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Convergence

 

:    Long known to be  

 

Locally Quadratic

 

 . 
                          Here proved  

 

Global

 

 .      

 

…  via a monotonic determinant 

 

!

 

 

 

Numerical STABILITY  THREATENED   by  

 

PATHOLOGIES

 

:

 

   •  Near-repeated roots 

 

Ruin

 

  E

 

k

 

  computed in the obvious way.

 

     Unobvious formulas for  E

 

k

 

  fend off this and another pathology:

 

   •  Nearly SINGULAR  H  causes some  HUGE  eigenvector(s).
   •  When  A  and  H  share a  

 

Near-Nullspace

 

,  some computed 
eigenvectors can be  Huge Unnecessarily,  thus exacerbating 
Roundoff’s Corruption  of eigenvalues/vectors otherwise 
Well-Determined  by the data.  

 

…  remedied by an iterative refinement

 

 

 

Question

 

:  How likely would we notice  

 

Remediable Corruption

 

?

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

Test Data

 

  include  N-by-N  segments  HN,K  of  Hilbert Matrices:

   { HN,K } i,j = 1/(i+j+K–1) .
We provide preponderantly  Integer  (exact!)  formulas for the four 

Cholesky  factors of  HN,K  and  HN,K
-1

 ,  and for the  Bidiagonal 

whose  (singular values)2 = Λ  when  A := HN,K+1  &  H := HN,K . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This document is posted at  <www.eecs.berkeley.edu/~wkahan/HHXVIII.pdf>.  For 
details see  <…/Math128/GnSymEig.pdf>  and  <…/MathH110/HilbMats.pdf> .
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Iteration :   Ak := (E1·E2·…·Ek)'·A·(E1·E2·…·Ek) → Λ  as  k  → ∞ ;
               Hk := (E1·E2·…·Ek)'·H·(E1·E2·…·Ek) → Diag(Hk) := Ι ;    ! 
each  Ek – I  is  “2-by-2” to zero off-diag. pairs;  (E1·E2·…·Ek) → E .

How will  each  Ek  be computed?
Squash  Ek  to a  2-by-2  E ;  want diagonals  E'·A·E = Λ   &  E'·H·E = I  

given squashed submatrices  A :=  &  H :=   with   –1 < σ < 1 .

Obvious Method:   Λ = Diag([λ1, λ2])  needs zeros  λj  of   Char. Poly.: 

 Det(λ·H – A) = (1 – σ2)·λ2 – (v1 + v2 – 2σ·α)·λ + v1·v2 – α2 .  

      Discriminant:   δ2 := (1 – σ2)·(v1 – v2)
2 + (σ·(v1 + v2) – 2α)2  ≥  0 .  

Zeros  λj := (v1 + v2 – 2σ·α ± δ)/(1 – σ2)   ordered so   ≥  .

Then   E := /√(|δ|·sgn(λ1 – λ2)) .     (sgn = ±1)

2 Pathologies Exacerbate Roundoff to Ruin  Ek  and All that Follows:
•  Near-Repeated Zeros   λj :    λ1 ≈ v1 ≈ v2 ≈ λ2 ,  so  E ≈ O/0 .
•  Near-Singular  H :   |σ| ≈ 1 ,  so at least one  λj  is  Huge;  E ≈ ∞ .

Numerical examples in  GnSymEig.pdf’s §3  show that the threat is real.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(How might suspicions about the accuracy of a computed  E  be allayed 
or else corroborated by someone who cannot perform an error-analysis?  
GnSymEig.pdf’s §3  illustrates how my  …/Mindless.pdf’s §14  does it.)
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How will  each  Ek  be computed  Accurately ?
Squash  Ek  to a  2-by-2  E ;  want diagonals  E'·A·E = Λ   &  E'·H·E = I  

given squashed submatrices  A :=  &  H :=   with   –1 < σ < 1 .

Unobvious Method:                                      … in  GnSymEig.pdf’s §2

Case  |σ| ≤ 3/4 ,  when  2-by-2  H  is not nearly singular:

First compute  Θ := arcsin(σ)  and  Φ := arctan( ) , 

choosing  |Φ| ≤ π/4  and letting  0/0 := 0 .  Then

  E := /cos(2Θ) .

