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Floating-Point Tricks to Solve Boundary-Value Problems 
Faster

 

W. Kahan,  Prof. Emeritus
Math. Dept.,  and  E.E. & Computer Sci. Dept.,

University of California @ Berkeley

 

For  UCB’s  Scientific & Engineering Numerical Computing Seminar
11 Sept. 2013

 

Abstract:

 

  Some old tricks are resuscitated to accelerate the numerical solution of certain 
discretized boundary-value problems.  Without the tricks,  half the digits carried by the 
arithmetic can be lost to roundoff when the discretization’s grid-gaps get very small.  The 
tricks can procure adequate accuracy from arithmetic with  

 

float

 

  variables  4-bytes wide  
instead of  

 

double

 

  variables  8-bytes wide that move slower through the computer’s 
memory system and pipelines.  Tricks are tricky for programs written in  M

 

ATLAB™

 

 7,  
J

 

AVA

 

,  F

 

ORTRAN

 

  and post-1985  A

 

NSI

 

 

 

C

 

.  For the original  Kernighan-Ritchie 

 

C

 

  of the 
late  1970s,  and for a few implementations of  

 

C

 

99  that fully support  IEEE Standard 754 
for Binary Floating-Point, the tricks are easy or unnecessary.  Examples show how well 
the tricks work. 

 

For details:  

 

www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf
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Computers’ memories have become  HUGE
because memory has become  CHEAP.

But moving data through the memory system has become  COSTLY
in  TIME  and  ENERGY DISSIPATION.

4-byte  

 

float

 

s  cost half as much as  8-byte  

 

double

 

s .

This motivates converting computational algorithms, 
 that used to be performed in  

 

double

 

  in past decades,
 to be performed now in  

 

float

 

  instead..

 

Why not ?

 

Gresham’s law:

 

  “

 

Bad

 

  money drives out the  

 

Good

 

.”  

 

(from circulation)

 

  Sir Thomas Gresham  (1519 - 1579)

 

Gresham’s  law for computing:

 

 “The  

 

Fast

 

  drives out the  

 

Slow

 

,  even if the  

 

Fast

 

  is wrong.”
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Why not supplant all  

 

double

 

s  by  

 

float

 

s ?                                      

 

cf

 

. M

 

ATLAB

 

’s  

 

eps

 

 

 

Arithmetic precision of  

 

double

 

 :    53 sig. bits ~ 16  sig. dec.     

 

ε

 

 

 

≈

 

 2

 

–52

 

  

   of  

 

float

 

 :    24 sig. bits ~  7   sig. dec.     

 

ε

 

 

 

≈

 

 2

 

–23

 

  

7  correct sig. dec.  is more than adequate accuracy 
 for almost all computed results used by scientists and engineers.

 But what you see is not  always  what you get.

Roundoff corrupts the solutions of discretized differential equations,  both  …

• Initial-value problems:   Given  T > 0 ,  

 

f

 

  and  

 

y

 

0

 

 ,  compute  

 

y

 

(

 

τ

 

)  at  

 

τ

 

 = T  to satisfy

 d

 

y

 

/d

 

τ

 

 = 

 

f

 

(

 

τ

 

, 

 

y

 

)  for  0 

 

≤

 

 

 

τ

 

 

 

≤

 

 T  and   

 

y

 

(0) := 

 

y

 

0

 

 .

• Boundary-value problems:  Given   p,  q,  r,  

 

Φ

 

0

 

  and  

 

Φ

 

1

 

 ,  compute  

 

Φ

 

(

 

τ

 

)  to satisfy

 div(p·

 

grad

 

(

 

Φ

 

)) + q·

 

Φ

 

  =  r  for  0 

 

≤

 

 

 

τ

 

 

 

≤

 

 1  and  

 

Φ

 

(0) = 

 

Φ

 

0

 

 ,  

 

Φ

 

(1) = Φ1 .

            and more generally when  …  τ  runs in a  2D  or  3D  region  … .

