

File: Fl0Trik

Floating-Point Tricks … Problems Faster

 Version dated September 10, 2013 5:54 pm

Prof. W. Kahan

p. 1/26

Floating-Point Tricks to Solve Boundary-Value Problems
Faster

W. Kahan, Prof. Emeritus
Math. Dept., and E.E. & Computer Sci. Dept.,

University of California @ Berkeley

For UCB’s Scientific & Engineering Numerical Computing Seminar
11 Sept. 2013

Abstract:

 Some old tricks are resuscitated to accelerate the numerical solution of certain
discretized boundary-value problems. Without the tricks, half the digits carried by the
arithmetic can be lost to roundoff when the discretization’s grid-gaps get very small. The
tricks can procure adequate accuracy from arithmetic with

float

 variables 4-bytes wide
instead of

double

 variables 8-bytes wide that move slower through the computer’s
memory system and pipelines. Tricks are tricky for programs written in M

ATLAB™

 7,
J

AVA

, F

ORTRAN

 and post-1985 A

NSI

C

. For the original Kernighan-Ritchie

C

 of the
late 1970s, and for a few implementations of

C

99 that fully support IEEE Standard 754
for Binary Floating-Point, the tricks are easy or unnecessary. Examples show how well
the tricks work.

For details:

www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf

File: Fl0Trik

Floating-Point Tricks … Problems Faster

 Version dated September 10, 2013 5:54 pm

Prof. W. Kahan

p. 2/26

Computers’ memories have become HUGE
because memory has become CHEAP.

But moving data through the memory system has become COSTLY
in TIME and ENERGY DISSIPATION.

4-byte

float

s cost half as much as 8-byte

double

s .

This motivates converting computational algorithms,
 that used to be performed in

double

 in past decades,
 to be performed now in

float

 instead..

Why not ?

Gresham’s law:

 “

Bad

 money drives out the

Good

.”

(from circulation)

 Sir Thomas Gresham (1519 - 1579)

Gresham’s law for computing:

 “The

Fast

 drives out the

Slow

, even if the

Fast

 is wrong.”

File: Fl0Trik

Floating-Point Tricks … Problems Faster

 Version dated September 10, 2013 5:54 pm

Prof. W. Kahan

p. 3/26

Why not supplant all

double

s by

float

s ?

cf

. M

ATLAB

’s

eps

Arithmetic precision of

double

 : 53 sig. bits ~ 16 sig. dec.

ε

≈

 2

–52

 of

float

 : 24 sig. bits ~ 7 sig. dec.

ε

≈

 2

–23

7 correct sig. dec. is more than adequate accuracy
 for almost all computed results used by scientists and engineers.

 But what you see is not always what you get.

Roundoff corrupts the solutions of discretized differential equations, both …

• Initial-value problems: Given T > 0 ,

f

 and

y

0

 , compute

y

(

τ

) at

τ

 = T to satisfy

 d

y

/d

τ

 =

f

(

τ

,

y

) for 0

≤

τ

≤

 T and

y

(0) :=

y

0

 .

• Boundary-value problems: Given p, q, r,

Φ

0

 and

Φ

1

 , compute

Φ

(

τ

) to satisfy

 div(p·

grad

(

Φ

)) + q·

Φ

 = r for 0

≤

τ

≤

 1 and

Φ

(0) =

Φ

0

 ,

Φ

(1) = Φ1 .

 and more generally when … τ runs in a 2D or 3D region … .

How does roundoff intrude into a discretization?

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 4/26

Discretizations:
Let θ be the step-size, or mesh-gap, of a discretization. Normally θ is very tiny.

 Discretization error in computed solution → 0 like θOrder , depending upon … ;

 Work → ∞ like 1/θDimension(τ)·{1, 2 or 3}, depending upon the numerical method.
 Roundoff’s intrusion can grow like Work or faster, depending upon …" " .

Example: Initial-Value Problem y(τ) = y0 + ∫0
τ f(ζ,y(ζ))·dζ is approximated by …

 Y(τ+θ) := Y(τ) + F(τ,θ, Y(…))·θ accumulated for τ = 0, θ, 2θ, 3θ, …, (T/θ)θ ,

 in which F estimates an average ∫τ
τ+θ f(ζ,y(ζ))·dζ/θ by sampling f(…, Y(…)) .

