

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 1/39

Prof. W. Kahan’s

Commentary on

“THE END of ERROR — Unum Computing”

 by John L. Gustafson, (2015) CRC Press

Contents Page

Introduction 2
§1: Why Approximation = Sin 3

J-M. Muller’s example 4
My “Monster” 5 - 6
“

≈

” redefined 7
§2: Oh, Ye’ll take the Low Road, and I’ll take the High Road … 8
§3: Interval and Ubound Evaluations of a Polynomial 9
§4: “Calculus considered evil: Discrete Physics” 11

Tissier’s problem 12
Photo-Chemical Kinetics 13

§5: What does Unum Computing cost ? 14
A bogus analogy 14

§6: Never Wrong? 16
Failure Mode I: The Curse of High Dimensions 16
Failure Mode II: Unbounded Phantom c-Solutions 18
Failure Mode III: Persistent “c-Solutions” that Do Not Exist 19
Failure Mode IV: Illegitimate Unbounded c-Solutions 20

§7: The Price Paid for Willful Ignorance 21
A formula misunderstood 21
“Mindless brute-force …” labors to produce a crude result 22
Clear up a misunderstanding 22
Far better results much sooner 23 - 4

§8: Flogging a swing 25
An unacknowledged integral 25
Unanswered questions: Quality

vs

. Cost 26
 Malfunction for

Θ

 >

π

/2 27
 Only grade school algebra 27

 Digression: Compensated Summation 28
Numerical Results sooner from a 4th Order Method 30
If Energy is NOT Conserved 30

A graph for Air Resistance 31
§9: Puffery instead of Percipience 32

Physics not discretized 32
Flags not appreciated 32 - 3
NaNs disparaged 33 - 4
Unum arithmetic is not really closed 34 - 6

§10: A Curate’s Egg 37 - 9

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 2/39

Commentary on

“THE END of ERROR — Unum Computing”

 by John L. Gustafson, (2015) CRC Press

I am going to lose a friend by quoting a

Yiddish

 saying appropriate for this very seductive book:

“Almost all True is altogether a Lie.”

The first lie is the book’s title. It promises that Unum Computing will end computational errors.
It won’t. These errors have numerous sources besides programmers’ correctable mistakes:

[1] Answering the wrong question, correctly or incorrectly.
[2] Errors in models of physical, chemical, biological, economic, … systems.
[3] Discretization errors in approximations to the continuum and to movement.
[4] Errors and uncertainties in measurements and other observations.
[5] Roundoff in arithmetic and in Decimal

↔

 Binary conversions.

Correct numbers can lie. Mark Twain attributed to Benjamin Disraeli, perhaps wrongly, …
 “There are three kinds of lies: lies, damned lies, and statistics.”

So Unum Computing cannot possibly and does not try to put an end to all-too-common errors of
type [1], nor of type [2]. Pp. 327-332 assert that unums alleviate

all

 errors of the other types,
but they can’t. Which kinds of errors can unums allay? Many of type [5], and a few of type
[4], but provably not

all

 of them. Neither need unums perform their task economically when
they succeed at it. And they cannot always succeed without human mathematical error-analysis.

Unum Computing resembles interval arithmetic with varying precisions determined more or less
automatically at run-time to achieve a prescribed accuracy demand. Good

!

 Interval arithmetic
came into existence in the late 1950s to cope with the consequences of uncertainties mainly of
types [3-4], but succeeded only in relatively simple special cases because of limitations imposed
by small (by today’s standards) memories and one-pass compilers. Even when freed from these
limitations, even if it exploits vast memories and massive parallelism and varying precisions
determined at run-time, interval arithmetic remains vitiated by the Curse of High Dimensions.
And since Unum Computing is a tarted kind of variable-precision interval arithmetic, …

The same Curse of High Dimensions vitiates Unum Computing.

Alas, errors take so much longer to correct than to commit that I despair of correcting even the
worst few errors in Gustafson’s book. Its 433 pages offer misunderstandings, misconceptions,
misremembered history, misleading comparisons and mistaken mathematics. Where to begin?

The book’s Preface begins on p. xiii with an intentionally provocative quotation:
“The purpose of mathematics is to eliminate thought.”

Mere hyperbole. Mathematics needs no purpose; but when mathematics does have a purpose it is
to promote economy of thought. It can eliminate wasteful thought, not all, and certainly not
thoughts that must accompany every approximate computation. Among these thoughts are error-
analyses, sometimes trivial, sometimes not. I have long yearned to automate them and spend
time instead upon enjoyable kinds of mathematics. No such luck. Unum Computation cannot
END ERROR because it cannot end the occasional necessity for an error-analysis. Why not?

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 3/39

§1: Why Approximation = Sin

In the 1970s D.H. Lehmer, a renowned Number Theorist at Berkeley, used to warn me …
“Acquiescence to rounding errors places you in a state of sin.”

That sin occurs when an ideal mathematical algorithm is not distinguished from the computer
program intended to implement it, though the program was transliterated faithfully from the
algorithm into the computer’s programming language. Usually the program’s result is as close as
desired to what was expected from the algorithm. Occasionally results are wrong enough to cause
trouble. Unum Computing purports to eliminate those occasions. Why do they happen anyway?

Some algorithms suffer badly from roundoff at some otherwise innocuous input data. When we
recognize such an algorithm we call it “Numerically Unstable” and try to replace it by a different
numerically stable algorithm to solve the same mathematical problem. Often an error-analysis
can distinguish the stable from the unstable algorithm by taking account of roundoff; but there are
complex algorithms in daily use for whose programs no satisfactory error-analyses exist yet. This
is why numerical computation can be somewhat uncertain. Most programs are simple enough to
have obvious error-analyses, or they invoke subprograms from a tested and reliable library, or
they use stable algorithms programmers with Science, Engineering or Mathematics degrees may
have learned from a University course on modern Numerical Analysis.

The book END of ERROR … is aimed at programmers who have taken no course on Numerical
Analysis or have forgotten it, and yet desire numerical results more than

usually

 correct; they
want

always

 correct. The book promises Unum Computation

always

 delivers correct results.

No such promise can be fulfilled.

Deep mathematical and logical properties of real numbers prevent Unum Computation, and any
other scheme restricted to perform only arithmetic operations of

at most

 some finite precision,
no matter how wide that precision may be, from

always

 getting correct results out of

every

program transliterated faithfully from an ideal mathematical algorithm that would work correctly
with infinitely precise arithmetic. These are the wages of the sin of approximate computation. To
know that a computed result is (in)correct may require an error-analysis, which might not exist.

Everything in life is uncertain except death and taxes. Compared with ordinary floating-point of
an appropriately chosen precision, the book’s Unum Computation often diminishes uncertainty,
often exacerbates it, and usually takes longer, sometimes very much longer despite reliance upon
parallel computation to an extent that not everyone can afford. The book’s examples were chosen
to show how well Unum Computation works. To show how badly it can misbehave, examples
will be presented herein. None are complicated; most differ little from the book’s.

The first example is adapted from the book’s pp. 173-6. It exposes a fundamental difficulty in the
computation of real numbers in general, most the results of limit-processes. The simplest one is
an iteration

x

n+1

 :=

ƒ

(

x

n

)

 that always converges to a limit

z

 =

ƒ

(

z

)

 as n

→

∞

, and does so at a
palpable rate, though the limit

z

 may depend upon the given initial value

x

0

. Ideally, iteration
can cease when

x

n+1

 –

x

n

 becomes smaller than some tolerance inferred from the known rate of
convergence and the desired accuracy. Thus an ideal mathematical algorithm derived from the
text of

ƒ

 and its properties can compute the limit

z

 provably as accurately as desired.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 4/39

Let that ideal algorithm be translated into a computer program including a subprogram

F

 derived
from the text of

ƒ

 to compute it to any desired accuracy using arithmetic of adequate precision.

 When and why should the computed iteration

X

n+1

 :=

F

(

X

n

)

 be stopped ?

A stopping criterion suited to an ideal iteration

x

n+1

 :=

ƒ

(

x

n

)

 might not work for its computed
iteration

X

n+1

 :=

F

(

X

n

)

, especially when the limit

z

 depends discontinuously upon

x

0

 and also
every subsequent iterate. It happens to an iteration due to J-M. Muller slightly modified:

 w

n+1

 := 111 – (1130 - 3000

/

w

n–2

)

/

w

n–1

 ; w

0

 := 2 ; w

1

 := –4 .
This is the iteration in the book’s pp. 173-6. It can be written in the form

x

n+1

 :=

ƒ

(

x

n

)

 by setting

ƒ

(

)

 := ; the iteration starts at

x

0

 := .

Absent roundoff,

x

n

→

z

 = about as fast as (5/6)

n

→

 0

; but roundoff causes

X

n

→

 at

least about as fast, ultimately, as (3/50)

n

→

 0 no matter how many significant digits are carried
to compute

F

 in ordinary floating-point. 53 sig.bits (like 15 sig.dec.) produces W

13

≈

 6

.

1394

 .

What does Unum Computing get? On p. 175 the book exhibits iterates w2 to w13 as ubounds
(intervals) carrying up to 57 sig.dec. Their widths appear not to shrink; their w13 is roughly

[6.1395, 6.1452] . It seems a meager reward for such arduous arithmetic. Unaided by an error-
analysis, how long will Unum Computing take to get, say, 13 sig.dec. of the correct limit z ?

Forever?

An error-analyst’s task goes beyond overestimating error. When an overestimate is excessive, a
different way is sought to compute the desired result with an acceptable error at a tolerable cost.
Correctly w13 ≈ 6.142359 computed from an error-analyst’s replacement of the original function

ƒ by a new ƒ() := to get a numerically stable recurrence that computes accurately

enough every iterate xn in floating-point arithmetic. But iterates are not the desired result; it is
their limit z . Is there another way to compute it, preferably sooner?

Iteration selects z from the roots of an equation “ z = ƒ(z) ”. Unum Computing and interval
arithmetic share a laborious scheme to find numerically every solution of an equation in some
given part of its domain. That part is partitioned into numerous small regions (ubounds or
uboxes) on each of which the equation’s range is (over)estimated. Regions within which the
equation can nowhere be satisfied are discarded; the rest are partitioned into smaller subregions,
some discarded, and so on until the remainder confine the equation’s roots as tightly as desired.

The book calls them a c-solution.

The iteration xn+1 := ƒ(xn) amounts to a way to choose a fixed-point z = ƒ(z) of ƒ . As defined
above, it has three fixed-points at which w = v = 5, 6 or 100 . The choice depends upon x0
discontinuously in a way the c-solution of “ z = ƒ(z) ” cannot reveal. In general an equation
like it could have infinitely many roots z from which to choose. Or the domain of ƒ could be a
vector space of high dimension in which z = ƒ(z) on a continuum whose sufficiently tight c-

w

v

111 1130 3000 v⁄–() w⁄–

w

4–

2

6

6

100

100

w

v

11 30 w⁄–

w

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 5/39

solution entails astronomically many tiny subregions (the Curse of High Dimensions), but does
not reveal the limit of the iteration xn+1 := ƒ(xn) . That kind of c-solution resembles more nearly
an Answer to the Wrong Question than the evaluation of the desired limit z . Problems that foil
Unum Computation in similar ways will turn up in §4 and §6 below.

Approximate computation of a discontinuous function may seem foolish, yet it happens often. As
a function of its elements, the rank of a matrix is discontinuous if less than both dimensions. A
square matrix’s Jordan Normal Form is discontinuous if it is not diagonal. The greatest common
divisor of polynomials with real coefficients varies with them discontinuously when nontrivial.

Such problems must be altered a little to make sense in the context of approximate computation.
For instance, instead of asking for the rank of a matrix, compute its distances from the nearest
matrices of ranks lower than its least dimension. A seemingly slight alteration of the problem has
incurred enormously many more approximate arithmetic operations than the unaltered problem’s
solution would have entailed if exact (like integer) arithmetic were feasible. Consequently most
people resist accepting a complicated and costly answer to what seemed to be a simple question.

Still, to ask Unum Computing to offset human folly may be deemed unfair, so henceforth …

We shall eschew computations of a discontinuous function at one of its discontinuities.

That was my motive for an example about which Gustafson’s book says on p. 177 …

“… not many moments of ‘high drama’ in a book … .
 Can unums defeat Professor Kahan’s monster? …” [His italics.]