How does roundoff intrude into a discretization?
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Discretizations:
Let  θ  be the step-size,  or mesh-gap,  of a discretization.  Normally  θ  is very tiny.

 Discretization error in computed solution → 0  like  θOrder ,  depending upon  … ;

 Work → ∞  like  1/θDimension(τ)·{1, 2 or 3},  depending upon the numerical method.
 Roundoff’s intrusion can grow like  Work  or faster,  depending upon …"     " .

Example:  Initial-Value Problem   y(τ) = y0 + ∫0
τ f(ζ,y(ζ))·dζ   is approximated by …

 Y(τ+θ) := Y(τ) + F(τ,θ, Y(…))·θ   accumulated for   τ = 0, θ, 2θ, 3θ, …, (T/θ)θ ,

  in which  F  estimates an average  ∫τ
τ+θ f(ζ,y(ζ))·dζ/θ   by sampling  f(…, Y(…)) .

Digits:
YYYYYYY         at    τ 
+  FFFF FFF· θ       as if   ffff fff   
———————————              lost   

YYYYYYY         at    τ+θ 

A tinier step-size  θ  to get tinier discretization error like   θOrder  seems to aggravate the 
intrusion into  F  (and hence into  f )  of roundoff’s uncertainty proportional to  ε/θ .

This seems to limit the achievable accuracy of  Y  ,  as if some fraction like  1/(1 + Order)
of the arithmetic’s digits of  f  were obscured by roundoff and/or discretization.



File:  Fl0Trik                                        Floating-Point Tricks … Problems Faster                            Version dated   September 10, 2013 5:54 pm

Prof. W. Kahan                                                                                                                                                                                                                                       p. 5/26

 Y(τ+θ) := Y(τ) + F(τ,θ, Y(…))·θ   in which  F ≈  ∫τ
τ+θ f(ζ,y(ζ))·dζ/θ + O(θOrder) .

Digits:
YYYYYYY         at    τ 
+  FFFF FFF· θ     
———————————

YYYYYYY         at    τ+θ 

The lost digits  FFF· θ  can be retrieved by a  Trick:   Compensated Summation  

Y := y0 ; … Initialization

C := o ; …  a column of zeros of  Y  ’s  dimension 
for  τ = 0 to T – θ  in steps of  θ  { 

oldY := Y ; 
∆Y := C + F(τ,θ, Y(…))·θ ;
Y := oldY + ∆Y ; … rounded,  losing digits  FFF· θ   
C := (oldY – Y) + ∆Y ; } … recovers them   (DON’T REMOVE PARENTHESES) 

Can you see why the trick works?      ( If  1/2 ≤ p/q ≤ 2  then  p – q  suffers no roundoff.)
The trick would be unnecessary if  Y  were rounded  (+)  and stored extra-precisely.
The trick is unnecessary also if the differential equation is so strongly stable that past errors are forgotten,  
or if it is so unstable that recent errors’ effects are overwhelmed by the propagation of earlier errors. 
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Example:   Over  0 ≤ τ ≤ T  given  T := 65/32 = 2.03125 ,  v(0) := 229 ,  w(0) := 0 ,
solve   dv/dτ = w/τ ,   dw/dτ = –4τ·(1 – τ)·(1 + τ)·v   for  v(T) .

         This singular differential equation has a regular solution obtained by presubstituting  0  for  0/0 .

We shall pretend not to know that  v(T) = 229·exp(–T2) = 8669239.890913… .

All other arithmetic is performed in  4-byte float   (24 sig.bits).

Numerical Method:  Classical  4-step  4th order  Runge-Kutta :
increment  F(Y(…), θ)·θ = ( 2·(hF1 + hF3) + 4·hF2 + hF4 )/6  wherein

  hF1 := ·f(Y) ;   hF2 := ·f(Y + hF1) ;   hF3 := θ·f(Y + hF2) ;   hF4 := θ·f(Y + hF3) ;   

The chosen number  n := 2560  of steps produced a stepsize  θ = T/n  exactly.