Digits:
YYYYYYY at τ
+ FFFF FFF· θ as if ffff fff
——————————— lost

YYYYYYY at τ+θ

A tinier step-size θ to get tinier discretization error like θOrder seems to aggravate the
intrusion into F (and hence into f) of roundoff’s uncertainty proportional to ε/θ .

This seems to limit the achievable accuracy of Y , as if some fraction like 1/(1 + Order)
of the arithmetic’s digits of f were obscured by roundoff and/or discretization.

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 5/26

 Y(τ+θ) := Y(τ) + F(τ,θ, Y(…))·θ in which F ≈ ∫τ
τ+θ f(ζ,y(ζ))·dζ/θ + O(θOrder) .

Digits:
YYYYYYY at τ
+ FFFF FFF· θ
———————————

YYYYYYY at τ+θ

The lost digits FFF· θ can be retrieved by a Trick: Compensated Summation

Y := y0 ; … Initialization

C := o ; … a column of zeros of Y ’s dimension
for τ = 0 to T – θ in steps of θ {

oldY := Y ;
∆Y := C + F(τ,θ, Y(…))·θ ;
Y := oldY + ∆Y ; … rounded, losing digits FFF· θ
C := (oldY – Y) + ∆Y ; } … recovers them (DON’T REMOVE PARENTHESES)

Can you see why the trick works? (If 1/2 ≤ p/q ≤ 2 then p – q suffers no roundoff.)
The trick would be unnecessary if Y were rounded (+) and stored extra-precisely.
The trick is unnecessary also if the differential equation is so strongly stable that past errors are forgotten,
or if it is so unstable that recent errors’ effects are overwhelmed by the propagation of earlier errors.

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 6/26

Example: Over 0 ≤ τ ≤ T given T := 65/32 = 2.03125 , v(0) := 229 , w(0) := 0 ,
solve dv/dτ = w/τ , dw/dτ = –4τ·(1 – τ)·(1 + τ)·v for v(T) .

 This singular differential equation has a regular solution obtained by presubstituting 0 for 0/0 .

We shall pretend not to know that v(T) = 229·exp(–T2) = 8669239.890913… .

All other arithmetic is performed in 4-byte float (24 sig.bits).

Numerical Method: Classical 4-step 4th order Runge-Kutta :
increment F(Y(…), θ)·θ = (2·(hF1 + hF3) + 4·hF2 + hF4)/6 wherein

 hF1 := ·f(Y) ; hF2 := ·f(Y + hF1) ; hF3 := θ·f(Y + hF2) ; hF4 := θ·f(Y + hF3) ;

The chosen number n := 2560 of steps produced a stepsize θ = T/n exactly.

Numerical Results: V(T) = 8670448 computed without Compensated Summation
 V(T) = 8669241 computed with Compensated Summation
 v(T) ≈ 8669240 the true v(T) rounded to 24 sig,bits.

Compensated Summation has reduced this example’s loss of accuracy in V(T)
from over 10 sig.bits to less than 2 of the arithmetic’s 24.

θ
2
--- θ

2

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 7/26

Discretization of a Boundary-Value Problem
turns a second-order differential equation like

 div(p·grad(Φ(τ))) + q·Φ(τ) = r for τ in region Ω with Φ specified on ∂Ω ,

into an array “ A·ƒ = b ” of difference equations for a column ƒ whose elements ƒj

approximate the values of Φ at grid-points in Ω . Matrix A and column b depend
upon grid-spacing θ and p, q, r, and the specifications of Φ on the boundary ∂Ω .

We assume p, q and r vary with τ in Ω , so “ A·ƒ = b ” is linear in ƒ .
More generally, p, q and r could vary with Φ too, and then “ A·ƒ = b ” would be nonlinear in ƒ ,
which would complicate the exposition without changing the trick we wish to explain; therefore we
assume “ A·ƒ = b ” is linear in ƒ to keep the exposition simpler.

Here is what matters:
As the grid-spacing θ gets smaller, so does the discretization error O(θOrder) ,
but matrix A ’s ill-condition grows, exacerbating its sensitivity to roundoff.