( E  can be computed from strictly algebraic operations  {+, –, ·, /, √},
   but perhaps slightly less accurately than from a modern  Math library.)

Case  3/4 ≤ |σ| ≤ 1 ,  when  2-by-2  H  may be nearly singular:
    This case tends to arise in early iterations deserving exact cancellations of data.

First set   V :=    and   X := .     (sgn = ±1) 

Next   T := V–1·(X·(A·X))·V–1 ;   τ := arctan( 2·t12/(t11 – t22 ) ) ;

    ψ := τ + (sgn(σ)·sgn(τ) – 1)·sgn(τ)·π/4 ;       Y :=  ;   

   E := X·V–1·Y   and  Λ := Y·T·Y = Diag([λ1, λ2])  ordered as before. 
      If  τ  is indeterminate because of  … arctan(0/0) …  just set  ψ := 0 .

Numerical examples and tests in  GnSymEig.pdf’s §3  corroborate the 
numerical stability of this page’s  E  and  Λ  versus the previous page’s.  

And all formulas’  Det(E) = 1/√(1 – σ2) ≥ 1 .
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Iteration :   Ak := (E1·E2·…·Ek)'·A·(E1·E2·…·Ek) → Λ  as  k  → ∞ ;
               Hk := (E1·E2·…·Ek)'·H·(E1·E2·…·Ek) → Diag(Hk) := Ι ;    ! 
each  Ek – I  is  “2-by-2” to zero off-diag. pairs;  (E1·E2·…·Ek) → E .

How do we know that this iteration converges?
Every  Det(Ek) ≥ 1 .  Therefore every  Det(Hk) ≤ Det(Hk+1) ≤ 1  because 

we keep every  Diag(Hk) := Ι ,  and so  Det(Hk) → (a positive limit) ≤ 1 . 

Lemma:  If  h  is the biggest magnitude of the off-diagonal elements of a 
positive definite  N-by-N  matrix  H  whose diagonal  Diag(H) = I ,  then  
0 < det(H) ≤ 1 – h2 .  If also  0 < h·(N–1) < 1 ,   det(H) > (1 – (N–1)·h)N .

So long as the iteration visits every off-diagonal element infinitely often 
and annihilates just those not too much smaller than average at the time,  
a compactness argument goes from  “ Det(Hk)  converges”  to  

“  Det(Ek) → 1 ”  to  “ Det(Hk) → 1 ”  to  “ Hk → I ”  to  “ Ak → Λ ” .

For details see  §6  of  GnSymEig.pdf;  its  §11  offers an experimental  
MATLAB   program that implements a strategy for choosing which pairs 
of off-diagonal elements to annihilate.

When should iteration stop?  Hard to know for sure.  Small residuals can 
mislead.  Suppose  v  approximates an eigenvector.  Then the  Rayleigh 
Quotient  ω := v'·A·v/v'·H·v  approximates an eigenvalue better.  How 
well?  The residual  r  := A·v – ω·H·v  figures in an eigenvalue estimate  
ω ± √(r' ·H-1·r /v'·H·v)  that is costly to compute and can be wide,  though  
r   is tiny,  when  H  is too nearly singular.
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Our Chosen Normalizations
•   Diag_of(H) = I ,  achieved by an  N-by-N  diagonal congruence.

Why?  Among all diagonal congruences,  the unknown one that minimizes 

 the condition number  ||H||·||H-1||  brings it down no smaller than  1/N  of 
 the condition number of what we have chosen  (A. van der Sluis, 1969).

•   Eigenvector matrix  E  has  E'·H·E = I  when  E'·A·E = Λ  is diagonal,
achieved by scaling the eigenvectors  (columns of invertible  E ).
Why?  Convenience.  Then  Λ  is a diagonal of eigenvalues.  Moreover then 

  ||E|| = √||H-1|| ,  so every eigenvector  e  has  ||e|| ≤ ||H-1||  and at least one has 

  ||e|| ≥ √(||H-1||/N) ,  thus exhibiting roughly how close  H  is to singular.