My “monster” showed how floating-point of every preassigned precision could deliver the same
wrong result almost everywhere for a continuous function. Frustrating Unum Computation was
not the monster’s purpose. Besides, I advised that “Numerical distress due solely to roundoff is
relieved too often by increased precision for its use when available to be deterred by this example
despite its worrisome simplicity.” Let’s look at this example the book calls a “monster”:

Real variables x, y, z ;
Real Function T(z) := { If z = 0 then 1 else (exp(z) – 1)/z } ;

Real Function Q(y) := | y – √(y2 + 1) | – 1/(y + √(y2 + 1)) ;
Real Function G(x) := T(Q(x)2) ;

For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

(I don’t know why the book changed my names from T to E and G to H .)

Ideal real arithmetic, free from roundoff, produces Q(x) = 0 and G(x) = 1 for every x > 0 .
Approximate arithmetic almost always produces something else tiny for Q(x) , if not a rounding

error then –1/(2x) when x is so huge that “ x2 + 1 ” rounds the 1 away. Then exp(Q(x)2)

rounds to 1 and G(x) := T(Q(x)2) ends up wrongly as 0 instead of 1 . Almost always.

This disconcerting example comes from §6 of my web-page posting Mindless.pdf. It is simple
enough for a few computer programs (one called “Herbie” was devised at the University of
Washington in Seattle) to scan the text of functions T, Q and G, diagnose their error, and offer

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 6/39

to cure it as would a human error-analyst. Diagnosis exposes a culprit: The analytic function
T(z) is a Divided Difference with a Removable Singularity at z = 0 , but its removal is thwarted
by roundoff in exp(z) when |z| is tiny and not zero. A cure was presented in my posting just
after the diagnosis. Assuming that the Math. library’s exp and log are accurate within less than
a unit in the arithmetic’s last digit carried (as should always be the case nowadays), the following
substitute for T was supplied:

Real Function T(Real z) := { … Precautions against

t := exp(z) ; … premature over/underflow,

If (t ≠ 1) then t := (t – 1)/log(t) ; … superfluous here, have been

Return(t) ; } … omitted for simplicity’s sake.

With this substitution, G(x) = 1 for every x > 0 and for all supported precisions, single, double
and quadruple, of floating-point arithmetic. The revised program counteracts roundoff in exp .

After this example my posting Mindless.pdf goes on to say …
“Ironically, if multi-precision Interval Arithmetic were used naively to compute G(n)
 either from its initial formula or from its accurate program, the results at every precision
 would be intervals so excessively wide as could not distinguish the accurate program
 from the inaccurate one.”

The book runs my initial formula G (my “monster”) in interval arithmetic to get G ∈ [-∞, ∞]
on p. 177, but nowhere mentions my accurate version. Instead the book substitutes this for T :

Real Function T(z) := { If z ≈ 0 then 1 else (exp(z) – 1)/z } ;
This version of T differs from my monster’s in just one crucial symbol, which yields G = 1
correctly; but it side-steps a fundamental question:

How small must a computed value z be to be deemed indistinguishable from zero?

The answer to this question requires an error-analysis or a lucky guess. Gustafson was lucky.
Had my monster been designed to thwart Unum Computing, my G would have been different:

Real Function G°(x) := T(Q(x)2 + (10.0–300)100000·(x+1)) ;
For Integer n = 1 to 9999 do Display{ n , G°(n) } end do.

Without roundoff, the ideal value G°(x) ≈ 1.0 for all real x . Rounded floating-point gets 0.0
almost always for all practicable precisions. What, if anything, does Unum Computing get for
G°(n) ? And how long does it take? It cannot be soon nor simply 1 . Why does the addition of a
negligible deeply underflowed quantity to the argument of T cause neither of my programs to
behave differently but distresses the text’s program? We’ll see soon below.

The computation’s undiagnosed culprit is Q . In the early 1970s, when the monster was born,
no automated algebra system like Macsyma, Maple, Mathematica, … could Simplify (deduce
that) Q(y) = 0 for all real y in the absence of roundoff. Now some systems, like Maple, are
smart enough to do it. To outsmart them, Q can be replaced by a different expression provably
zero although no current computer program can find the proof. The question arose in the 1950s:

Given any collection {ζj} of at least two real numbers, perhaps transcendental,
 do real algebraic numbers {αj} exist, not all zero, satisfying ∑j αj·ζj = 0 ?

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 7/39

The conjecture then was that the question is undecidable in general. The conjecture persists so far
as I know. In 1968 D. Richardson in pp. 511-520 of J. Symbolic Logic 33 showed how, if the
conjecture is true, any algorithm intended to decide which expressions simplify to zero can be
thwarted by an expression built from integers, finitely many algebraic operations, absolute value,
and one transcendental constant log(2) .

In short, whether an expression simplifies to zero can be very unobvious. What an expression
delivers when computed approximately can be unpredictable without an error-analysis, which
might not exist. Replacing the predicate “ z = 0 ” by “ z ≈ 0 ” implies a tolerance whose
appropriate choice is generally unobvious without an error-analysis, which might not exist.

Gustafson has dodged the zero-question by changing utterly the meaning of “ ≈ ” . When he

asserts “ x ≈ y ” he means that ubounds x and y overlap in at least one point. Consequently he

would assert “ [0, 100000000] ≈ 0 ” . An infinitesimal addition like the one in my revised G°
would alter that predicate to something like “ (0, 100000000.000…001) ≈ 0 ” whose open
ubound (interval) now excludes the single point 0 , rendering the predicate false.

In a numerical computation designed well, a predicate like “ x ≈ y ” would select one of two
paths through a program that both produce an adequate result when the predicate is nearly true or
nearly false. This is what my more accurate version of T does promptly. The book’s version of
T must take an exceptionally long time, or produce a wide unsatisfactory ubound, or both.

We have lived through such experiences before. For instance, in the mid-1960s K. Iverson’s
programming language APL was implemented on an IBM 360/50 in the basement of IBM’s
Watson Research Laboratory in Yorktown Heights. The implementers decided that the predicate
“ x = y ” should always be interpreted as if it were “ x ≈ y within a tolerance CT ”. Here the
Comparison Tolerance CT was a System Variable which, like the origin for indexing arrays,
the programmer could alter from what the system supplied by default. In 1967 the implementers
admitted to me that, had they known earlier what they had come to know by then, they would not
have done it. Almost no programmer would figure out how to alter CT ; and after they ignored it
some of their programs would misbehave badly. Gustafson’s “ ≈ ” will revive that experience.

On p. 178 just after his Unum Computation of the “monster”, his book reproduces without
attribution a painting of the young hero David standing with his sling over the corpse of Goliath.

More hyperbole.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 8/39

§2: Oh, Ye’ll take the Low Road and I’ll take the High Road …
Both roads take you to Scotland, though the “high road” may take you there sooner.

Surprisingly many numerical programs deliver practically the same results by utterly different
intermediate paths, some of them sometimes taking substantially longer than others, all chosen
by accidents of roundoff. Examples include Gaussian elimination with pivotal exchanges to
solve linear systems, QR and Jacobi iterations to solve eigenproblems, and Newton’s and
other iterations to solve polynomial and other nonlinear equations, especially in high dimensions.

Let’s focus upon a specific example: QR iteration to compute the eigenvalues and eigenvectors
of a real symmetric matrix. First it is reduced by orthogonal Similarities (matrix multiplications)
to a tridiagonal form with the same eigenvalues within tolerable rounding errors. Then many QR
iterations are performed to reduce the tridiagonal to a diagonal matrix with the same eigenvalues
within tolerable rounding errors. When some off-diagonal elements are small but not yet small
enough to disregard, the iteration is virulently unstable in so far as the iteration’s progress from
one tridiagonal to the next becomes an accident of roundoff/roundoff. The picture below shows
(smoothed) the program’s roundoff-determined path through the space of tridiagonal matrices:

This can happen when the same data is presented to the same program but compiled by different
compilers (or different “optimizations”) leading to the performance of associative operations,
like two additions or a multiplication-and-division, in different orders. No great harm is done to
the eigenvalues though they may come out in an inconsequentially different order.

How will Unum Computing handle this kind of near-inconsequential indeterminacy? If a book’s
algorithm or a published Fortran program is transliterated to Unum Computing, will it expend
extra time recomputing in higher precision until the indeterminacy is overcome? Or will this
indeterminacy be converted to uncertainty (ubounds) and propagated to the results? Who makes
the choice? Without an error-analysis, how can higher precision be justified when each matrix
element is uncertain in its last bit, though this uncertainty affects only the last few bits of the
computed eigenvalues?

Unum Computing proffers easy answers to questions about computational errors,
not necessarily helpful answers.

Diagonals

•

All the tridiagonal matrices in a sheet have
the same eigenvalues, obvious in diagonals.

The eigenvalues of adjacent sheets differ,
inconsequentially, in only their last few bits.

Curved paths are followed during a program’s
computation of the set of eigenvalues when …

… no rounding error occurs: “C”

… the usual rounding errors occur: “?”

… a rounding error is altered: “G”

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 9/39

§3: Interval and Ubound Evaluations of a Polynomial

We wish to evaluate a polynomial, say π(ξ) := α + β·ξ + δ·ξ2 to keep it simple, given intervals
for its coefficients and for its argument ξ . On pp. 225-232 of THE END of ERROR — Unum
Computing John L. Gustafson asserts “a general approach for evaluating polynomials with
interval arguments without any information loss is presented here for the first time.” [His
bold-face.] On p. 227 the book says “Perhaps one reason this approach does not seem to appear
in the literature for interval arithmetic is that it makes heavy use of the ubound ability to express
whether an endpoint is open or closed” No, that is not the reason. His scheme is unused partly
because it is inefficient and partly because of a mistaken assertion on p. 226:

“ Notice that the new coefficients each use a, b, c, … at most once.
 That means they can be computed without information loss. …”

Actually, information can be lost when the coefficients are intervals (or nontrivial unums),
rather than the exact scalars used in the text’s simple illustrative examples. That information loss
will be demonstrated below. Consequently better ways than the book’s exist to evaluate the
interval range of a polynomial, even using unums.

First let us see how information gets lost. Given that ξ ∈ [x, X] (which means x ≤ ξ ≤ X), the
book partitions the interval [x, X] into subintervals each narrow enough that its process, that
overestimates the range of the given polynomial π on each subinterval, produces acceptably
close overestimates. “Acceptably close” means that no overestimate is wider than the true range
by more than an implied tolerance. The process shifts the ξ-origin to subintervals’ ends. The
book claims that, because each shift’s every new coefficient uses the given coefficients “at most
once”, no information can get lost. Here is a counter-example to that claim:

Given that α ∈ [a, A] , β ∈ [b, B] and δ ∈ [d, D] , we infer that π(ξ) ∈ [p(ξ), P(ξ)] thus:

 If ξ ≥ 0 then { p(ξ) := a + b·ξ + d·ξ2 ; P(ξ) := A + B·ξ + D·ξ2 }

 else { p(ξ) := a + B·ξ + d·ξ2 ; P(ξ) := A + b·ξ + D·ξ2 } .

An origin-shift to, say, ξ = 2 produces a polynomial φ(ζ) = π(ζ+2) with these coefficients:

 φ(ζ) := (α + 2β + 4δ) + (β + 4δ)·ζ + δ·ζ2 .
Here each of φ’s new coefficients uses each of the given coefficients “at most once”.

Now we infer that φ(ζ) ∈ [f(ζ), F(ζ)] thus:

 If ζ ≥ 0 then { f(ζ) := (a + 2b + 4d) + (b + 4d)·ζ + d·ζ2
 ; F(ζ) := (A + 2B + 4D) + (B + 4D)·ζ + D·ζ2

 }

 else { f(ζ) := (a + 2b + 4d) + (B + 4D)·ζ + d·ζ2
 ; F(ζ) := (A + 2B + 4D) + (b + 4d)·ζ + D·ζ2

 }.

Since φ(-1) = π(+1) , we might hope that [f(-1), F(-1)] = [p(+1), P(+1)] , but actually
 f(-1) = (a + 2b + 4d) - (B + 4D) + d < p(+1) = a + b + d and

P(+1) = A + B + D < F(-1) = (A + 2B + 4D) - (b + 4d) + D
unless the given coefficients’ intervals are degenerate with b = B and d = D .

The loss of information (excessively wide [f(ζ), F(ζ)]) can be avoided by taking the precaution
to correlate the signs of ζ and ξ , but I have not found that precaution in the text’s process.

Anyway, there is a process more efficient on average than Gustafson’s.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 10/39

Having constructed the almost-polynomials p and P that barely constrain π(ξ) ∈ [p(ξ), P(ξ)] ,
we can determine the enclosure of [p(ξ), P(ξ)] for ξ ∈ [x, X] by computing the extrema of p
and P in that ξ-interval. The computation is easy if π is cubic or quadratic because internal
extrema of p and P occur at internal zeros of their derivatives. This is true also for a polynomial
of higher degree, but then the challenge is to compute all the extrema, which requires that all
the internal zeros of the derivative be located. The accuracy of those zeros is not challenging,
because a polynomial varies so slowly around an internal extremum that it is easy to compute
accurately enough around there by interval arithmetic carrying enough precision.