Why must A become more ill-conditioned?
Matrix A approximates the unbounded differential operator div(p·grad(…)) + q .
Smaller singular values of A approximate those of the differential operator, but

||A|| → ∞ , typically like 1/θ2 .

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 8/26

How to attenuate ill effects of A ’s ill-condition upon the solution of “ A·ƒ = b ” :

Iterative Refinement:
Let f := computed value of ƒ in “ A·ƒ = b ” , and let f ’s Residual be

 r := A·f – b .
Let ∆ := computed value of ∆ƒ in “ A·∆ƒ = r ” as f was computed but faster.

Then, provided r was computed accurately enough,
 f – ∆f ≈ ƒ rather better than f did.

• How accurate a residual r is “accurately enough” ?

“ r := A·f – b ” must be accumulated extra-precisely lest it drown in its own roundoff;
and if stored arrays A and b were rounded off, re-compute them extra-precisely too.

Otherwise, though its residual may become smaller, f – ∆f can be less accurate than f .

• What if extra-precise arithmetic is unavailable or too slow?

Then a trick must be used to compute residual r accurately enough.

Let’s see how the trick works on a concrete example …

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 9/26

The regular solutions u(x) of the singular differential equation

(p·u')' + q·u := (x·u')' + 4x·(1–x2)·u = 0

all have u'(0) = 0 and so u(–x) ≡ u(x) . We wish to compute a regular solution satisfying
the boundary conditions u(±1) = 1 as if we did not know that u(x) = exp(1–x2) . The
computation will be complicated by the differential equation’s singular solutions

 v(x) := C·exp(–x2)·∫ exp(2x2)·dx/x = C·exp(–x2)·(ln(|x|) – ∫|x|
1 (exp(2ξ2) – 1)·dξ/ξ) .

Their constants C can be different for x > 0 than for x < 0 . All have a logarithmic pole
at x = 0 . The pole can amplify tiny perturbations of the differential equation into a
narrow spike at x = 0 . Worse, this singular solution v satisfies v(–x) ≡ v(x) and
v(±1) = 0 , and the differential equation except at x = 0 , so a discretized analog of v(x)
can contaminate a numerical approximation of a regular solution u(x) unless filtered out.

Also estimated will be u'(x) ≈ u‡(x) := (u(x+θ) – u(x–θ))/(2θ) = u'(x) + O(θ2) .

Graphs of u(x) , u'(x) and v(x) as computed by a first crude numerical program are

plotted on the next page. What caused the spike at the end of the graph of u‡ ≈ u' ?

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 10/26

Computed Graphs of u ≈ u(x), u‡ ≈ u'(x) and v ≈ v(x) carrying 24 sig. bits

The spike in u‡ was caused by roundoff; see p. 13 of …/Math128/FloTrik.pdf .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

X

U
(X

),

U
'(

X
),

 V

(X
)

First Program: 2N+1 = 1025 points 24 sig. bits

U
U1
V

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 11/26

If a numerical solution exhibits a spike, is it due to roundoff? … to a singularity? See
…/Math128/FloTrik.pdf for both kinds, and how they were removed Here we infer
limx→0 u'(x)/x = u" (0) = –2u(0) from the differential equation to impose an internal

boundary condition that filters v(x) out. Then u(x) = u(–x) need be computed only for
–1 ≤ x ≤ 0 .

Choose integer N >> 2 , and set grid-gap θ := 1/N and grid-points xj := j·θ – 1 for

j = 0, 1, 2, …, N–1, N . Now u(xj) will be approximated by element uj of a column u

satisfying a linear system (T + Diag(q))·u = r with discretization error O(θ2) . The
elements of N-by-N symmetric tridiagonal T, q and r are provided on p. 7 and p.
11 of …/FloTrik.pdf . (Here p.7’s A ⇔ T + Diag(q) , ƒ ⇔ u , b ⇔ r .)

Computed too is column u‡ whose elements u‡
j approximate the gradient

u'(xj) ≈ u‡
j := (uj+1 – uj–1)/(2θ) with error O(θ2) ; cf. pp. 11 & 25 of …/FloTrik.pdf .