Numerical Results:    V(T) = 8670448   computed  without  Compensated Summation
    V(T) = 8669241   computed   with   Compensated Summation
     v(T) ≈ 8669240    the true  v(T)  rounded to  24 sig,bits.

Compensated Summation  has reduced this example’s loss of accuracy in  V(T)  
from  over  10  sig.bits  to less than  2  of the arithmetic’s  24.

θ
2
--- θ

2
---
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Discretization  of a  Boundary-Value Problem
turns a second-order differential equation like

 div(p·grad(Φ(τ))) + q·Φ(τ) = r  for  τ  in region  Ω  with  Φ  specified on  ∂Ω ,

into an array  “ A·ƒ = b ” of difference equations for a column  ƒ  whose elements  ƒj  

approximate the values of  Φ  at grid-points in  Ω .  Matrix  A  and column  b  depend 
upon grid-spacing  θ  and  p,  q,  r,  and the specifications of  Φ  on the boundary  ∂Ω .

We assume  p, q and  r  vary with  τ  in  Ω ,  so  “ A·ƒ = b ”  is linear in  ƒ .
More generally,  p, q and r  could vary with  Φ  too,  and then  “ A·ƒ = b ”  would be nonlinear in  ƒ ,  
which would complicate the exposition without changing the trick we wish to explain;  therefore we 
assume  “ A·ƒ = b ”  is linear in  ƒ  to keep the exposition simpler.

Here is what matters:
As the grid-spacing  θ  gets smaller,  so does the discretization error  O(θOrder) ,
but matrix  A ’s  ill-condition grows,  exacerbating its sensitivity to roundoff.

Why must  A  become more ill-conditioned?
Matrix  A  approximates the unbounded differential operator   div(p·grad(…)) + q .
Smaller singular values of  A  approximate those of the differential operator,  but 

||A|| → ∞ ,  typically like  1/θ2 .
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How to attenuate ill effects of  A ’s  ill-condition upon the solution of  “ A·ƒ = b ” :

Iterative Refinement:
Let  f  := computed value of  ƒ  in  “ A·ƒ = b ”  ,  and let  f ’s  Residual  be 

  r  := A·f – b .
Let  ∆ := computed value of  ∆ƒ  in  “ A·∆ƒ = r  ”  as  f  was computed but faster.

Then,  provided  r   was computed  accurately enough,
  f – ∆f  ≈  ƒ  rather better than  f  did.

•  How accurate a residual  r   is  “accurately enough” ?

“  r  := A·f – b ”  must be accumulated extra-precisely lest it drown in its own roundoff;  
and if stored arrays  A  and  b  were rounded off,  re-compute them extra-precisely too.

Otherwise,  though its residual may become smaller,  f – ∆f  can be less accurate than  f .

•  What if  extra-precise  arithmetic is unavailable or too slow?

Then a trick must be used to compute residual  r   accurately enough.

Let’s see how the trick works on a concrete example  …
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The regular solutions  u(x)  of the singular differential equation

(p·u')'  + q·u  :=  (x·u'  )'  + 4x·(1–x2)·u = 0   

all have  u'(0) = 0  and so  u(–x) ≡ u(x) .  We wish to compute a regular solution satisfying 
the boundary conditions  u(±1) = 1  as if we did not know that   u(x) = exp(1–x2) .  The 
computation will be complicated by the differential equation’s singular solutions

       v(x) := C·exp(–x2)·∫ exp(2x2)·dx/x  =  C·exp(–x2)·( ln(|x|) – ∫|x|
1 (exp(2ξ2) – 1)·dξ/ξ ) .