Sensitivity to Infinitesimal Perturbations  ∂… 
Perturbing  A → A + ∂A  and  H → H + ∂H  changes a simple eigenvalue  
λ → λ + ∂λ  and its eigenvector  e → e + ∂e .  Besides  A·e = λ·H·e ,  our 
chosen normalization has  e'·H·e = 1  so  λ = e'·A·e .  Differentiate to get

   ∂λ = e'·(∂A – λ·∂H)·e .
This implies that  λ  is hypersensitive to tiny perturbations  only  when  
||e||  is big even if  |λ|  is small.  Apparently this hypersensitivity extends 
also to perturbations due to roundoff  (though  “only”  must be omitted 
for some numerical methods,  like the obvious formula for  Ek  on  p. 2).

||e||  can be big only if  H  is nearly singular,  and then this  e ’s  eigenvalue  
λ  is deservedly  “ill-conditioned”  (hypersensitive to tiny perturbations 
and roundoff),  and especially so if  λ  is among the smaller eigenvalues.

When can an ill-conditioned  |λ| = |e'·A·e|  be small though  ||e||  is big?
•  When  ||A||  is small enough so are all eigenvalues,  including this  λ .
•  When  A  is indefinite,  λ = e'·(A·e)  can cancel though  ||A·e||  is big.
•  When  A  and  H  share a  Near-Nullspace,  λ  may be small,  or not.

This last case sometimes causes  (no matter how)  computed  eigenvalues 
and eigenvectors to appear ill-conditioned undeservedly.  Why?  …
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When  A  and  H  Share a  Near-Nullspace …
Then some  z ≠ o  satisfies  ||A·z||/||z|| << ||A||  and  ||H·z||/||z|| << ||H|| .

Then some multiple  ζ·z  can be added to a computed approximation  f  to 
an eigenvector,  satisfying  A·f ≈ ω·H·f  and  f' ·H·f = 1  so  ω ≈ f' ·A·f  
estimates  f  ’s  eigenvalue,  leaving these equations roughly equally well 
satisfied by  f + ζ·z  as by  f  though these may differ substantially.

Which of  f  and  f + ζ·z  is the better approximation to an eigenvector?

If  f  is so contaminated by  z  that  ||f||  is much bigger than necessary,  
then so is the estimated sensitivity   ∂ω = f' ·(∂A – ω·∂H)·f ;  and in some 
numerical experiments roundoff spoiled  ω  much more than necessary.

When  f  was replaced by  ƒ  obtained from  f – z·(z'·H·f)/(z'·H·z)  after 
scaling it to make  ƒ'·H·ƒ = 1 ,  the new estimate  ϖ := ƒ'·A·ƒ  was more 
accurate than  ω  except when cancellation left  ||f – z·(z'·H·f)/(z'·H·z)||  
too much smaller than  ||f|| ,  which case called for iterative refinement.

But how do we tell which is  f  and which is  z ?

More generally,  suppose the computed eigenvector matrix intended to 
approximate  E  is  F  satisfying  F'·H·F ≈ I  and  F'·A·F ≈ W  is diagonal.  
If  H  is nearly singular,  at least one column of  F  must be big.  If more 
than one column is big,  group the big columns into a submatrix  B  and 
obtain its  Economical Singular Value Decomposition  B = P·Ψ·Q  in 

which  P'·P = I ,  the diagonal  Ψ  of singular values,  and  Q'  = Q-1  all 
have the same small  (we hope)  dimensions.  Typically  B·Q'   = P·Ψ  will 
have one or two big columns and the rest small.  Rescale its columns to 
get  B  satisfying  Diag_of(B'·H·B) = I .  Then apply the iteration of  pp. 
3-4  to diagonalize  B'·H·B  and  B'·A·B  by simultaneous congruence.  
This is the iterative refinement.  It works better if  B'·H·B  and  B'·A·B  
are computed extra-precisely.

Does that process always work?  That process is a  WORK IN PROGRESS.
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Four Cholesky Factors of Hilbert Matrices and their Inverses
Formulas for them,  derived long ago,  were resurrected to use in test data 
for investigations into the  General Symmetric Definite Eigenproblem.  
The formulas and  MATLAB   programs based upon them are posted at
       <www.eecs.berkeley.edu/~wkahan/MathH110/HilbMats.pdf> .