A program that used Gaussian Elimination (triangular factorization into bidiagonal
factors) in float arithmetic (24 sig.bits) gave results tabulated on the next page …

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 12/26

Results from a program carrying 24 sig. bits (ε ≈ 6/108)

 N = #gaps = 1/θ , err(u) := maxj |uj – u(xj)| , err(u‡) := maxj |u
‡
j – u'(xj)| .

When N = 1/θ gets too big, error worsens. The accuracy of u never gets much better

than half the digits carried; and the accuracy of u‡ fluctuates in a way that undermines
confidence only because we know what the correct values should be.

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01530 3.9

 24 0.004146 2.39 0.00662 3.8

 32 0.002326 2.38 0.00365 3.7

 48 0.001028 2.37 0.00158 3.6

 64 0.000663 2.73 0.00099 4.0

 96 0.000118 1.09 0.00022 2.0

 128 0.000073 1.19 0.00027 4.5

 192 0.000531 19.56 0.00102 37.7

 256 0.000095 6.24 0.00037 24.4

 384 0.000394 58.09 0.00107 157.3

 512 0.000338 88.59 0.00202 528.3

 768 0.006888 4062.71 0.01578 9310.2

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 13/26

Iterative Refinement requires the computation of residuals sj from formulas like …

 “ sj := r j – aj–1·uj–1 – gj·uj – aj·uj+1 ” (Crude residual)

in which aj−1 , aj and gj := qj – aj–1 – aj are coefficients in a row of T + Diag(q) .

But gj is rounded so, even if sj is accumulated extra-precisely, iterative refinement

never improves the accuracies of u and u‡ much.

The trick evaluates a more accurate residual this way instead: (no gj)

 “ sj := r j – aj–1·((uj–1 – uj) – (uj+1 – uj)) – (aj – aj–1)·(uj+1 – uj) – qj·uj ” .
 HONOR PARENTHESES !
This expression takes advantage of exact cancellation among differences between nearby
floating-point values of slowly varying functions. Cost: five extra subtractions.

Results from M passes of iterative refinement using the tricky formula are exhibited on
the next page.

• • • • • • •µ•
(Yes, a simpler way to solve this example’s boundary-value problem is a Shooting Method

 which converts the problem into an initial-value problem. That is the first example on p. 6 ;
 its v(τ)/v(1) = u(-τ) here. But no shooting method will work on the example after this one.)

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 14/26

Results from a program carrying 24 sig. bits (ε ≈ 6/108)

 N = #gaps = 1/θ, M = #refinements, err(u) := maxj |uj – u(xj)| , err(u‡) := maxj |u
‡
j – u'(xj)| .

N M err(u) err(u)·N2 err(u‡) err(u‡)·N2 M N

 16 0 & 1 0.00932 2.39 0.0153 3.9 0 & 1 16
 24 0 & 1 0.00414 2.39 0.0066 3.8 0 & 1 24
 32 0 & 1 0.002326 2.38 0.00365 3.7 0 & 1 32
 48 0 0.001028 2.37 0.00158 3.6 0

481 & 2 0.0010349 2.38 0.001612 3.71 1 & 2
 64 0 0.000663 2.73 0.00099 4.0 0

641 & 2 0.0005821 2.38 0.000904 3.70 1 & 2
 96 0 0.000118 1.09 0.00022 2.0 0

961 & 2 0.0002586 2.38 0.000393 3.62 1 & 2
 128 0 0.000073 1.19 0.00027 4.5 0

1281 & 2 0.0001456 2.39 0.000206 3.38 1 & 2
 192 0 0.000531 19.56 0.00102 37.7 0

1921 & 2 0.0000646 2.38 0.000107 3.94 1 & 2
 256 0 0.000095 6.24 0.00037 24.4 0

2561 & 2 0.0000364 2.39 0.000061 4.00 1 & 2
 384 0 0.000394 58.09 0.00107 157.3 0

384
1 0.0000162 2.39 0.000049 7.27 1

2 & 3 0.0000162 2.39 0.000053 7.81 2 & 3
 512 0 0.000338 88.59 0.00202 528.3 0

512
1 0.0000091 2.38 0.000061 16.11 1

2 & 3 0.0000092 2.41 0.000065 16.92 2 & 3
 768 0 0.006888 4062.71 0.01578 9310.2 0

768
1 0.0000156 9.20 0.000089 52.50 1

2 & 3 0.0000041 2.41 0.000088 51.75 2 & 3

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 15/26

Iterative refinement with an accurate residual added one to three sig.dec. to u and u‡ .