Their constants  C  can be different for  x > 0  than for  x < 0 .  All have a logarithmic pole 
at  x = 0 .  The pole can amplify tiny perturbations of the differential equation into a 
narrow spike at  x = 0 .  Worse,  this singular solution  v  satisfies  v(–x) ≡ v(x)  and  
v(±1) = 0 ,  and the differential equation except at  x = 0 ,  so a discretized analog of  v(x)  
can contaminate a numerical approximation of a regular solution  u(x)  unless filtered out.

Also estimated will be  u'(x)  ≈  u‡(x) := (u(x+θ) – u(x–θ))/(2θ) = u'(x) + O(θ2) .

Graphs of  u(x) ,  u'(x)  and  v(x)  as computed by a first crude numerical program are 

plotted on the next page.  What caused the spike at the end of the graph of  u‡ ≈ u'   ?
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Computed Graphs of  u ≈ u(x),   u‡ ≈ u'(x)   and  v ≈ v(x)   carrying  24  sig. bits

The spike in  u‡  was caused by roundoff;  see  p. 13  of  …/Math128/FloTrik.pdf  .
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If a numerical solution exhibits a spike,  is it due to roundoff?  … to a singularity?  See  
…/Math128/FloTrik.pdf   for both kinds,  and how they were removed  Here we infer  
limx→0 u'(x)/x = u" (0) = –2u(0)  from the differential equation to impose an internal 

boundary condition that filters  v(x)  out.  Then  u(x) = u(–x)  need be computed only for  
–1 ≤ x ≤ 0 .

Choose integer  N >> 2 ,  and set grid-gap  θ := 1/N  and grid-points  xj := j·θ – 1  for  

j = 0, 1, 2, …, N–1, N .  Now  u(xj)  will be approximated by element  uj  of a column  u  

satisfying a linear system  (T + Diag(q))·u = r   with discretization error  O(θ2) .  The 
elements of  N-by-N  symmetric tridiagonal  T,  q  and  r   are provided on  p. 7  and  p. 
11 of  …/FloTrik.pdf  .     ( Here  p.7’s  A ⇔ T + Diag(q) ,   ƒ ⇔ u ,   b ⇔ r  .)

Computed too is column  u‡  whose elements  u‡
j  approximate the gradient  

u'(xj) ≈ u‡
j := (uj+1 – uj–1)/(2θ)  with error  O(θ2) ;    cf. pp. 11 & 25 of …/FloTrik.pdf  .

A program that used  Gaussian Elimination  (triangular factorization into bidiagonal 
factors)  in  float   arithmetic  (24 sig.bits)  gave results tabulated on the next page …
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Results from a program carrying  24 sig. bits  ( ε ≈ 6/108 )

  N = #gaps = 1/θ ,    err(u) := maxj |uj – u(xj)| ,    err(u‡) := maxj |u
‡
j – u'(xj)| .

When  N = 1/θ  gets too big,  error worsens.  The accuracy of  u  never gets much better 

than half the digits carried;  and the accuracy of  u‡  fluctuates in a way that undermines 
confidence only because we know what the correct values should be.

N err(u) err(u)·N2 err(u‡) err(u‡)·N2

 16 0.009324 2.39 0.01530 3.9

 24 0.004146 2.39 0.00662 3.8

 32 0.002326 2.38 0.00365 3.7

 48 0.001028 2.37 0.00158 3.6

 64 0.000663 2.73 0.00099 4.0

 96 0.000118 1.09 0.00022 2.0

 128 0.000073 1.19 0.00027 4.5

 192 0.000531 19.56 0.00102 37.7

 256 0.000095 6.24 0.00037 24.4

 384 0.000394 58.09 0.00107 157.3

 512 0.000338 88.59 0.00202 528.3

 768 0.006888 4062.71 0.01578 9310.2
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Iterative Refinement  requires the computation of residuals  sj  from formulas like …

 “ sj := r j – aj–1·uj–1 – gj·uj – aj·uj+1 ”         (Crude residual)

in which  aj−1 ,   aj  and  gj := qj – aj–1 – aj  are coefficients in a row of  T + Diag(q) .  