The challenge is to get all of the extrema.

The derivative of a polynomial is a polynomial of lower degree. Each of a polynomial’s simple
real zeros lies between two adjacent extrema of opposite signs. This reduces the location of all
extrema of a polynomial to the location of all extrema of that polynomial’s second derivative,
whence follow locations of all the zeros of the first derivative. Downward recursion reduces the
challenge to finding all the real zeros internal to [x, X] of a cubic. Bracketed between extrema,
real zeros are computable efficiently by numerical processes like Newton’s or Secant iteration
even if zeros are (nearly) repeated. For further explanation see my lecture notes posted at

www.eecs.berkeley.edu/~wkahan/Math128/RealRoots.pdf , §7 and §10.
Low accuracy suffices; except for the polynomials p and P , each zero of a derivative need only
be accurate enough to determine the sign of an extremum. Thus all of them will be found. But if
extrema of p and P are needed to high relative accuracy, and if any are nearly zero, then M.
Mignotte’s theorems from the early 1980s imply that surprisingly high precision may be needed.

At first sight the foregoing recursive process seems to require the numerical computation of too

many zeros, roughly n2/2 for a given polynomial π of degree n . That can happen, but not
usually. A famous theorem (due to Erdos?) says that among polynomials of degree n with real
coefficients drawn independently and randomly from many a distribution centered at 0 , the
expected number of real zeros is a modest multiple of log(n) . That theorem suggests that the
foregoing recursive process might typically compute n·log(n) zeros, but this far exceeds the
numbers I have observed.

My experience is limited. I have seen very little demand for interval evaluations of high-degree
polynomials expressed as sums of monomials with diverse coefficients. Either almost all the
coefficients are the same, or the polynomials are defined by recurrences like those for orthogonal
polynomials. These two situations require methods quite different from the ones discussed so far.

There is a demand for realistic estimates of uncertainties in the computed zeros of polynomials
that never appear explicitly. These zeros are the eigenvalues of matrices whose many elements are
derived from fewer parameters uncertain within specified tolerances. These determine a region in
parameter-space that can be partitioned into small boxes each of which provides a matrix whose
eigenvalues can be computed accurately enough using arithmetic of sufficiently high precision.
Thus an image in eigenvalue-space of that region in parameter-space can be estimated. A close
estimate’s cost can be horrendous, even with parallelism; it is the Curse of High Dimensions.

Computations like those keep error-analysts busy;
unums will not render them no longer employable.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 11/39

§4: “Calculus considered evil: Discrete Physics”
This is the title for the book’s ch. 21, which begins on p. 311 with half a page occupied by a
picture of a raccoon saying

I HAVE INVENTED SOMETHING
EVIL

I WILL CALL IT CALCULUS
 DIYLOL .COM

Gustafson goes on to say …
“… Calculus and computers make for strange bedfellows, and their combination can

destroy the validity of results. Calculus deals with infinitesimal quantities;
computers do not calculate with infinitesimals. …”

This quotation tells me that he suffers from a misapprehension that bewildered Bishop Berkeley
in the early 18th century, when he complained about the “ghosts of vanished quantities”.

Calculus does not deal with infinitesimal quantities, though it easily could. Several decades ago
Abraham Robinson formulated an extension to algebra with real variables by including also rules
for infinitesimals, rendering them tractable by computerized algebra systems like Mathematica.
This extension does shorten some mathematical proofs, but it is unnecessary for scientists’ and
engineers’ applications of the calculus, as a Cal Tech. graduate in Applied Math. should know.

Expressions like “ dy/dx ” and “ ∫…dx ” that appear to involve quotients and infinite sums of
infinitesimals are actually shorthand for processes that approximate limits as closely as desired if
allocated enough time. Equations “ dy/dx = … ” and “ ∫…dx = … ” often offer faster ways to
compute their left-hand sides’ limits. Sometimes they equate limits that seemed unrelated before.
The limit-processes would take many more words to mention if abbreviations were unavailable.

I don’t know how seriously Gustafson wants readers to take his disparagement of the calculus.
He is not joking. On p. 330 he includes among the advantages of Unum Computing this claim:

“ • An arbitrarily precise solution method for nonlinear ordinary differential equations
 that uses no calculus, just elementary algebra, geometry and Newtonian physics.”

He continues on p. 331 with a peroration that deprecates floating-point computation as mere
guesswork, which indeed it would be in the absence of error-analyses.

“… Why should anyone continue to use floats when unum arithmetic can mimic floats but
 also has so many advantages? And why should we tolerate numerical methods that
 are hard to write and treacherous to use, when bounded methods like ubox sets can
 produce results that are complete solutions of maximum expressible accuracy?”

This quotation’s “treacherous to use” tells me that Gustafson suffers from a misconception
widespread in the 1950s and supported by assertions from luminaries, like Von Neumann, who
deprecated floating-point. It was deemed so refractory to error-analysis that nobody tried to do it.
Of course, one consequence was unreliable floating-point computation. That changed in the late
1950s when, motivated partly by a comment Turing threw away in a paper published in 1949,
we found ways to analyze floating-point error. Some were called “Backward Error-Analyses”.

Gustafson has contempt for backward error-analysis. He expresses his derision on p. 76:

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 12/39

 “It is a variation on the Original Sin, and amusingly, it puts the blame back on the computer user.

Gustafson has mistaken an explanation for an excuse, somewhat like a quotation from Mme. De
Staël misrendered in English as “To understand all is to forgive all.” His is a common mistake.

Backward error-analysis never excused wrong answers. When feasible (which is not always) it
maps the rounding errors in a program to end-figure perturbations in the data for the mathematical
function the program was intended to compute. Now the consequences of the program’s roundoff
can be appraised by a perturbation analysis of the mathematical function no longer complicated
by the program’s details. When a user’s data are uncorrelatedly uncertain by much more than
end-figure perturbations, that program’s roundoff becomes inconsequential; this is the ideal
situation. Otherwise higher precision arithmetic must be used for the computation, or a better
algorithm (which may be hard to find).

• • • • • • •
The time has come for another test of Gustafson’s claims for Unum Computing. It is a simple
nonlinear differential equation he claims can be solved using “… no calculus, just elementary
algebra, …” for algorithm development, and no human’s error-analysis. A. Tissier posed the
problem on p. 694 of the Amer. Math. Monthly 94 (1987). His differential equation

 “ dy/dx = x – 1/y ”
has a solution y(x) that stays positive and bounded for all finite x ≥ 0 provided the initial value
y(0) is just right. Call that just-right initial value y° . If y(0) > y° then y(x) → +∞ as x → +∞ .
If 0 < y(0) < y° then a finite x° > 0 exists at which y(x) → 0 as x → x° from below. The task
is to find y° correct to, say, 15 sig.dec. without recourse to higher transcendental functions.

In 1988 or 1989 I tried that computation on a new Intel i302 system with i386 and i387 chips
whose floating-point I had helped design. The i302 came with an Intel compiler for Fortran 77
produced by people who tried to humor me, so it worked very much as I desired. After an error-
analysis of the differential equation, including two elementary differential inequalities, I tested a
numerical method that converged at 6th order to as much of the differential equation’s solution as
needed to get y° ≈ 1.2835987104636 provably correct to 15 sig.dec. The program performed
fewer than 1,600,000 rational arithmetic operations (+, –, ·, ÷) starting from integers; no √ nor

ab
 , and no log except to count compactly (not compute) leading zeros in differences between

approximations. The program’s text occupies 5751 bytes, mostly explanatory comments.

For corroboration, another 6th order program computed the same y° performing fewer than

1,300,000 rational operations but including two irrational constants, 41/3 and 41/5
 , and 7832

bytes of text. Later the i386 and i387 were updated to Cyrix clones, so I have resurrected the
programs and rerun them to get the same results but faster partly because the Cyrix CPU has a
tiny 1KB on-chip cache twice as big as needed to hold all my programs’ variables.

Given the foregoing “guess” y°, how much will Unum Computing cost in human effort and
computer time to corroborate the accuracy of y° using “no calculus, just elementary algebra” ?

Infinitely more than it cost me.
• • • • • • •

“I cannot give you the answer you requested, and it is all your fault, because you
 should have asked a slightly different question. I gave you a perfect answer to the
 question you should have asked.” [His box]

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 13/39

Is Tissier’s problem too artificial to serve as a fair test of Unum Computing without Calculus?

If so, here is a problem taken from Photo-Chemical Kinetics, but simplified by the absorption of
rate-constants into variables to render them dimension-free. Variables u(τ) and v(τ) represent
concentrations of two pollutant gases in the atmosphere. They react, turning v into u at a rate
proportional to v , but also decomposing both at a rate proportional to their product u·v . Their
differential equations are …

 du/dτ = (1 – u)·v and dv/dτ = – (1 + u)·v .
As time τ → +∞ , the reaction approaches a steady state: v(τ) decreases to 0 while u(τ) tends
monotonically to a limit determined by given positive initial values u(0) := u° and v(0) := v° .

If we wished to compute the steady-state value u(+∞) we could construe it as the limit of an
iteration whose fixed-points constitute a continuum, as was mentioned on pp. 4-5 in §1 above.
The limit depends continuously upon the iteration’s starting point. An application of Differential
and Integral Calculus provides a fast way to compute u(+∞) at the cost of at most a few hundred
floating-point operations. Computing u(+∞) does not answer a more interesting question:

How long does v(τ) take to decrease from v° to, say, 1% of v° ?

Let T(u°, v°) answer that question. What is the cost, in human effort plus machine computation,
of a program that computes T(u°, v°) to, say, 3 sig.dec. without invoking the allegedly evil
Differential and Integral Calculus? Infinitely more than the program cost me …:

When I used them to produce a MATLAB program for my old Mac Quadra, it computed each
T(u°, v°) with fewer than 10,000 floating-point operations according to MATLAB ’s flops count.
The program occupies less than 3 KB and runs entirely in the µ68040’s 8 KB cache.

To produce this table efficiently my program uses the reaction’s conservation of a transcendental
relation between u and v . I see no way to find it without using that Calculus deemed evil.

At issue above are not the virtues nor deficiencies of Unum Computing.

At issue is Gustafson’s perverse anti-intellectual disdain for the past few
 centuries’ mathematical analyses. His scorn is a gratuitous distraction
 from a fair evaluation of Unum Computing’s costs and benefits.

Table 1: Decay times T(u°, v°) for v(τ) from v° to v°/100

v° = 0.001 v° = 0.01 v° = 0.1 v° = 1.0 v° = 10.0

u° = 0.001 4.597 4.5652 4.2926 3.197 2.3675

u° = 0.01 4.5561 4.5254 4.2615 3.1886 2.3669

u° = 0.1 4.1841 4.1624 3.9709 3.104 2.3616

u° = 1.0 2.3026 2.3026 2.3026 2.3026 2.3026

u° = 10.0 0.4187 0.4189 0.4211 0.4446 0.9284

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 14/39

§5: What does Unum Computing cost?
On today’s computers the cost, in time and power dissipation, of memory management often
dominates arithmetic in the execution-time costs of a computation. Its cost in human effort —
data-gathering, analysis, (re)programming and debugging — can dominate execution-time costs
in engineering, scientific and statistical work; but let’s reconsider human costs later. For now,
let’s focus on the execution-time costs that the book says Unum Computing will save. These
savings are summarized on pp. 193-4 where a bogus analogy is invoked to combat criticism:

 “What you see above are two identical sentences, one with a monospaced typeface (Courier)
 and the other with a variable-width typeface (Times) of exactly the same font size. Notice how
 much less space the variable-width typeface uses. There was a time (before Xerox PARC …)
 that computers always displayed monospaced font, since system designers thought it
 inconceivably difficult to manage text display with letters of variable width. … Unums offer
 the same trade-off versus floats as variable-width versus fixed-width typefaces. … ”

 “Fewer bits means unums will be faster than floats in any computer that is bandwidth-limited …”

Bunkum! Gustafson has confused the way text is printed, or displayed on today’s bit-mapped
screens, with the way text is stored in files and in DRAM memory by word-processor software.
Look for yourself. You will see strings of constant-width ASCII or Unicode characters plus a
sprinkling of milestones and escape-characters. Milestones mark the separations between lines,
paragraphs and pages. Escape characters supply formatting information about fonts, sizes, styles
(bold, italic, underlined, …) and how justified (left, centered, right, …), etc. The files may
include fonts. In compressed files, like .pdf files, storage economy is achieved by exploiting
redundancy in texts, not by storing variable-width characters packed together tightly. Text stored
in variable-width characters would occupy more DRAM memory, not less, as we shall see.