Why do we care about the accuracy of the gradient approximated by u‡ ?

“No man is an Island, entire of itself.
 … … … … And therefore

 never send to know for whom the bell tolls;
 It tolls for thee.”

Meditations XVII
John Donne (~1571 - 1631)

Donne’s adage for computing:
“No computation is an Island, entire of itself.”

It is always a means to some other end,
often via more computation.

The solutions of boundary-value problems are followed by estimates of gradients that
represent strain caused by loads, electric field intensity, velocity of fluid flow, … .

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 16/26

Two-Dimensional Boundary-Value Problem: Laplace’s Equation

Φ(x, y) is given on the boundary ∂Ω of a unit square [0, 0] ≤ [x, y] ≤ [1, 1] .

∇ 2Φ := ∂2Φ(x, y)/∂2x + ∂2Φ(x, y)/∂2y = 0 inside the square Ω .

For our numerical example we choose –4.16 < Φ(x, y) := log((x+1/8)2 + y2) < 0.82 .

Then 1.3 < ||Grad(Φ(x, y))|| ≤ 16 .

Discretization:
Approximate Φ(x, y) by F(x, y) taking values on the intersections of a Mesh;

Mesh breaks unit square into small squares each θ := 1/N on a side.

Approximate Differential operator ∇ 2Φ by a Difference operator

 ♠Φ := (Φ(x–θ, y) + Φ(x+θ, y) – 4·Φ(x, y) + Φ(x, y–θ) + Φ(x, y+θ))/θ2

 = ∇ 2Φ + O(θ2) , so F will satisfy ♠ F = 0 inside Ω … ⇔ A·ƒ = b .

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 17/26

–4.16 < Φ(x, y) = log((x+1/8)2 + y2) < 0.82

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

-5

-4

-3

-2

-1

0

1

 X
 Y

 P
hi

 (
 X

, Y
)

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 18/26

 1.3 < ||Grad(Φ(x, y))|| ≤ 16

 The coordinates’ origin lies behind and under the surface.

0

0.5

1

00.20.40.60.81

0

2

4

6

8

10

12

14

16

 Y X

 ||
 G

ra
d

P
hi

 (
 X

, Y
)

 ||

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 19/26

Let’s solve A·ƒ = b for column ƒ = [Values of F(x, y)] given b = [Boundary Values]
 using float arithmetic (24 sig.bits) ,

and mesh-gap θ = 1/N on each of the square’s sides.

Tabulated below are the worst error difference E := | F(x, y) – Φ(x, y) | , and E·N2 ,
 True E from true ƒ , or E from Computed f ,

and under it E after one iterative refinement,
 which used a tricky residual R , or a crude residual R .

Worse!

N E true2 …·N2 E trick2 …·N2 E crude2 …·N2

 128
 7.481e-5 1.226

2.030e-4 3.326 2.025e-4 3.318
7.472e-5 1.224 7.816e-5 1.281

 256
 1.872e-5 1.227

7.440e-5 4.876 7.766e-5 5.089
1.879e-5 1.231 5.081e-5 3.33

 512
 4.681e-6 1.227

1.878e-5 4.924 5.076e-5 13.31
4.787e-6 1.255 4.434e-5 11.62

1024
1.170e-6 1.227

4.912e-6 5.151 4.440e-5 46.56
1.285e-6 1.348 3.363e-5 35.27

2048
2.926e-7 1.227

1.488e-6 6.240 3.386e-5 142
4.085e-7 1.713 3.394e-5 142.4

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 20/26

What is the trick ?

The crude residual was computed from the difference operator literally thus:

♠ F = (F(x–θ, y) + F(x+θ, y) – 4·F(x, y) + F(x, y–θ) + F(x, y+θ))/θ2

The trick computed that residual entirely in double arithmetic upon float operands,
or else in float arithmetic thus: (Honor parentheses!)