But  gj  is  rounded  so,  even if  sj  is accumulated extra-precisely,  iterative refinement 

never improves the accuracies of  u  and  u‡  much.

The trick  evaluates a more accurate residual this way instead:                          (no  gj )

 “ sj := r j – aj–1·((uj–1 – uj) – (uj+1 – uj)) – (aj – aj–1)·(uj+1 – uj) – qj·uj ” .  
  HONOR PARENTHESES ! 
This expression takes advantage of exact cancellation among differences between nearby 
floating-point values of slowly varying functions.      Cost:  five extra subtractions.

Results from  M  passes of iterative refinement using the tricky formula are exhibited on 
the next page.

• • • • • • •µ• • • • • • • • • • • • • • • • • • • • • • • • • • 
(Yes,  a simpler way to solve this example’s boundary-value problem is a  Shooting Method 

 which converts the problem into an initial-value problem.  That is the first example on  p.  6 ; 
 its  v(τ)/v(1) = u(-τ)  here.  But no shooting method will work on the example after this one.)
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Results from a program carrying  24 sig. bits  ( ε ≈ 6/108 )

  N = #gaps = 1/θ,   M = #refinements,   err(u) := maxj |uj – u(xj)| ,    err(u‡) := maxj |u
‡
j – u'(xj)| .

N M err(u) err(u)·N2 err(u‡) err(u‡)·N2 M N 

 16 0 & 1 0.00932 2.39 0.0153  3.9 0 & 1  16
 24 0 & 1 0.00414 2.39 0.0066 3.8 0 & 1  24
 32 0 & 1 0.002326 2.38 0.00365 3.7 0 & 1  32
 48 0 0.001028 2.37 0.00158 3.6 0

481 & 2 0.0010349 2.38 0.001612 3.71 1 & 2
 64 0 0.000663 2.73 0.00099 4.0 0

641 & 2 0.0005821 2.38 0.000904 3.70 1 & 2
 96 0 0.000118 1.09 0.00022 2.0 0

961 & 2 0.0002586 2.38 0.000393 3.62 1 & 2
 128 0 0.000073 1.19 0.00027 4.5 0

1281 & 2 0.0001456 2.39 0.000206 3.38 1 & 2
 192 0 0.000531 19.56 0.00102 37.7 0

1921 & 2 0.0000646 2.38 0.000107 3.94 1 & 2
 256 0 0.000095 6.24 0.00037 24.4 0

2561 & 2 0.0000364 2.39 0.000061 4.00 1 & 2
 384 0 0.000394 58.09 0.00107 157.3 0

384
1 0.0000162 2.39 0.000049 7.27 1

2 & 3 0.0000162 2.39 0.000053 7.81 2 & 3
 512 0 0.000338 88.59 0.00202 528.3 0

512
1 0.0000091 2.38 0.000061 16.11 1

2 & 3 0.0000092 2.41 0.000065 16.92 2 & 3
 768 0 0.006888 4062.71 0.01578 9310.2 0

768
1 0.0000156 9.20 0.000089 52.50 1

2 & 3 0.0000041 2.41 0.000088 51.75 2 & 3
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Iterative refinement with an accurate residual added one to three sig.dec. to  u  and  u‡ .

Why do we care about the accuracy of the gradient approximated by  u‡  ?

“No man is an  Island,  entire of itself.
  …  …  …  …   And therefore

  never send to know for whom the  bell  tolls;
  It tolls for  thee.”

Meditations XVII  
John Donne  (~1571 - 1631)

Donne’s  adage for computing:
“No computation is an  Island,  entire of itself.”

It is always a means to some other end,
often via more computation.

The solutions of boundary-value problems are followed by estimates of gradients that 
represent  strain caused by loads,  electric field intensity,  velocity of fluid flow,  … .
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Two-Dimensional Boundary-Value Problem:     Laplace’s Equation

Φ(x, y)  is given on the boundary  ∂Ω  of a unit square  [0, 0] ≤ [x, y] ≤ [1, 1] .