To say “… system designers thought it inconceivably difficult …” is to misremember history by
forgetting Nroff and Troff, the UNIX software that drove expensive printers to print text with
variable-width characters in the 1970s. And these could be viewed on an expensive IBM 8500-
series (if I remember rightly) bit-mapped display. It was expensive because video memory and
its processor occupied many chips on some boards. Character-based displays were far cheaper
and simpler to drive, requiring only a 9-pin connector. I still have one somewhere. Later in the
1980s, costs of 1-chip CPUs and VRAM memory chips came down enough that a bit-mapped
color VGA display could be driven from a small card and a 15-pin connector; and WYSIWYG
word processors showed how variable-width characters would look when printed. Now DRAMs
are cheap and big enough, and CPUs fast enough, to look up characters’ widths in a font table
as they fly to the screen or page. What used to be expensive was never “inconceivably difficult”.

• • • • • • •

The biggest objection to unums is likely to come from the
fact that they are variable in size, at least when they are
stored in packed form.

The biggest objection to unums is likely to come from the fact that they are variable in
size, at least when they are stored in packed form.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 15/39

When the book counts how much a computation with unums costs, it is displayed it in a box thus:

This box appears on p. 191; others are on pp. 115, 175, 178, 183, 187 and 265. The box shown
here has the biggest of all costs the book displays. It is for a Fourier Transform during which an
array of unums are repeatedly read, modified and stored back. Some costs have been overlooked.

Can you see those costs omitted from the cost-box?
• • • • • • • Pause. • • • • • • •

How much does a unum cost to fetch? After it has been modified, its width may increase; then
how much will finding a new site to store it cost? Can costs of address computations be ignored?

The book brushes the last question aside on pp. 40-41:
 “… does the programmer then have to manage the variable fraction and exponent sizes?

 No. That can be done automatically by the computer.”
So it can. For an additional price paid in nanoseconds and picojoules (as listed on his p. 6).

This price is tolerable for computations small enough to fit entirely in the CPU’s multi-megabyte
on-chip cache. There arithmetic dissipates more time and power than does memory movement,
especially when the thousands of extra transistors needed for unum arithmetic, plus their wires
and pipeline stages, are taken into account. The book’s worked examples of Unum Computation
all seem small enough to fit in a modern CPU’s on-chip cache. Perhaps this explains why cost-
boxes have not been supplied for the book’s bigger computations of “c-solutions” and orbits.

A computation costly for “any computer that is bandwidth-limited” must entail Big Data — vast
collections of numbers that reside in DRAM or beyond, perhaps in the Cloud. Moreover, data
destined only to be read, not altered, can cost relatively few more address bits besides the data
bits; the variability of unums’ widths will not much worsen the cost of randomly fetching them.

Address computations for Unum Computations become costly when the values of unum-valued
variables can have their widths increased at run-time, as happens in the Fourier Transform. An
elaboration of the book’s analogy above will help expose these hidden costs. Suppose a sentence

“Things are seldom what they seem.”
is #374 in a corpus of 49215 sentences stored packed together consecutively in DRAM or in a
file. Each paragraph has an address, say 32 bits wide, that points to the start of the paragraph’s
first sentence; and each sentence begins with a field that counts the sentence’s characters. To
fetch a sentence, the computer must find its paragraph, unless it is already known, by loading
and searching a table, and then skip along sentences until #374 is reached. Say it changes to

“Things are seldom what they seem; skim milk poses oft as cream.”
Where will it be stored? If squeezed where it went before, all subsequent sentences will first be
moved down to make way. Otherwise #374 must be pushed onto a Heap and its new address put
into the old place. Later, Garbage Collection (file or memory defragmentation) may occur.

Omitting hidden costs paid for address (re)computations is disingenuous.

Numbers moved 178152

Unum bits moved 4043801

Average bits per number 22.7

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 16/39

§6: Never Wrong ?
Unum Computation, like interval arithmetic, tends to produce pessimistic estimates of computed
results’ uncertainties due to uncertain data. Such an estimate is not deemed “Wrong” so long as
it encloses the range of the true results, no matter how pessimistic a computed enclosure may be.
Grossly excessive pessimism is useless or, worse, misleading, albeit not deemed “Wrong”.

Grossly excessive pessimism is often lessened by a Subdivide-and-Conquer scheme that costs
more computation, sometimes vastly more computation. However, no such scheme, lacking a
human’s mathematical error-analysis, can always reduce pessimism from grossly to moderately
excessive. Consequently a naive user of Unum Computation cannot know whether his result’s
oversized uncertainty is deserved by the data or is an incidental by-product of an ill-chosen way to
compute what he wishes to know. We shall see how four attempts to alleviate his uncertainty fail.

Failure Mode I: The Curse of High Dimensions
Given an interval (ubox) X containing a d-dimensional uncertain vector x , we wish to compute
the uncertainty inherited by y := HHHH(x) from a continuous function implemented as a program HHHH .
The image Y = HHHH(X) is a connected region in y-space. The shape of Y could be almost
arbitrary; it could resemble a pretzel. It may lie inside a computed ubox far larger than necessary.

The Subdivide-and-Conquer scheme diminishes that pessimism by a factor typically near 1/k

by subdividing the ubox X by a factor 1/k in each dimension to get kd smaller uboxes; then it

(re)computes their unum images to get kd uboxes whose union contains the desired image Y .

If enough processors are available, those kd images can be computed in parallel. If their union
seems still too big, increase k . Thus does the Curse of High Dimensions loom over the scheme.

The Subdivide-and-Conquer scheme purports to cope with a phenomenon called “the Wrapping
Effect”, but for a price. To illustrate the effect in a simple way, we consider a repetitive process

 HHHH(x) := h[N](x) := h(h(h(…h(h(h(x)))…))) N times
for a big integer N > 6 . The unum version of h will produce a ubox Y1 ⊇ h(X) too big by

some factor, say Λ > 1 , but not much bigger. Repetition produces a ubox YN ⊇ Y = HHHH(X) too

big by a huge factor ΛN unless something intervenes to stop the process prematurely. It could
stop if h is nonlinear and has a singularity that h(YN-3) evades but YN-2 ⊇ h(YN-3) encloses.

Lest a singularity complicate a simple illustration, let’s choose a linear function for h :
 h(x) := H·x where matrix H := hadamard(20)/√20 .

Here hadamard(n) is MATLAB ’s Hadamard matrix; this H is a symmetric 20-by-20 matrix

whose every element is one of ±1/√20 . Note that H2 = I , the identity matrix. Next let X be a
hypercube-shaped ubox around an uncertain x . The smallest rectangular ubox around h(X) is a

hypercube bigger by a factor Λ := √20 ≈ 4.47 . Now YN ⊇ Y = HHHH(X) = HN·X but grows too

big by an enormous factor 20(N-1)/2
 . Subdivision by a factor 1/k to reduce this gross pessimism

to mere moderate pessimism, say a factor of 400, would need k ≥ 20(N-5)/2 and kd ≥ 2010·(N-5),
which is a humongous number of recomputations, well beyond the capabilities of parallelism.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 17/39

Gustafson is aware of the Wrapping Effect. He devotes ch. 16.2 (pp. 215-219) to dismissing it

with a trivial example (d = 2 , kd = 24) and an appeal to massive parallelism, concluding …

My example HHHH(x) = HN·x is trivial too but does not succumb to “Mindless, brute-force …”.

Nontrivial examples abound. For instance suppose a nonlinear h(x) simulates a minute’s motion
of a few asteroids and lots of artificial satellites and space junk in motion near the earth. Such a
simulation is intended to help predict and, if possible, avoid costly collisions. Starting values of
x are a little uncertain because of errors in observations. Starting from a globular region X in
which the uncertain initial x lies, h(h(…h(h(X))…)) evolves first into a slowly tumbling cigar,
then a banana, and ultimately into a ring or pretzel after many orbits. The unum version of h
wraps a coffin, a ubox with edges parallel to coordinate axes, around a tilted cigar. Some corners
of the coffin spread faster than the cigar, tilt, and must be wrapped again. Exponential growth.

The text’s ch. 20 (pp. 287-310) advocates Gustafson’s elaborate scheme to compute orbits after
disparaging (pp. 292-4) a “traditional method” (4th order Runge-Kutta) that no experienced
practitioners have been using for orbit calculations. The cost of his scheme is nowhere reckoned,
and it is performed for only a small fraction of a two-body orbit. Two-body orbits can be plotted
without any numerical equation-solving, so their uncertainty grows linearly, not exponentially.
See www.eecs.berkeley.edu/~wkahan/Math128/KeplerOrbits.pdf for a much simpler scheme.

Along orbits of three or more bodies, Gustafson’s expansion factor Λ exceeds 1 only slightly
for each short step h . I think this explains his mistaken assertion on p. 306 that “the expansion
of uncertainty is roughly linear, not something that grows catastrophically fast.” At the beginning
of exponential growth it would appear linear. Subdivision of the initial ubox X to attenuate that

growth by a factor 1/k would cost k6N parallel recomputations to simulate the motions of N
items around the earth; there are thousands of items. I doubt that his scheme is practicable.

“The unum method may show empirical validation of Kahan’s observation” says the book on p.
307. This refers without explanation to my schemes that compute tumbling (hyper)ellipsoids that
wrap around tumbling cigars more tightly than coffins can, and thus prolong the simulations for
at least several orbits before growing excessively pessimistic. The ellipsoids grow too fast but not
exponentially too fast. Six-dimensional ellipsoids, one per item being simulated, cost at least six
times as much arithmetic and storage as the items’ simulation; perhaps this explains why my
ellipsoidal scheme has not yet become popular.

How do people get along without unums nor ellipsoids? Numerous samples of initial values x
are drawn from the range of uncertainties, and simulations are computed in parallel, one for each
sample, using high-order numerical methods like “Symplectic Integrators” that conserve energy
and momenta well enough to avoid the inward or outward spirals derided on p. 292. Arithmetic
precision is adequate to render roundoff utterly negligible compared with uncertainties in the data
and the equations of motion. If a close encounter is observed among the samples simulated, the
simulations are redone with samples distributed more densely around initial conditions that led to
the close encounter. Thus do useful predictions become available in real time without unums.

“This is the essence of the ubox approach. Mindless, brute-force
application of large-scale parallel computing …” (p. 219)

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 18/39

Failure Mode II: Unbounded Phantom c-Solutions
“Self-Validating Computation”, a method favored by the Interval Arithmetic community, is
worth mentioning here though Gustafson does not mention it, perhaps because his “c-solutions”
seem more general at first sight. Suppose a solution z to some problem is sought; perhaps z is
a solution of some equation. Infinitely many equations have exactly the same set of solutions, if
any. Self-validating computation works when an equation z = ƒ(z) can be found that exhibits z
as a fixed-point of a sufficiently contractive map ƒ . This usually means that there is a matrix
norm ||…|| and a constant λ such that the Jacobian matrix ƒ'(x) of first partial derivatives
satisfies ||ƒ'(x)|| < λ < 1 for all x in some palpable neighborhood of z . If ƒ is a little uncertain
then λ must be appreciably less than 1 so that the interval arithmetic iteration Xn+1 := ƒ(Xn) ,
possibly subdivided, will converge to a region Z provably enclosing at least one solution z .

Alas, not every equation Æ(z) = o is equivalent to an equation z = ƒ(z) with a contractive map
ƒ . An instance is an equation whose Jacobian matrix Æ'(x) is not known beforehand to be
singular at x = z (i.e., det(Æ'(z)) = 0). Here is a didactic example for column 2-vectors x :

 Æ(x) := + ·x + /2 in which C1 = and C2 = .

Newton’s iterating function ƒ(x) := x – Æ'(x)-1·Æ(x) would be a contractive map with a fixed-

point z = at which Æ(z) = o , and to which the iteration xn+1 := ƒ(xn) converged almost

always, except for an inconvenience: Æ'(z) = O so ƒ(z) is indeterminate. Worse, Æ(x) = o all
along the line £ whose equation is [1, 1]·x = –2 . Therefore no Self-Validating Computation
will find a contractive map for any of the infinitely many solutions z of the equation Æ(z) = o .

The book’s’s c-solutions would reveal all solutions z within any ubox X big enough. After X
has been subdivided into smaller uboxes, those within which unum evaluations of Æ(x) cannot
vanish will be rejected and the remainder further subdivided, and so on, until all the remaining
uboxes strung along £ are as small as desired. The process is lengthy, but …

Before rejoicing at the success of Gustafson’s c-solutions, we must consider the possibility that
the coefficients of the function Æ(x) are a little uncertain. This means that Æ(x) + ∆Æ(x) is
practically indistinguishable from Æ(x) if ||∆Æ(x)|| is small enough but not zero. However, no
matter how small “small enough” may be, infinitely many such functions Æ(x) + ∆Æ(x) never
vanish at any real x . This nonexistence does not alter the c-solutions. Then what do they mean?