 ♠ F = (((F(x+θ, y) – F(x, y)) – (F(x, y) – F(x–θ, y))) +

 + ((F(x, y+θ) – F(x, y)) – (F(x, y) – F(x, y–θ))))/θ2

Can you see why this trick works? Cost: three extra ± , less one ×

It also improves the accuracy of the gradient computed from differences of F . And
when “ A·ƒ = b ” is solved by iteration the trick reduces the amplitude of Dithering;
see www.eecs.berkeley.edu/~wkahan/Math128/SlowIter.pdf .

And a similar trick works for many finite-elements’ difference operators.

What about the Gradient?

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 21/26

The simplest approximation to the derivative Φ'(x, y) is the Central Divided Difference

 Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y), Φ(x,y+θ) – Φ(x,y–θ)]/(2θ)

 = Φ'(x,y) + O(θ2) ,

This will be approximated by F‡(x,y) , thus incurring error from three sources:

• O(θ2) inherited from Φ‡
 , and

• error F‡ – Φ‡ = (F – Φ)‡ due to the differential equation’s discretization, and

• at least O(ε·F/θ) due to roundoff’s contamination of F .

The relative importance of these error-sources is hardly ever knowable in advance.

The last source, roundoff, depends upon algorithmic details and tricks.

The second-last, (F – Φ)‡ , is usually much smaller than (F – Φ)/θ because the
discretization error (F – Φ) is usually smoothly Pillow-Shaped.

The first source, O(θ2) , overwhelmingly dominates in this example.

How can this dominance be revealed?

Compute F more accurately at larger mesh-gaps θ . …

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 22/26

A 6th-order (9-point) discretization of the Laplacian:

 ♣Φ(x,y) := (Φ(x–θ,y+θ) + 4·Φ(x,y+θ) + Φ(x+θ,y+θ) +
 4·Φ(x–θ,y) – 20·Φ(x,y) + 4· Φ(x+θ,y) +
 Φ(x–θ,y–θ) + 4·Φ(x,y–θ) + Φ(x+θ,y–θ))/(6·θ2)

 = ∇ 2Φ(x,y) + ∇ 4Φ(x,y)·θ2/12 + (∇ 6Φ(x,y) + 2∂4∇ 2Φ(x,y)/∂x2∂y2)·θ4/360 + O(θ6)
 = O(θ6) if ∇ 2Φ = 0 .

F was recomputed to satisfy “ ♣F = 0 ” instead of “ ♠ F = 0 ” .

The trick to attenuate roundoff replaced the crude formula for ♣ above by the tricky …

 ♣F(x,y) := (4·(θ2·♠ F(x,y)) + (((F(x–θ,y+θ) – F(x,y)) + (F(x+θ,y–θ) – F(x,y))) +

 + ((F(x–θ,y–θ) – F(x,y)) + (F(x+θ,y+θ) – F(x,y)))))/(6·θ2) .

Computed Errors E := maxx,y | F(x,y) – µ(x,y) | are tabulated on the next page:

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 23/26

 Etrue6 E computed from the tricky formula for ♣F carrying 53 sig.bits.

 Etrick6 E computed from the tricky formula for ♣F carrying 24 sig.bits.

 Ecrude6 E computed from the crude formula for ♣F carrying 24 sig.bits.

 Etrue2 E computed from the tricky formula for ♠ F carrying 53 sig.bits.
This last Etrue2 imakes it easier to compare convergence rates of ♠ and ♣ .

 Errors E := maxx,y|F(x,y) – Φ(x,y)|

Etrick6 is already about as accurate as possible in 24 sig.bits when N ≥ 64 .