∇ 2Φ := ∂2Φ(x, y)/∂2x + ∂2Φ(x, y)/∂2y = 0  inside the square  Ω .

For our numerical example we choose   –4.16 < Φ(x, y) := log( (x+1/8)2 + y2 ) < 0.82 .

Then   1.3 < ||Grad(Φ(x, y))|| ≤ 16 .    

Discretization:
Approximate  Φ(x, y)  by  F(x, y)  taking values on the intersections of a  Mesh;

Mesh breaks unit square into small squares each  θ := 1/N  on a side.

Approximate  Differential operator   ∇ 2Φ   by a  Difference operator   

 ♠Φ  := (  Φ(x–θ, y) + Φ(x+θ, y) – 4·Φ(x, y) + Φ(x, y–θ) + Φ(x, y+θ)  )/θ2 

 = ∇ 2Φ + O(θ2) ,   so  F  will satisfy   ♠ F = 0  inside  Ω … ⇔   A·ƒ = b .
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–4.16 < Φ(x, y) = log( (x+1/8)2 + y2 ) < 0.82
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   1.3 < ||Grad(Φ(x, y))|| ≤ 16 

  The coordinates’ origin lies behind and under the surface.
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Let’s solve  A·ƒ = b  for column  ƒ = [ Values of  F(x, y) ]  given  b = [Boundary Values]
 using  float   arithmetic  ( 24 sig.bits) ,

and  mesh-gap  θ = 1/N  on each of the square’s sides.

Tabulated below are the worst error difference  E := | F(x, y) – Φ(x, y) | ,  and  E·N2 ,
 True  E  from  true  ƒ ,  or  E  from  Computed  f ,

and under it  E  after one iterative refinement,
 which used a  tricky  residual  R ,  or a  crude  residual  R .

Worse!  

N E true2 …·N2 E trick2 …·N2 E crude2 …·N2

 128
 7.481e-5 1.226

2.030e-4 3.326 2.025e-4 3.318
7.472e-5 1.224 7.816e-5 1.281

 256
 1.872e-5 1.227

7.440e-5 4.876 7.766e-5 5.089
1.879e-5 1.231 5.081e-5 3.33

 512
 4.681e-6 1.227

1.878e-5 4.924 5.076e-5 13.31
4.787e-6 1.255 4.434e-5 11.62

1024
1.170e-6 1.227

4.912e-6 5.151 4.440e-5 46.56
1.285e-6 1.348 3.363e-5 35.27

2048
2.926e-7 1.227

1.488e-6 6.240 3.386e-5 142
4.085e-7 1.713 3.394e-5 142.4
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What is the trick ?

The crude residual was computed from the difference operator literally thus:

♠ F = (  F(x–θ, y) + F(x+θ, y) – 4·F(x, y) + F(x, y–θ) + F(x, y+θ)  )/θ2   

The trick computed that residual entirely in  double  arithmetic upon  float  operands,
or else in  float   arithmetic thus:                                                    ( Honor parentheses! )  

 ♠ F = (   ( (F(x+θ, y) – F(x, y)) – (F(x, y) – F(x–θ, y)) ) + 

 + ( (F(x, y+θ) – F(x, y)) – (F(x, y) – F(x, y–θ)) )   )/θ2   

Can you see why this trick works? Cost:  three extra ± ,  less one × 

It also improves the accuracy of the gradient computed from differences of  F .  And 
when  “ A·ƒ = b ”  is solved by iteration the trick reduces the amplitude of  Dithering;  
see  www.eecs.berkeley.edu/~wkahan/Math128/SlowIter.pdf  .

And a similar trick works for many finite-elements’ difference operators.