If ostensibly negligible perturbations of a complicated equation
can cause its solution(s) to flicker in and out of existence, how
will unum computation warn us about this kind of misbehavior?

Apparently not via c-solutions.
• • • • • • •

6–

4–

2– 0

0 2

xT
C1 x⋅ ⋅

xT
C2 x⋅ ⋅

1 2
2 3

2 3
3 4

6–

4

“This is the essence of the ubox approach. Mindless, brute-force
application of large-scale parallel computing …” (p. 219)

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 19/39

Failure Mode III: Persistent “ c-Solutions ” that Do Not Exist
During the search for c-solutions of an equation Æ(z) = 0 , what must be done with a ubound or
ubox X when Æ(X) encounters an invalid operation, perhaps division by zero? A policy that
rejects X and searches elsewhere for c-solutions risks rejecting valid solutions of the equation.

For instance, Æ(x) := 3/(x+1) – 2/(x–1) + 1/(x–1)2 encounters invalid operations during the
evaluation of Æ([0, 4]) ; but rejection of interval X = [0, 4] would reject both finite solutions
z = 2 and z = 3 of Æ(z) = 0 . Instead, X must be partitioned into subintervals until each is
small enough to localize either a solution z or a singularity of Æ as accurately as desired.

Ubounds and uboxes need not include their entire boundaries. Consequently they can avoid
divisions by zero in some cases. For instance, the reciprocal of the interval 0 < x ≤ 1 is the
unbounded interval 1/x ≥ 1 , both representable as ubounds. Alas, this capability fails to
preclude aberrant behavior near singularities. For instance, “ c-solutions ” of equations involving
rational functions can converge onto arbitrarily tiny uboxes that enclose no solutions of the given
equations. Here is a didactic example of the phenomenon designed to be understood easily:

Let R(x, y) := (x – y)·(x + y)/(x2 + y2) literally. DO NOT “SIMPLIFY” IT !

We seek c-solutions (x, y) , if any, of two equations: R(x, y) = 1.125 and R(y, x) = –1.125 .

Because –1 ≤ R(x, y) = –R(y, x) ≤ +1 at the plane’s every finite point (x, y) other than (0, 0) ,
no real solution (x, y) exists.

However, subdivision of the plane into uboxes, no matter how tiny, cannot reject every ubox
with a corner relatively near enough to (0, 0) , though it be excluded from every ubox. Thereon
Unum Computation, like interval arithmetic, gets overly wide intervals for R . For example,

 X := [0.01, 0.02] , Y := [0, 0.01] , R(X, Y) ⊂ [0, 6] .
 X := [0.01, 0.011] , Y := [-0.001, 0.001] , R(X, Y) ⊂ [0.664, 1.44] .

Thus, while c-solutions are sought, ever tinier uboxes are found on which Unum Computation
overestimates the range of R to include 1.125 ; and these tiny uboxes (X, Y) converge to but
never overlap the singularity at (0, 0) . Only a mathematical analysis of the formula for R can
defend against acceptance of one of these tiny uboxes as an approximation to a sought solution.

The given equations can be handled properly, but not Gustafson’s “Mindless, brute-force” way.

One way rewrites R(x, y) = 1 – 2/(1 + (x/y)2) , which works only because R is so simple. A
second way multiplies all rational equations by their denominators to convert them to polynomial
equations free from singularities; but doing so can introduce spurious c-solutions. The spurious
solution here, (x, y) = (0, 0) , is easy to recognize as a singularity of R . The singularities of
more general equations may be harder to distinguish from legitimate solutions by mere numerical
evaluations without mathematical analysis.

C-solutions can solve every equation only by “solving” also some that have no solution.
• • • • • • •

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 20/39

Failure Mode IV: Illegitimate Unbounded c-Solutions
Given the Cartesian coordinates o, u, v, w of the four vertices of a tetrahedron ∇ , we seek its
Incenter c ; it is equidistant from ∇ ’s four faces and on the same side of each face as its opposite
vertex. This description translates to three linear equations for the coordinates of column c thus:

p := (v–u)×(w–u)/||(v–u)×(w–u)|| ; … a column when u, v and w are columns

M := [v×w/||v×w|| + p, w×u/||w×u|| + p, u×v/||u×v|| + p]T ; … 3-by-3

m := [u, v, w]T·p = uT·p·[1, 1, 1]T ;
Solve M·c = m for c .

Matrix M has det(M) ≠ 0 provided tetrahedron ∇ is non-degenerate (has nonzero volume

uT·v×w/6), and then c = M-1·m . The incenter of a degenerate tetrahedron ∇ is the limit of
incenters of any non-degenerate tetrahedra that collapse continuously onto ∇ .

Numerical Example: [u, v, w] := has uT·v×w = 36 , so det(M) ≠ 0 and the

incenter of ∇ is c ≈ [4789.4057, 5920.0275, 5488.1688]T . However, if each integer entry in the
coordinates of ∇ is independently uncertain by ±1/2 then the ubox X ⊇ ∇ must include some
degenerate tetrahedra, and then Gustafson’s c-solutions of the equations M·c = m derived from
X must stretch off to infinity though no incenter wanders very far from the c exhibited above.

Infinite pessimism!

Infinite pessimism is undeserved. It arises from the choice of a numerically troublesome method
to compute incenters. The equation “ M·c = m ” is far more sensitive than is the geometry to ill-
oriented perturbations. A far better numerical method is a simple explicit formula for c that
satisfies the equation “ M·c = m ” without ever constructing it. The simple formula is hard to find
and little known; see p. 26 of www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf .

Do not confuse ignorance with stupidity:
 “Against Stupidity even the Gods struggle in vain.” J.C.F. von Schiller, 1759 - 1805

A programmer who derives the equation “ M·c = m ” to solve for c is far from stupid; he is
unlucky or too impatient or too beset by deadlines to pore through texts on vectors and geometry.

Unum Computation is no defence against the mistake of choosing an
algebraically correct but numerically precarious algorithm, and then
accepting grossly oversized computed uncertainties as if they were

 deserved by the desired results.
• • • • • • •

The four failure modes exhibited above cast a long dark shadow over assertions implying a kind
of infallibility for Unum Computation and for Interval Arithmetic. They may beguile the unwary:

“Never Wrong” does not imply “Always Right”, so

 Unum Computation can’t be THE END OF ERROR.

4182 5168 4791

5168 6388 5922

4791 5922 5490

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 21/39

§7: The Price Paid for Willful Ignorance
On p. 194 Gustafson writes

“… Since unum bounds resemble interval arithmetic, how do we know they will
 not suffer the same fate as traditional intervals in producing bounds that are much
 looser than they should be and need to be? If we already have an algorithm designed
 for floats, how do we make it work with unums without requiring that the programmer
 learn about interval arithmetic and its hazards? There is a general solution for this, the
 ubox approach.”

Actually, as we have just seen, unum bounds can suffer from the same excessive pessimism as
can traditional intervals. Nevertheless, he goes on in his chs. 15.1 - 15.5, pp. 195 - 210, to
demonstrate how his ubox approach estimates the area of a circular disk. His demonstration does
injustice to unums and to intervals because it is predisposed to adhere strictly to his mantra:

Consequently the demonstration panders to ignorant readers who believe they have …

• No need to know any Calculus; it is “evil”.
• No need to know about contemporary numerical analysis; it is “deeply unsatisfying”.
• No need to know about any arithmetic operations beyond grade-school’s (+, –, ·, ÷).
• No need to know about the costs of arithmetic, data structures, and communications,

nor how costs grow when more than one or two sig.dec. of accuracy are needed.

“The deeply unsatisfying nature of classical error bounds” is the heading for ch. 15.2 (pp. 197-9)
containing complaints about a formula misquoted on p. 198 thus: [His box]

This “error” is the difference between integral ∫ab
 ƒ(x)·dx and its approximation by the Midpoint

Rule after the interval from a to b has been broken into subintervals each of width h , and ƒ
has been sampled at the midpoint of every subinterval. Here ƒ" (ξ) is the second derivative …

“… at some unspecified point ξ between a and b . To compute the second derivative,
 we first have to know calculus to figure out what the function ƒ" is, and then we have
 to somehow find the maximum possible absolute value of that derivative over the range
 from a to b .”

Gustafson has exposed his misunderstanding. Alas, he shares it with too many mathematicians
assigned to lecture about Numerical Analysis. This misunderstanding will be cleared up later.

Pp. 199-210 demonstrate his ubox approach to the estimation of π/4 = ∫0
1 √(1 – x2)·dx as the

area of a quarter of the unit disk. This area is bounded by x2 + y2 ≤ 1 inside the square wherein

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 . Initially the square is partitioned into K2 uboxes each a small square
of side-length h = 1/K for a chosen positive integer K . The demonstration’s K = 16 . Next the
uboxes in the quarter disk are counted. There are two counts: Lo counts the uboxes entirely
within the quarter disk; Hi counts the uboxes that intersect with the quarter disk. Whether a ubox

deserves to be counted can be decided by computing the predicate “ x2 + y2 ≤ 1 ” at the ubox’s

“This is the essence of the ubox approach. Mindless, brute-force
application of large-scale parallel computing …” (p. 219)

error ≤ (b – a)·h2·|ƒ" (ξ)|/24

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 22/39

upper-right corner for Lo , lower-left for Hi ; the demonstration uses a more complicated unum

procedure to compute the predicates. Anyway, all K2 uboxes’ predicates can be computed in

parallel quickly. Then 4·Lo/K2 < π < 4·Hi/K2
 . The demonstration’s estimates for K = 16 are …

 “ 2.859375 < π < 3.34375 ” .

 “Parturient montes, nascetur ridiculus mus.” Horace (65 - 8 BC) Ars Poetica
[“The mountains heave in labor to bring forth a silly mouse.”]

256 uboxes’ predicates seem like too much work for so little as one sig.dec. of accuracy. What
would 5 sig. dec. cost? The book doesn’t say. Let’s find out:

It so happens that Hi – Lo = 2·K – 1 , so the width of that interval estimate for π is 8/K – 4/K2
 .

To achieve at least 5 sig.dec. of accuracy would require K > 80,000 roughly. This would

require predicates for humongously many, over 64·108
 , uboxes if “Mindless brute-force …”

were the only option. It isn’t. At the bottom of p. 209 the book mentions “Grid refinement” but
offers no program for it, leaving unknown its two costs:

<> The time taken to write a parallel version of Grid refinement, with load balancing.
<> How many uboxes’ predicates the program must compute, as it depends upon K .

At least 2·K – 1 uboxes have to be located; these are the ones whose predicates “ x2 + y2 ≤ 1 ”
are true at the lower left corner, false at the upper right. They can be located by tracing the arc of
the quarter circle, a purely sequential process. For 5 sig.dec., 2·K – 1 > 160,000 . Too huge.

“Mindless brute-force” is a costly way to compute any but the crudest estimates of integrals; and
sometimes it cannot provide any estimates at all. For instance, take an ellipse’s circumference:

This circumference is needed to compute the weight of steel tubing intended for a racing bicycle.
The tubing’s cross-section is elliptical instead of circular to reduce weight while retaining enough

resistance to anticipated loads. Let x2 + y2/4 = 1 be the ellipse’s equation. A little calculus gets

an expression L = 4·∫01
 √(1 + (dy/dx)2)·dx = 4·∫01

 √((1 + 3·x2)/(1 – x2))·dx for the circumference
L of the ellipse. It is an improper integral because the integrand rises to +∞ , so “Mindless
brute-force” would have to count infinitely many uboxes. It can’t. We will compute L later.

• • • • • • •

Now let’s clear up the misunderstanding of the misquoted formula in the box above. It should say

Here ƒ" (ξ) and ƒ" (η) are differently weighted averages of the second derivative ƒ" (x) over x
between a and b . The weights are positive but not constant. If ƒ" (x) is bounded throughout

the range of integration, each Rule’s error ultimately approaches zero no slower than h2 as h —
the width of every subinterval in the interval of integration — approaches zero. An algorithm
suggested by the formulas repeatedly doubles the number of subintervals, combines new samples
of ƒ with old, and gets new Trapezoidal and Midpoint estimates each nearer the integral than
the old by factors ultimately at most 1/4 . Other than that ƒ" be bounded, it need not be known
to estimate the integral as closely as desired, though unpredictably many samples may be needed.

