — Fx,y)) + (F(x+6,y-8) — F(xy))) +
+ ((Rx-0,y-8) — Fx,y)) + (F(x+8,y+8) — F(x.y)))) )/(66?).

Computed Errors  E := max| F(x,y) —u(x,y) | are tabulated on the next page:
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Eiues E computed from the tricky formula fosF carrying 53 sig.bits.
Eiicke E computed from the tricky formula fosF carrying 24 sig.bits.
E.rudes E computed from the crude formula faf carrying 24 sig.bits.
Eque2 E computed from the tricky formula fas F carrying 53 sig.bits.

This last F e imakes it easier to compare convergence rates @nd & .

Errors E := may|F(x,y) — ®(x,y)|

N Erues | ...-N® | Etricke | Ecrudes| Etrue2
16 9.681e-5 9705e-5
9.677e-5| 16e3 |9.681e-5 XB58e-5 4.387e-3
32 2.039e-6 2039e-6
2.084e-6| 22e3 |2.039e-6 2039e-6 1.179e-3
64 6.928e-7| 9.254e-6
3.225e-8| 22e3 | 1.708e-7| 1635e-6| 2.979%e-4
128 1.859e-6] 2/60e-6

5.126e-10 2Be3 | 2.845e-7| 2290e-6| 7.481e-5
256| 8103e-12 2Be3 | 5362e-7| 2366e-6
8.104e-12| 23e3 | 2283e-7| 27/20e-6|1.872e-5
512[ 11271e-13 2e3 | 3665e-/| 2635e-6
1.266e-13| 23e3 | 2900e-7| 8.151e-6| 4.681e-6

Eiicke 1S already about as accurate as possible in 24 sig.bits wketd N
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Gradient Error: D := ma;eg,HF*(x,y) —d'(x,y)||
Diues D computed from the tricky formula fosF carrying 53 sig.bits.
Dyicke D computed from the tricky formula fosF carrying 24 sig.bits.
Dcrudes D computed from the crude formula féF carrying 24 sig.bits.
Dyicke D computed from the tricky formula fos F carrying 24 sig.bits.

N Dirue6 | ...-N? | Drrické | Derudes | Drrick2
16 0.3207 | Q3207 02948
0.3207 | 8209 | 0.3207 | Q3207 02948
32 0.161 Q161 Q1537 |
0.161 1648 | 0.161 Qle1l Q1537
64 0.05772] 005767 005467 |
0.05773| 236 | 0.05773| 005772| 005458
128 0.01732] 00174 | Q01593
0.01731| 283% | 0.01731| 001732 00161
256 0.004778 0004847 0004456
0.004745, 311 [0.004727| 0004847, 0004415
512 0.001297] 0001398 0001328
0.001243 328 |0.001297] 0001398 0001231

Tabulated errors = @' reflect a contribution roughly 3% due mostly to either a
mesh-gapd too big, or a 2nd-order formula* Foo crude, rather than big Fb-.
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The accuracy of this example’s computed F is overkill for the gradient unless that
accuracy is exploited by higher-order divided difference approximations to derivatives.

Higher-order formulas for discretized first derivatives:

Given a sufficiently differentiable (X) , its derivative f(x) Is approximated by

f1(x,8) := (f(x+8) — f(x) )/8 = f(x) + O(8) .
FH(x,8) := (fi(x+6) + fI(x-B) )2 = f(x) + O(8?) .

(4-f(x,0) — f(x,20) )/3 = f(x) +O(6% .
4-f1(x,0) — 6-f1(x,20) + 4-f{(x,30) — f(x,40) = f(x) + OO .
fT(x,—0)/4 + 3-f(x,0)/2 — f1(x,20) + fT(x,30)/4 = f(x) +O(OY .

Complication The analogous formulas to estimab&(x, y) from F differ according to
how close (X, y) is to the boundadf2 of the square.

This complication does not alter our tricks.
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Conclusions:

» Aided by tricks, 4-bytéloat s are accurate enough for many differential equations.
Otherwise,float s are now too inaccurate for reliable scientific and engineering work.

Rounding errors can corrupt severely a regular solution of a singular differential
equation unless the discretization is designed to filter out singular solutions and
also to preserve vital symmetries.

Only if residuals are computed accurately enough must iterative refinement enhance
accuracy after discretization is refined by an increase in the density of mesh-points.
But the Law of Diminishing Returngannot be postponed forever.

Tricks are palliatives, not cures for ailments that afflict scientific and engineering
computations now that floating-point is optimized for entertainment.

Ailments?

» |Inadequate tools to help diagnose bugs peculiar to floating-point’s roueoff
» Widespread misunderstandings of roundoff among most scientists and engineers,
especially among Computer Scientists.

Consequently programming languages become ever less hospitable to numerically
naive but otherwise clever programmers who use floating-point only occasionally.
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