What about the  Gradient?
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The simplest approximation to the derivative  Φ'(x, y)  is the  Central Divided Difference 

  Φ‡(x,y) := [Φ(x+θ,y) – Φ(x–θ,y),  Φ(x,y+θ) – Φ(x,y–θ)]/(2θ) 

 =  Φ'(x,y) + O(θ2) ,

This will be approximated by  F‡(x,y) ,  thus incurring error from three sources: 

•    O(θ2)  inherited from  Φ‡
 ,   and 

•    error  F‡ – Φ‡  =  (F – Φ)‡   due to the differential equation’s discretization,   and  

•    at least  O(ε·F/θ)  due to roundoff’s contamination of  F .  

The relative importance of these error-sources is hardly ever knowable in advance.

The last source,  roundoff,  depends upon algorithmic details and tricks.

The second-last,  (F – Φ)‡ ,  is usually much smaller than  (F – Φ)/θ  because the
discretization error  (F – Φ)  is usually smoothly  Pillow-Shaped.

The first source,  O(θ2) ,  overwhelmingly dominates in this example.

How can this dominance be revealed?

Compute  F  more accurately at larger mesh-gaps  θ .  …
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A  6th-order  (9-point)  discretization of the  Laplacian:

     ♣Φ(x,y) := (  Φ(x–θ,y+θ) + 4·Φ(x,y+θ) + Φ(x+θ,y+θ)  + 
 4·Φ(x–θ,y)  –  20·Φ(x,y)  +  4· Φ(x+θ,y) + 
  Φ(x–θ,y–θ) + 4·Φ(x,y–θ) + Φ(x+θ,y–θ)   )/(6·θ2) 

       = ∇ 2Φ(x,y) + ∇ 4Φ(x,y)·θ2/12 + ( ∇ 6Φ(x,y) + 2∂4∇ 2Φ(x,y)/∂x2∂y2 )·θ4/360 + O(θ6) 
      =   O(θ6)   if   ∇ 2Φ = 0 .

F  was recomputed to satisfy  “ ♣F = 0 ”  instead of  “ ♠ F = 0 ” .

The trick to attenuate roundoff replaced the crude formula for  ♣  above by the tricky …

  ♣F(x,y) := ( 4·(θ2·♠ F(x,y)) + (((F(x–θ,y+θ) – F(x,y)) + (F(x+θ,y–θ) – F(x,y)))  + 

        + ((F(x–θ,y–θ) – F(x,y)) + (F(x+θ,y+θ) – F(x,y)))) )/(6·θ2) .

Computed Errors   E := maxx,y | F(x,y) – µ(x,y) |  are tabulated on the next page:
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 Etrue6 E  computed from the tricky formula for  ♣F  carrying  53  sig.bits.

 Etrick6 E  computed from the tricky formula for  ♣F  carrying  24  sig.bits.

 Ecrude6 E  computed from the crude formula for  ♣F  carrying  24  sig.bits.

 Etrue2 E  computed from the tricky formula for  ♠ F  carrying  53  sig.bits.
This last  Etrue2  imakes it easier to compare convergence rates of  ♠   and  ♣  .

 Errors  E := maxx,y|F(x,y) – Φ(x,y)| 

Etrick6  is already about as accurate as possible in  24 sig.bits  when  N ≥ 64 .

N Etrue6 …·N6 Etrick6 Ecrude6 Etrue2 

16
9.677e-5 1.6e3

9.681e-5 9.705e-5
4.387e-39.681e-5 9.658e-5

32
2.084e-6 2.2e3

2.039e-6 2.039e-6
1.179e-32.039e-6 2.039e-6

64
3.225e-8 2.2e3

6.928e-7 9.254e-6
2.979e-41.708e-7 1.635e-6

128
5.126e-10 2.3e3

1.859e-6 2.760e-6
7.481e-52.845e-7 2.290e-6

256 8.103e-12 2.3e3 5.362e-7 2.366e-6
1.872e-58.104e-12 2.3e3 2.283e-7 2.720e-6

512 1.121e-13 2.0e3 3.665e-7 2.685e-6
4.681e-61.266e-13 2.3e3 2.900e-7 8.151e-6
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Gradient Error:   D := maxx,y||F
‡(x,y) – Φ'(x,y)|| 

 Dtrue6 D  computed from the tricky formula for  ♣F  carrying  53  sig.bits.