 (Midpoint Rule) – ∫a
b

 ƒ(x)·dx = (b – a)·h2·ƒ" (ξ)/24 and

 ∫a
b

 ƒ(x)·dx– (Trapezoidal Rule) = (b – a)·h2·ƒ" (η)/12 .

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 23/39

The boxed formulas tell anyone who seeks guaranteed interval or ubound estimates for an integral
something very much worth knowing:

If ƒ" (x) does not reverse sign between a and b , then ∫a
b

 ƒ(x)·dx lies
 between its estimates provided by the Midpoint and Trapezoidal Rules.

The two estimates differ by (b – a)·h2·ƒ" (ω)/8 for another positively weighted average ƒ" (ω) . If
ƒ" (x) reverses sign at some x = z between a and b , compute the integral as a sum of two:

 ∫a
b

 ƒ(x)·dx = ∫a
z

 ƒ(x)·dx + ∫z
b

 ƒ(x)·dx .
A computer program can turn the program for ƒ(x) into a program for ƒ" (x) and locate a zero z

within an error smaller than h2/|b – a| , which is small enough to not matter. The Rules’ samples
of ƒ(x) can be computed in parallel in batches, each batch twice as big as the previous one.

Let’s compute Gustafson’s integral π = 4·∫0
1 √(1 – x2)·dx using the Midpoint and Trapezoidal

Rules. Although the integrand’s second derivative never reverses sign, it is unbounded; this

causes the gap between the two Rules to shrink like h3/2 instead of h2 , producing the interval
 3.141580 ≤ π ≤ 3.141596 after K = 4097 samples of √((1 – x)·(1 + x)) .

To produce an integrand free from infinite derivatives and inflection points (where the second

derivative reverses sign) let us substitute x = √(1 – w2) and perform some extra calculus and

algebra to get a very proper integral π = 4·∫0
1/√2 dw/√(1 – w2) and then compute the interval …

 3.141582 ≤ π ≤ 3.141613 after K = 257 samples of 1/√(1 – w2) .
A little of the “evil” Calculus has beaten “Mindless brute-force” by orders of magnitude.

• • • • • • •

The most powerful methods of numerical integration have not (yet) been adapted to produce fully
guaranteed interval estimates. These powerful methods were first suggested in the 1960s by a
physicist Charles Schwartz in Berkeley. Then his methods were further developed in the 1970s
and 1980s by Takahashi and Mori in Japan. For details and pointers to long bibliographies see

D.H. Bailey, K. Jayabalan, X.S. Li “A Comparison of Three High-Precision
Quadrature Schemes” pp. 317-329 of Experimental Mathematics 14 #3 (2005).

A primitive version of these methods was stuffed into some 1980s hand-held calculators; see
W. Kahan “Handheld Calculator Evaluates Integrals”

 pp. 23-32 of The Hewlett-Packard Journal Aug. 1980.
This article includes advice about avoiding the hazards of fast non-interval integration schemes.

Because my calculator can cope with mildly improper integrals it gets

 π = 4·∫0
1 √(1 – x2)·dx ≈ 3.14159 ± 0.00002 after 31 samples of √((1 – x)·(1 + x)) ; and

 π = 4·∫0
1/√2 dw/√(1 – w2) ≈ 3.14159 ± 0.000014 after 31 samples of 1/√(1 – w2) .

Improper integrals like the ellipse’s L = 4·∫01
 √((1 + 3·x2)/(1 – x2))·dx pose severe challenges for

numerical integration schemes because they have to avoid sampling an integrand at its pole, lest
∞ overwhelm everything else, but must sample densely enough near the pole to appraise its
contribution to the integral. The appraisal’s accuracy is limited to a fraction of the arithmetic’s
precision depending upon the pole’s strength unless the pole rises at 0.0 , in which case over/-
underflow may cramp the appraisal’s accuracy. Better remedies are suggested in my 1980 article.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 24/39

One of them is a change to the variable of integration. In L the substitution x = 1 – w2 yields

 L = 4·∫01
 √((12·(1 – w2)2 + 4)/(2 – w2))·dw ≈ 9.68844822 ± 0.00000003 after 127 samples

on the calculator. A tedious interval estimate is feasible because the integrand’s second derivative
reverses sign at only one point w ≈ 0.6746936853…; I have not programmed it.

An experimental MATLAB program that combines the calculator’s stopping criterion with the
sampling strategy of Takahashi and Mori has coped with mildly improper integrals. It gets …

 L = 4·∫01
 √((1 + 3·x2)/(1 – x2))·dx ≈ 9.6884482 ± 0.0000006 after 129 samples, but better

 L = 4·∫01
 √((12·(1 – w2)2 + 4)/(2 – w2))·dw ≈ 9.68844822054768 ± 10–14 after 257 samples.

Despite the appearances of “±…”, the foregoing estimates obtained from relatively few samples
are not produced by interval arithmetic. Gustafson would call them “guesses”. They are very
good guesses computed by programs that can be foiled; my 1980 article shows how. Whether
the risk is tolerable depends upon the value of a prompt result and the costs of other options, and
these depend upon the accuracy desired. For high accuracy, here are some indications of the
costs of almost surely correct results soon vs. three ways to get certainly correct results later:

Errors → 0 like exp(– Const·K) for Takahashi-Mori methods drawing K samples.

Error-bounds → 0 like K–2 for interval arithmetic in Trapezoidal and Midpoint Rules.

Error-bounds → 0 like K–1 for Gustafson’s square-counting, but following the arc.

Error-bounds → 0 like K–1/2 for Gustafson’s “Mindless brute-force” square-counting.

• • • • • • •

To whom is Gustafson trying to sell “Mindless brute-force”?

It may be an appropriate way to estimate the content (area or volume) of a region whose
boundary is very complicated, like a Rorschach test. For such a task the costs and benefits
claimed for Unum Computation vs. short precision floating-point are practically irrelevant.

No. His pitch seems aimed at someone who wishes to compute an integral without having to
know anything about contemporary numerical analysis, and without having to look up
Numerical Quadrature in a book or a software Math. library.

To sell THE END OF ERROR to that person panders to ignorance.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 25/39

§8: Flogging a swing
The book’s long chapter 19, “Pendulums done correctly” pp. 273-286, begins with a photo of a
little girl enjoying a swing on a sunny late autumn day. Leaves have fallen off trees or changed
color. The caption under the photo reads

“When physicists analyze pendulums, they prefer to talk about ‘small oscillations.’
Have you ever met a child who didn't prefer the large kind?”

[Has Gustafson ever met a physicist who prefers to talk about small oscillations?]

Gustafson’s snide caption sets the chapter’s tone. Without ever exhibiting a differential equation

(since Calculus is evil), he sneers at a linearization d2θ/dτ2 ≈ – θ of the pendulum’s differential

equation d2θ/dτ2 = – sin(θ) . The linearized pendulum’s deflection from the vertical, θ ≈ sin(τ) ,
does err when bigger than infinitesimal. Let Θ be |θ|’s maximum amplitude. If Θ ≤ π/2 , the

pendulum’s period P(Θ) does exceed the linearized period 2π by very roughly tan2(Θ/2) . His
method will eliminate this error while tolerating errors that are worse, as we shall see.

The chapter explains his more accurate computation of the pendulum’s motion using only “grade
school algebra. Without deep human thought but with brute force computing, … This shows why
it may be time to overthrow a century of numerical analysis.” (p. 281.) Actually, he uses more
than grade school algebra’s rational operations (+, –, ·, ÷) because he uses middle school’s √
and high school’s sin(θ) or cos(θ) frequently; and he takes something crucial for granted:

He knows that the pendulum’s total energy, kinetic plus potential, is conserved.

How does he know that? The concepts of kinetic and potential energies came into existence with
the Calculus, and it is needed to deduce that their total is conserved by a friction-free pendulum.

In dimensionless units, the conserved total energy is (dθ/dτ)2 + 4·sin2(θ/2) = 4·sin2(Θ/2) . To

confirm this, differentiate the left-hand side and invoke the differential equation for d2θ/dτ2
 .

Determined by initial conditions, the total energy tells us that θ will vary between ±Θ , and that
the time elapsed between two deflections θ(τ°) = θ° and θ(τ) = θ can be computed from …

 τ(θ) – τ(θ°) = = .

This is an Improper integral. As θ runs back and forth between ±Θ , the variable of integration
α reaches ±Θ and the integrand peaks up to +∞ , though the integral remains finite. This
singularity reflects what happens when, at the extremes θ = ±Θ of its swing, the pendulum’s θ

reverses but time τ doesn’t. The substitution α = ±(Θ – 2ξ2) removes the singularity. For
instance, the integral for the pendulum’s period P(Θ) := 2(τ(Θ) – τ(-Θ)) turns into …

 P(Θ) = 4· = .

This last integral is easy to evaluate numerically for any given positive numerical value Θ < π .

The [] key on my old hp-15C shirt-pocket calculator, carrying 10 sig.dec. (though each

αd

4sin
2 Θ 2⁄() 4sin

2 α 2⁄()–

--
θ°

θ
∫ αd

4 Θ α–() 2⁄()sin Θ α+() 2⁄()sin⋅ ⋅

θ°

θ
∫

αd
4 Θ α–() 2⁄()sin Θ α+() 2⁄()sin⋅ ⋅

0

Θ
∫ 8 ξd

Θ ξ2
–()sin ξ2()sin ξ2⁄⋅

--
0

Θ 2⁄
∫

y
x∫

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 26/39

keystroke may use a 13 sig.dec. scratchpad), gets 9 sig.dec. of P(Θ) with an error-estimate.

For example, P(10-6) = 6.283185307 ± 1.34·10-9 ; P(π/3) = 6.743001419 ± 1.51·10-9 ;

 P(π/2) = 7.416298709 ± 9.6·10-10 ; P(3) = 16.15553937 ± 9.1·10-9 . (P(π) = +∞)
 (Multiply integrals by π/180 if angles Θ, α and θ are specified in degrees instead of radians.)

Without ever exhibiting an integral, the book does compute interval estimates of the integrand for
elapsed times τ(θ+∆θ) – τ(θ) as areas under curves obtained by approximating dτ/dθ as a
function of θ over short sub-intervals [θ, θ+∆θ] taking account of total energy’s conservation:

 dθ/dτ = ±2√(sin2(Θ/2) – sin2(θ/2)) as an Interval over a short subInterval [θ, θ+∆θ] .

Also used is an interval estimate of d2θ/dτ2 = –sin(θ) over the subinterval. This estimate may be

needed in case the interval [dθ/dτ] includes 0 , just as the substitution α = ±(Θ – 2ξ2) was used
above to remove the integrand’s singularity. Thus the book gets a quadratic in δτ with interval

coefficients, namely δθ = [dθ/dτ]·δτ + [d2θ/dτ2]·δτ2/2 , to estimate the distance δθ from θ
towards θ+∆θ traversed by the pendulum in any sufficiently short time δτ . For an interval that
covers the time ∆τ taken to traverse all of the subinterval [θ, θ+∆θ] , solve a quadratic equation

∆θ = [dθ/dτ]·∆τ + [d2θ/dτ2]·∆τ2/2 for [∆τ] . [Middle school algebra, not grade school.]

It all seems an extremely elaborate way to estimate ∆τ = ∫θ
θ+∆θ dα/√(…) as an interval [∆τ]

about Ω(∆θ3) wide. The book offers no estimate of [∆τ]’s width. Instead we find on p. 277

 “This is a stunning result, because it means we not only get rigorous bounds on the physical
 behavior, but we can use as many processors as we have in a computer system to get any
 desired answer quality.” [His italics.]
Gustafson goes on to disparage purely serial computations that simulate physical phenomena:
 “…, the time dependency of physical simulations has been misused as an excuse not to
 change existing serial software to run in parallel. It is now time to retire that excuse, …”

Bunkum! All that braggadocio merely distracts readers from questions the book never mentions:
• If the “answer quality” is not yet as desired, how much more will a better answer cost?
• Why does Gustafson’s scheme malfunction for angles Θ > π/2 ? (His example’s Θ = π/3 .)
• He promised just “grade school algebra”. Instead trig functions are computed repeatedly.
• What does he do if he doesn’t know what, if anything, the differential equation conserves?

Quality vs. Cost: Starting from θ := –Θ = 60° = π/3 at time τ(–Θ) := 0 , the book twice plots
sets of interval estimates for the elapsed time τ , about 2P(Θ) , that θ takes to reach –Θ twice
more in steps ∆θ . The book says the first graph’s ∆θ = 10°, which would take 72 steps; but I
could see only 47 steps with ∆θ = 15° on p. 286. It says the second graph’s ∆θ = (1/16)°; this
takes 11520 steps that merge into a continuous curve on the printed page. Neither graph comes
with a cost-box; we cannot know their costs in bits moved. However, we can guess that costs are
at least proportional to the numbers of steps. Neither graph comes with a statement of the widths
of the interval estimates [τ] of elapsed times; we will have to estimate their widths.