N Etrue6 …·N6 Etrick6 Ecrude6 Etrue2

16
9.677e-5 1.6e3

9.681e-5 9.705e-5
4.387e-39.681e-5 9.658e-5

32
2.084e-6 2.2e3

2.039e-6 2.039e-6
1.179e-32.039e-6 2.039e-6

64
3.225e-8 2.2e3

6.928e-7 9.254e-6
2.979e-41.708e-7 1.635e-6

128
5.126e-10 2.3e3

1.859e-6 2.760e-6
7.481e-52.845e-7 2.290e-6

256 8.103e-12 2.3e3 5.362e-7 2.366e-6
1.872e-58.104e-12 2.3e3 2.283e-7 2.720e-6

512 1.121e-13 2.0e3 3.665e-7 2.685e-6
4.681e-61.266e-13 2.3e3 2.900e-7 8.151e-6

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 24/26

Gradient Error: D := maxx,y||F
‡(x,y) – Φ'(x,y)||

 Dtrue6 D computed from the tricky formula for ♣F carrying 53 sig.bits.

 Dtrick6 D computed from the tricky formula for ♣F carrying 24 sig.bits.

 Dcrude6 D computed from the crude formula for ♣F carrying 24 sig.bits.

 Dtrick2 D computed from the tricky formula for ♠ F carrying 24 sig.bits.

Tabulated errors F‡ – Φ' reflect a contribution roughly 333·θ2 due mostly to either a

mesh-gap θ too big, or a 2nd-order formula F‡ too crude, rather than big F – Φ .

N Dtrue6 …·N2 Dtrick6 Dcrude6 Dtrick2

16
0.3207 82.09

0.3207 0.3207 0.2948
0.3207 0.3207 0.2948

32
0.161 164.8

0.161 0.161 0.1537
0.161 0.161 0.1537

64
0.05773 236.5

0.05772 0.05767 0.05467
0.05773 0.05772 0.05458

128
0.01731 283.6

0.01732 0.0174 0.01593
0.01731 0.01732 0.0161

256
0.004745 311

0.004778 0.004847 0.004456
0.004727 0.004847 0.004415

512
0.001243 325.8

0.001297 0.001398 0.001328
0.001297 0.001398 0.001231

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 25/26

The accuracy of this example’s computed F is overkill for the gradient unless that
accuracy is exploited by higher-order divided difference approximations to derivatives.

Higher-order formulas for discretized first derivatives:

Given a sufficiently differentiable ƒ(x) , its derivative ƒ'(x) is approximated by
 ƒ†(x,θ) := (ƒ(x+θ) – ƒ(x))/θ = ƒ'(x) + O(θ) .

 ƒ‡(x,θ) := (ƒ†(x+θ) + ƒ†(x–θ))/2 = ƒ'(x) + O(θ2) .

 (4·ƒ‡(x,θ) – ƒ‡(x,2θ))/3 = ƒ'(x) + O(θ4) .

 4·ƒ†(x,θ) – 6·ƒ†(x,2θ) + 4·ƒ†(x,3θ) – ƒ†(x,4θ) = ƒ'(x) + O(θ4) .

 ƒ†(x,–θ)/4 + 3·ƒ†(x,θ)/2 – ƒ†(x,2θ) + ƒ†(x,3θ)/4 = ƒ'(x) + O(θ4) .

Complication: The analogous formulas to estimate Φ'(x, y) from F differ according to
 how close (x, y) is to the boundary ∂Ω of the square.

This complication does not alter our tricks.

File: Fl0Trik Floating-Point Tricks … Problems Faster Version dated September 10, 2013 5:54 pm

Prof. W. Kahan p. 26/26

Conclusions:

• Aided by tricks, 4-byte float s are accurate enough for many differential equations.

• Otherwise, float s are now too inaccurate for reliable scientific and engineering work.

• Rounding errors can corrupt severely a regular solution of a singular differential
equation unless the discretization is designed to filter out singular solutions and
also to preserve vital symmetries.

• Only if residuals are computed accurately enough must iterative refinement enhance
accuracy after discretization is refined by an increase in the density of mesh-points.

But the Law of Diminishing Returns cannot be postponed forever.

• Tricks are palliatives, not cures for ailments that afflict scientific and engineering
computations now that floating-point is optimized for entertainment.

Ailments?

• Inadequate tools to help diagnose bugs peculiar to floating-point’s roundoff etc.
• Widespread misunderstandings of roundoff among most scientists and engineers,

 especially among Computer Scientists.

Consequently programming languages become ever less hospitable to numerically
naive but otherwise clever programmers who use floating-point only occasionally.