 Dtrick6 D  computed from the tricky formula for  ♣F  carrying  24  sig.bits.

 Dcrude6 D  computed from the crude formula for  ♣F  carrying  24  sig.bits.

 Dtrick2 D  computed from the tricky formula for  ♠ F  carrying  24  sig.bits.

Tabulated errors  F‡ – Φ'   reflect a contribution roughly  333·θ2  due mostly to either a 

mesh-gap  θ  too big,  or a  2nd-order  formula  F‡  too crude,  rather than big  F – Φ .

N Dtrue6 …·N2 Dtrick6 Dcrude6 Dtrick2 

16
0.3207 82.09

0.3207 0.3207 0.2948
0.3207 0.3207 0.2948

32
0.161 164.8

0.161 0.161 0.1537
0.161 0.161 0.1537

64
0.05773 236.5

0.05772 0.05767 0.05467
0.05773 0.05772 0.05458

128
0.01731 283.6

0.01732 0.0174 0.01593
0.01731 0.01732 0.0161

256
0.004745 311

0.004778 0.004847 0.004456
0.004727 0.004847 0.004415

512
0.001243 325.8

0.001297 0.001398 0.001328
0.001297 0.001398 0.001231
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The accuracy of this example’s computed  F  is overkill for the gradient unless that 
accuracy is exploited by higher-order divided difference approximations to derivatives.

Higher-order formulas for discretized first derivatives:

Given a sufficiently differentiable  ƒ(x) ,  its derivative  ƒ'(x)  is approximated by 
 ƒ†(x,θ) := ( ƒ(x+θ) – ƒ(x) )/θ  =  ƒ'(x) + O(θ) .

 ƒ‡(x,θ) := ( ƒ†(x+θ) + ƒ†(x–θ) )/2  =  ƒ'(x) + O(θ2) .

 ( 4·ƒ‡(x,θ) – ƒ‡(x,2θ) )/3  =  ƒ'(x) + O(θ4) .

 4·ƒ†(x,θ) – 6·ƒ†(x,2θ) + 4·ƒ†(x,3θ) – ƒ†(x,4θ)  =  ƒ'(x) + O(θ4) .

 ƒ†(x,–θ)/4 + 3·ƒ†(x,θ)/2 – ƒ†(x,2θ) + ƒ†(x,3θ)/4  =  ƒ'(x) + O(θ4) .

Complication:  The analogous formulas to estimate  Φ'(x, y)  from  F  differ according to 
 how close  (x, y)  is to the boundary  ∂Ω  of the square. 

This complication does not alter our tricks.
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Conclusions:

•  Aided by tricks,  4-byte float s  are accurate enough for many differential equations.

•  Otherwise,  float s  are now too inaccurate for reliable scientific and engineering work.

•  Rounding errors can corrupt severely a regular solution of a singular differential 
equation unless the discretization is designed to filter out singular solutions and 
also to preserve vital symmetries.

•  Only if residuals are computed accurately enough must iterative refinement enhance
accuracy after discretization is refined by an increase in the density of mesh-points.

But the  Law of Diminishing Returns  cannot be postponed forever.

•  Tricks are palliatives,  not cures for ailments that afflict scientific and engineering 
computations now that floating-point is optimized for entertainment.

Ailments? 

•  Inadequate tools to help diagnose bugs peculiar to floating-point’s roundoff  etc.
•  Widespread misunderstandings of roundoff among most scientists and engineers, 

 especially among  Computer Scientists.

Consequently programming languages become ever less hospitable to numerically
naive but otherwise clever programmers who use floating-point only occasionally.