All the traversal time bounds can be computed in parallel.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 27/39

I think Gustafson’s scheme has what numerical analysts call “ 2nd order ”: By decreasing a
sufficiently small stepsize ∆θ to ∆θ/k , which increases the number of steps by a factor k , the

computed result’s uncertainty or error is decreased by a factor near 1/k2 unless roundoff gets in
the way. The computation’s cost increases by the same factor k as the number of steps unless
arithmetic of higher precision is invoked, in which case the cost increases by a bigger factor.

The first graph printed on p. 286 is about 112 mm. long; its last [τ] is about 1 mm. wide,
implying a measured uncertainty of about ±0.06 in τ = 2·P(π/3) ≈ 6.743 . The second graph’s
∆θ = (1/16)° is smaller than the first’s by a factor 1/k = (1/16)/15 = 1/240 , reducing the first

graph’s uncertainty ±0.06 to about ±0.06/2402 ≈ ±0.000001 at the cost of a computation over
240 times longer — 11520 steps — unless vastly many parallel processors were previously idle.

Malfunction for Θ > π/2 (90°): Gustafson’s scheme produces utterly wrong results for swings
beyond 90° because, after the swing rises above the level of its pivot, it does not reverse its
rising trajectory but drops abruptly or else continues to spin around its pivot. This happens to the
young girl on a swing hanging by chains, and to a pendulum hanging by “ a string of length L ”
as is prescribed on p. 274. What happens after a drop is hard to predict — perhaps a fall off the
swing, perhaps some bouncing, perhaps a break. A rigid pendulum would not drop.

Gustafson has overlooked the case when, for a range of initial energies, the pendulum’s bob
attached by a string will depart from the circular path he predicts and follow a parabolic ballistic
path until it intersects the circle again. His “grade school algebra” has not coped with this case.

“Why beholdest thou the mote that is in thy brother’s eye, but
 considerest not the beam that is in thy own eye?” Matthew 7:3

Only grade school algebra: Gustafson’s promise to use only “grade school algebra. Without
deep human thought but with brute force computing, …” can be fulfilled; but understanding how
and why will require a little evil Calculus and some of “a century of numerical analysis.” First,

dθ/dτ = φ , dφ/dτ = – σ , dσ/dτ = γ·φ , dγ/dτ = – σ·φ
are the rigid pendulum’s differential equations for the deflection angle θ , its velocity φ , and
σ = sin(θ) and γ = cos(θ) , all functions of time τ initialized at, say, τ = 0 . Of course we

expect σ2 + γ2 = 1 , and this relation will be conserved by our numerical procedures that we shall
construct to approximate the four functions. Call their approximations th ≈ θ(τ) , ph ≈ φ(τ) ,
sn ≈ σ(τ) and cs ≈ γ(τ) ; and τ is the fifth variable. Our first procedure, named up2, updates
(overwrites) all five variables; it adds any given ∆τ to τ and then computes four updated values
th ≈ θ(τ+∆τ) , etc. using no more than grade school algebra. Here it is:

Procedure up2(∆τ, τ, th, ph, sn, cs) := {
τ := τ + ∆τ ;
th := th + ph·∆τ/2 ;
ph := ph – sn·∆τ/2 ;

{ β := ph·∆τ/2 ; [cs, sn] := [cs, sn] – [β·cs+sn, β·sn–cs]·2β/(1 + β2) ; } ;
ph := ph – sn·∆τ/2 ;
th := th + ph·∆τ/2 ; }.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 28/39

Procedure up2 is Anadromic in the sense that two successive calls, up2(∆τ, τ, th, ph, sn, cs)
followed immediately by up2(–∆τ, τ, th, ph, sn, cs) , restore all five variables to their former
values. Thus up2 conserves a crucial property possessed by every ordinary differential equation:

Running a solution from τ to τ+∆τ and then back from τ+∆τ to (τ+∆τ) – ∆τ
 returns to the solution at τ , retracing the solution’s path exactly but for roundoff.

Though most numerical algorithms are not Anadromic, all the ordinary differential equations of
classical Mathematical Physics and Physical Chemistry can be approximated by Anadromic
numerical methods regardless of what else, if anything, those differential equations conserve.

Here up2 conserves cs2 + sn2 , and all using only grade school’s rational operations (+, –, ·, ÷).

Like Gustafson’s scheme, up2 has 2nd order. This means that if k steps ∆τ = T/k are used to
advance all five variables from τ = 0 to τ = T , then errors in th(T) and ph(T) will be nearly

proportional to T·∆τ2 = T3/k2 provided k is big enough, yet not so big that roundoff interferes.

To render roundoff harmless until th and ph are correct to within several units in the last digits
carried by the arithmetic, either store all five variables to twice arithmetic’s precision, or else use
Compensated Summation, a trick published in 1960 used now by savvy Numerical Analysts.

Digression: Compensated Summation will be illustrated by application to a silly sum Gustafson
uses on p. 120 to justify what unums do as intervals do, namely, convey numerical uncertainty
via their widths. He adds up 1.0 a billion times into a Float variable holding 24 sig.bits, about
7 sig.dec., and expresses faux chagrin when most of the addends fall off the variable’s right-hand
end and get rounded away after that variable gets big enough, which is far less than a billion.

Crude Program With Compensated Summation All in Floats
 sum := 0.0 ; sum := 0.0 ; comp := 0.0 ;
 for i = 1 to 1000000000 do { for i = 1 to 1000000000 do {

sum := sum + 1.0 ; } comp := comp + 1.0 ; oldsum := sum ;
 sum := oldsum + comp ;
 comp := (oldsum – sum) + comp ; }

 Printout: sum is 16777216.0 = 224 sum is 1000000000.0 = 109 exactly

End of Digression

Convergence as ∆t → 0 is slow at 2nd order. For smooth solutions of differential equations,
higher accuracies are usually achieved sooner with 4th order schemes. Here is such a scheme:

Procedure up4(∆τ, τ, th, ph, sn, cs) := {
δτ := ∆τ/6 ;
for j = 1 to 4 do call up2(δτ, τ, th, ph, sn, cs) ;
call up2(–2·δτ, τ, th, ph, sn, cs) ;
for j = 1 to 4 do call up2(δτ, τ, th, ph, sn, cs) ; } .

This up4 is the simplest 4th order Anadromic updating scheme, not the most efficient; and it
uses only grade school algebra, no repeated calls upon the Math. Library’s cos(…) nor sin(…) .

At first up4 seems constrained to answer the question “Where will the pendulum be at time T ?”
using k calls upon up4 with ∆τ = T/k and k big enough. However, up4 lets ∆τ vary.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 29/39

Instead of advancing τ in steps ∆τ until τ = T , up4 can be used to advance the numerical
approximations th(τ) and ph(τ) until they satisfy some other condition. To match the book’s
results we initialize th(0) := –π/3 , ph(0) := 0 , cs(0) := 0.5 = cos(–π/3) , sn(0) := –√0.75 , and
we stop when ph(T) = 0 > th(T) for the third time, making T ≈ 2·P(π/3) . Knowing only that
period P(|th(0)|) > 2π , we can try ∆τ := 4π/k for k ≥ 4 initially, say, and double k as often as
necessary until successive re-estimates Tk nearly settle down. How nearly is nearly enough?

While up4’s convergence at 4th order implies (Tk – T∞)/(Tk/2 – T∞) ≈ 1/24 for every k big

enough, it implies (T2k – Tk)/(Tk – Tk/2) ≈ 1/24 too, and vice-versa. These approximations

provide an estimate T∞ ≈ T2k + (T2k – Tk)/(24 – 1) acceptable when |T2k – Tk| is almost small

enough and (T2k – Tk)/(Tk – Tk/2) ≈ 1/24
 .

The following process approximates 2·P(Θ) for a rigid pendulum starting at th(0) := – |Θ| :

Function T = prd2(Θ, tol) := { %… approximates 2·P(Θ) ± tol for |Θ| < π .
if |Θ| ≥ π , ErrorStop(“ prd2(Θ) needs |Θ| < π ”) ;
τ° := 0 ; th° := – |Θ| ; ph° := 0 ; cs° := cos(th°) ; sn° := –√(1 – cs°)·(1 + cs°) ;
if sn° = 0 , return(T := 4·π) ;
 k := 4 ; ∆τ° := 8·π/k ; oT := -4 ; T := -1 ; K := 0 ;
do { ∆τ° := ∆τ°/2 ; ∆τ := ∆τ° ; ooT := oT ; oT := T ;
 τ := τ° ; oτ := τ ; th := th° ; ph := ph° ; sn := sn° ; cs := cs° ; L := -1 ;
 do while ((L < 2) or (τ ≠ oτ)) { oτ := τ ; %… advance τ to τ+∆τ

 call up4(∆τ, τ, th, ph, sn, cs) ; K := K+1 ; %… K counts calls on up4 .
 if (|L| = 1), { if ((sn < 0) & (ph < 0)), L := L+1 ; }
 elseif (L = 0), { if (ph > 0), L := L+1 ; }
 else { ∆τ := min(∆τ°, ph/sn) ; } ; } %… after L = 2 in 2nd period

 T := τ ; %… τ solved “ ph(τ) = 0 ” by cubically convergent Newton iteration

 } until ((| T – oT | < 10·tol) & (| (T – oT)/(oT – ooT) – 2–4
 | < 10–2)) ;

return(T := T + (T – oT)/15) . %… approximately 2·P(Θ) ± tol .

Do up2 and up4 conserve the rigid pendulum’s total energy ph2 + 4·sin2(th/2) ? Not exactly.
It neither accretes nor decays but fluctuates periodically within bounds separated by an amount

that shrinks like ∆τOrder provided ∆τ is not too big. This conforms to a theorem published
several years ago by Prof. J. Marsden and a collaborator at Cal. Tech.:

A scheme that predicts approximately the behavior of a friction-free mechanical system
after any given elapsed time, and that also conserves both total energy and all momenta,
must be exact, not approximate. [Exact schemes are uncommon in numerical work.]

Neither do up2 and up4 conserve the relations cs = cos(th) and sn = sin(th) exactly; they too
are conserved approximately. To some extent th is redundant, since it can be recovered after

many updates from a formula like th ≈ 2·arctan((sn/(1 + |cs|))sign(cs)
) , in which case the two

lines “ th := th + ph·∆τ/2 ; ” could be deleted from up2 to save a little time. And then, if an
approximation for total energy is needed after updates, it too could be approximated by

 ph2 + 4·sin2(th/2) ≈ e := ph2 + 2·sn·(sn/(1 + |cs|))sign(cs) .

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 30/39

Numerical Results from a MATLAB 5.2 version of prd2(Θ) ≈ 2·P(Θ) on a Mac Quadra 950:

prd2(π/3) = 13.486003 ± 0.0000013 in 156 calls upon up4 ; e fluctuated by ±0.0000006

 = 13.48600284 ± 10-8 in 296 calls upon up4 ; e fluctuated by ±3.7·10-8

 = 13.486002838501 ± 1.5·10-12 in 2226 calls upon up4 ; e fluctuated by ±10-11

prd2(π/2) = 14.832597 ± 2.2·10-6 in 167 calls upon up4 ; e fluctuated by ±1.2·10-6

 = 14.83259741841 ± 2.4·10-11 in 1233 calls upon up4 ; e fluctuated by ±3·10-10

prd2(3) = 32.311079 ± 5·10-6 in 343 calls upon up4 ; e fluctuated by ±2.5·10-6

 = 32.311078744787 ± 7·10-11 in 2655 calls upon up4 ; e fluctuated by 6·10-10

The extravagantly accurate values are exhibited here only to corroborate the ±error estimates of
the less accurate values. Further corroboration comes from the calculator’s integrations exhibited
four pages ago. Compare the ±error estimate of prd2 after our 156 steps with the interval
estimate of ±0.000001 the book did not mention after 11520 steps. Our ±error estimates were
derived using the evil Calculus, using ideas that were misrepresented along with the misquoted
formula from the book’s p. 198. We addressed that on p.22 above. What matters here is less that
our method can reproduce the book’s at a far lower computational cost, more that …

Gustafson’s method is incorrigibly unrealistic.

If Energy is NOT Conserved: Gustafson intentionally disregards friction; instead he says
“(We can ignore air resistance and assume someone is giving the child a
 slight push at the end of each cycle to keep the amplitude at ±60°.)” p. 275

Why disregard friction? How slight a push suffices to keep a young girl happy and unafraid?
(A typical young boy may ask for a harder push.)