N-by-N  Hilbert  matrices  HN,K  have elements  {HN,K} ij  = 1/(i+j+K–1)  
for integers  K ≥ 0 .  When the quotients’ rounding errors are intolerable 
we use instead the integer matrix  YN,K = LN,K·HN,K  computed exactly 
unless integer  LN,K := LCM([K+1, K+2, …, 2N+K–1])  gets rounded off.

Integer matrix  HN,K
-1  is computed from recurrences first published by  

Dr. Sam Schechter  in  MTAC  in  1959.  I cannot find my old notes with 
derivations and proofs of the other formulas.  They use an old notation:

     Combinatorial/Binomial Coefficient  nÇk := n!/( k!·(n–k)! ) 

N-row  u'  := [1, 1, 1, …,1, 1]

N-by-N  Diagonal  $ := Diag([1, -1, 1, -1, …, (-1)N–1])

Henceforth subscripts  N,K  are taken for granted so that the abbreviation  
H  can be used for  HN,K  and likewise for all matrices except  u'   and  $ .

    Diagonal  D  has  {D}j,j := dN,K,j := (–1)j·j· 
NÇj · 

N+K+j-1ÇN .  

    H-1 = D·H·D  has integer elements  {H-1} i,j  = dN,K,i·dN,K,j/(i+j+K–1)

    det(H-1) = |det(D)| = |∏j dN,K,j|  

    u'·H-1·u :=  ∑i·∑j {H
-1} i,j = N·(N+K)   is used to test H-1 ’s accuracy.

Approximations valid as  K → ∞ :

     u'·$·H–1·$·u :=  ∑i·∑j |{H
–1} i,j| 

= ( 4N–1·(N+K)2N–1/((N–1)!)2 )·(1 + O((N+K)–2) )  
     ||H–1||F

2:=  ∑i·∑j ({H
–1} i,j)

2 

= ( (2N–2)!·(N+K)2N–1/((N–1)!)4 )2·(1 + O((N+K)–2) )    
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Four  N-by-N  upper-triangles  U  and  R  and their inverses are  Cholesky  

factors of  H = U'·U = R-1·R' -1  and of  H-1 = R'·R = U-1·U' -1 .   Though 
not generally integer matrices,  they can be assembled out of integer 
matrices starting with  $  and three more  N-by-N  diagonals:

  {¥} j,j := K + 2j – 1 ;       {£}j,j := K+2j–2Çj–1 ;       {Ω} j,j := K+N–1+jÇN–j .

These combine with two  N-by-N  integer upper triangles  C  and  G : 

  {C} i,j := 2j–1+KÇj–i ;   G := $·¥·C–1·¥–1·$   so   {G}i,j := i+j–2+KÇj–i .

Their combinations produce the four  Cholesky  factors:

     U = √¥·C·(¥·£)-1 ;                   U-1= £·$·G·$·√¥ ; 

     R = $·√¥·C·$·Ω = $·U·D ;    R–1= (Ω·¥)–1·G·√¥ .     

These formulas seem at first to demand  O(N3)  arithmetic operations,  
but the  MATLAB   programs in  HilbMats.pdf  use recurrences that need 

only  O(N2)  operations.

HilbMats.pdf  also offers tests of the  MATLAB   programs’  correctness.  
The tests would be simpler and more reliable if  MATLAB   supported  
IEEE Standard 754’s  exception flags,  particularly the  Inexact Flag.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When  A := HN,K+1  and  H := HN,K  in the  General Symmetric Definite 

Eigenproblem   A·E = H·E·Λ ,  the eigenvalues in  Λ  are the squared 

singular values of the upper-triangular   FN,K := UN,K+1·UN,K
-1 ,  which 

turns out to be bidiagonal and computable very quickly from the  N-by-N  
bidiagonal  JN  whose elements  {JN} i,j := (if  i ≤ j ≤ i+1  then  i  else  0) . 

   FN,K = (√¥N,K+1)-1·(JN + K·I)·(√¥N,K)-1 . 
And its singular values are computable quickly and very accurately.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