Without conservation of energy, time τ is not an integrable explicit elementary function of θ .
His time-bounds can no longer all be computed in parallel because friction shortens successive
swings, so the range of values to be taken by θ is unknown until the pendulum’s motion has been
simulated. This simulation must compute θ as a function of τ , instead of Gustafson’s τ as a
function of θ . His disparagement on p. 277 of such sequential simulations resembles his sneer
at backward error-analysis. We could paraphrase it thus:

But what if (as Gertrude Stein said of Oakland CA) there is no there there?

Our numerical method does not assume Conservation of Energy, and can account for friction as

Gustafson’s method cannot. The pendulum’s differential equation d2θ/dτ2 = – sin(θ) changes to

 d2θ/dτ2 = – sin(θ) – ρ·(dθ/dτ)·|dθ/dτ| for some small ρ > 0
at small air velocities |dθ/dτ| . The constant ρ depends in a complex way upon the girl’s shape
and size and the air’s density. Ideally ρ could be determined by experiments in a wind tunnel.

You asked “ Where will it be then ?”
I cannot give you the answer you requested, and it is all your fault, because you
should have asked a slightly different question. I gave you a perfect answer to the
question you should have asked: “ When will it be there ?” Cf. his box from p. 76.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 31/39

Rather than put a little girl in a wind tunnel, we can estimate ρ by observing how the amplitudes
of the swings decrease from one swing to the next, assuming the swing’s pivot is lubricated well
enough to render friction there negligible compared with air resistance. Then it changes both
appearances above of “ ph := ph – sn·∆τ/2 ; ” in procedure up2 to

 ph := ph – (sn + ρ·ph·|ph|)·(∆τ/2)/(1 + ρ·|ph|·∆τ/2) ;

which is only approximately Anadromic with a negligible departure of the order of ρ·ph2·sn·∆τ
just when ph reverses sign from a value of the order of ∆τ . Also changed is prd2 ; for each
value of ρ , prd2 must stop to deliver th ≈ θ(τ) when τ > 0 and dθ/dτ = φ ≈ ph = 0 > th for
the second time after starting from, say, ph = – Θ = – π/3 = 1.047197551… .

Here is ρ plotted vs. the difference between this second extreme θ < 0 and initial – Θ = – π/3 :

The foregoing computation can exploit parallelism if a separate thread is allocated to each value
of ρ though each thread must compute its θ(τ) sequentially because its terminal values of τ and
θ are unknown initially. Ditto for interval arithmetic’s Self-Validating Computation. The graph
cannot be obtained from Gustafson’s methods; they rely upon conservation of energy and, in a
later chapter, momenta, to reduce the dimensions or order of a differential equation. His scheme
is inapplicable when he does not know what is conserved, with or without the evil Calculus.

By ignoring friction he laboriously computes rigorous bounds for unrealistic physical behavior.

Not yet is it “time to overthrow a century of numerical analysis” in favor of “Mindless, brute-
force application of large-scale parallel computing.” Neither are Gustafson’s choices of crude
methods to solve unrealistic physical problems relevant to a fair appraisal of Unum Computation.

Why, then, does his book denigrate so many other things he appears to misunderstand?
• • • • • • •

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

D e c r e a s e o f S e c o n d S w i n g

A
 i

r
 R

 e
 s

 i
s

t a
 n

 c
 e

C

 o
 e

 f
f i

 c
 i

e
n

t
 r

 h
 o

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 32/39

§9: Puffery instead of Percipience
THE END OF ERROR goes far beyond a text about Unum Computation. The book also attempts
to sell Unum Computation to gullible readers. Like late-night TV commercials for diet pills,
unregulated herbal remedies and magnetic bracelets, the book takes full advantage of the First
Amendment’s freedom of speech to tell ignorant readers what they wish to believe — that their
ignorance is no impediment to reliable computation. TV commercials usually append a caveat :

“This product is not intended to prevent, diagnose, treat or cure any disease. Results may vary.”.

Gustafson has left out the fine print. His worked numerical examples serve the same rôle as do
testimonials from “satisfied customers” voiced on TV by paid actors. He vents misguided
opinions regardless of facts, and assert bold generalities uninhibited by inconvenient details.

P. 316 has an instance of one of Gustafson’s bold generalities:

“Every physical effect can be modeled without rounding error
 or sampling error if the model is discrete.” [His boldface]

What he says here differs from what he means. Because he accepts the usual definitions of energy
and momentum in terms of derivatives, and accepts their conservation by the usual differential
equations of friction-free motion, his models of physics are the usual models. His numerical
treatments of these models using unum/interval arithmetic, when they work, take roundoff into
account and render it negligible by extending precision at run-time. His “discrete” means only
that his intervals encompass “sampling” (discretization) errors too. He doesn’t say how much
more computation his chosen numerical methods will cost to produce better than poor accuracy.

None of his physical models are actually discrete.

“ ‘When I make a word do a lot of work like that,’ said Humpty Dumpty, ‘I always
 pay it extra.’ ” Ch. VI of Through the Looking-Glass by Lewis Carroll

We have experienced discretized Physics before. What Gustafson imagines he has done was
actually done in the 1960s by Donald Greenspan at the Univ. of Wisconsin at Madison. He
advocated discrete mechanics to do away with calculus and derivatives by redefining energy and
momentum in terms of discrete divided differences. For example, he replaced velocity dx(τ)/dτ
by (x(τ+∆τ/2) – x(τ–∆τ/2))/∆τ . Then he redeveloped Newtonian-like laws of motion that do
conserve discretized energy and momenta. He wrote a book about them. It never caught on for
reasons now familiar. To obtain adequate accuracy from his discrete models required time-steps
∆τ so small and consequently computations so time-consuming that they could not compete with
numerical methods of higher than 2nd order derived for differential equations by using calculus.

Gustafson’s methods for evaluating integrals and solving differential equations have 2nd order
at best. Like Greenspan’s methods, they are uneconomical for better than poor accuracy.

• • • • • • •
In a free country, we all have the right to be wrong. Gustafson exercises his rights to assert
misguided opinions about floating-point arithmetic conforming to IEEE Standard 754. He does
not understand why each of the standard’s flags and arithmetic exceptions is needed, so he scoffs
at them all, saying on p. 30 …

“No one ever looks at these flags.” [His italics.]

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 33/39

“Computer languages provide no way to view the flags, …
 … computer users find them useless at best, and annoying at worst.”

[If flags cannot be viewed by a program(mer), how could they be useful, or annoying?]
He goes on to say …

His opinions are shared widely, but not by the committees responsible for revised standards for C
and Fortran. Their recent language standards provide for IEEE 754’s flags. What do they see
that Gustafson doesn’t?

Most exceptions occur very rarely in debugged programs. Testing every vulnerable floating-point
operation to detect whether it was exceptional is intolerably expensive. Testing a big array’s every
element to detect whether it is wrong because of an exception can be expensive too if the elements
were computed in parallel each from a short formula. There are too many ways for an element to
inherit a misleading unexceptional value from prior exceptions like over/underflow often harmless
but otherwise tedious to detect without a flag. Rather than waste time testing every element for
troubles that almost never happen, a program can run faster on average by testing one or two flags
after the array has been computed and, if a flag was raised, recompute the array some better way.

Most people ignore the Inexact flag. It matters to someone generating data to test the Math.
library’s accuracy, where the slightest error in test data can overwhelm the accuracy of a carefully
crafted function. For example, see “Accuracy Tests for Polynomials’ Zero-Finders” posted at
www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf . Another use for that flag would arise
among programming languages that do not distinguish big integer variables from floating-point
variables when computing Greatest Common Divisors and Least Common Multiples, which
roundoff ruins with no other warning. It has happened in MATLAB , which lacks access to flags.

• • • • • • •

Relatively few computer practitioners have tried to debug immense floating-point programs used
by scientists and engineers, especially programs thought already debugged. Gustafson must lack
that experience. Perhaps that is why he scoffs at IEEE 754’s flags and won’t “waste bit patterns
on a plethora of NaNs” (p. 49). On p. 24 he dismisses peremptorily their use for debugging.

Ideally, in a software development ambience devised to help debug those immense floating-point
programs, flags and NaNs would do double-duty as pointers (indirectly) to places in programs
where a flag was first raised or a NaN first created. The rules for propagation of NaNs through
arithmetic operations reveal something about the origin of a final result that is NaN. If it was
caused by a reference to an uninitialized variable, that would be revealed after a program’s work-
space had been initialized to NaNs that point to their variables’ names. Names of such variables
rarely outnumber the capacity of a NaN as a pointer; and the sites in a program at which a flag
can first be raised or a NaN created rarely outnumber their pointing capacities. The first creation
is the one most worth recording; the consequent cascade of exceptions matters less to debugging.

A fundamental mistake in the IEEE design is putting the “inexact” description in
three processor flags that are very difficult for a computer user to access. The
right place is in the number itself, with a ubit at the end of the fraction. Putting just
that single bit in the number eliminates the need for overflow, underflow, and
rounding flags.

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 34/39

What alternative are there to these debugging aids? Must a program crash at its first encounter
with an arithmetic exception deemed an error? Whose error? The programmer’s or the user’s?

Crashing a program at the first exception deemed an error seems a reasonable policy while the
author of a short program is debugging it, but to enforce that policy universally is a bad policy.
That policy would preclude interwoven speculative execution of two processes of which one will
succeed when the other doesn’t. That policy would prematurely abort searches that jumped out
beyond the domain of a subprogram; the correct response is to shrink the jump back inside the
domain and resume the search. That bad policy would cause software embedded in a controller to
abandon the process being controlled, rather than detect and diagnose the exception to maintain
control of a nuclear power plant, an aircraft, an automobile, or a medical life-support system.

Crashing is a bad policy to enforce universally. Continued execution oblivious to every arithmetic
exception is a bad policy to enforce universally, as JAVA does. Flags help programs detect
exceptions economically, diagnose them and compensate for them. NaNs convey information
helpful to programmers and users of programs who must debug them. The computing industry
has been very slow to recognize and support these debugging capabilities of IEEE 754. That does
not excuse Gustafson for scoffing at what he does not appreciate.

• • • • • • •

“The set of ubounds is closed under addition, subtraction, multiplication, and division.”
This assertion on p. 63 is misleading. The book defines division by 0 to be NaN (p. 137), and
defines division by a ubound (interval) containing 0 to produce NaN instead of an interval that
contains ∞ , though infinite unums are defined on p. 29. What are these good for?

Unum Computation’s ubounds differ from the usual interval arithmetic’s intervals in this one way:
A ubound may include or exclude either or both endpoints.

This detail matters rarely, and then it can matter greatly if 0 is an endpoint of an interval divisor :
 2/(1 + [0, 3]/[0, 1]) = 2/(1 + NaN) is NaN because 0/0 is NaN ; however
 2/(1 + [0, 3]/(0, 1]) = 2/(1 + [0, ∞)) = 2/[1, ∞) = (0, 2] .

Thus does infinity go away after it serves as a divisor. It can do the same if it is inside an interval,
though the idea of an interval containing infinity seems strange at first. Such intervals (ubounds)
would exist if the set of ubounds really were closed under all the rational arithmetic operations.

What good are intervals containing infinity?

They are needed to evaluate continued fractions. This ratio of Bessel functions is one of them:

 Jn(2√x)/Jn–1(2√x) = .

Many higher transcendental functions have continued fraction expansions. These often converge
over a wider domain in the complex plane than do power series. Rather than get involved in that
topic, let’s consider a simpler didactic example restricted to a real variable:

x

n x

n 1 x

n 2 x
n 3 …–+
------------------------–+

---–+
---–

--

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 35/39

cƒ(x) := 13 – = p(x) := .

Of these two expressions for the same rational function, p(x) is by far the more vulnerable to
over/underflow and to roundoff, though the function is otherwise well-behaved at every real x :

 Ideally, cf(x) = p(x) :

 cf(x) and p(x) computed in 4-byte float arithmetic (24 sig.bits):

The computation of cƒ(x) encounters divisions by zero at x = 1, 2, 3 and 4 .

Instead of rounding, unum/interval arithmetic widens intervals, and widens them vastly more for
p than for cƒ . For instance,

12

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
--–

--- 2152 x 2551 x 1000 x 194 13 x⋅–()⋅–()⋅–()⋅–
112 x 151 x 72 x 14 x–()⋅–()⋅–()⋅–

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

35

X

 c
 f

(
X

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x10-4

-6 -4 -2 0 2 4 6

x10-5 X - 4851 / 2048

 c
˜(

X
)

 &
 p

(X
)

cƒ(x) and p(x) are here
computed at about 500
consecutive float values
of x , each in 24 sig.bits.

The graph of cƒ is the
comparatively smooth
line sloping from upper
left to lower right thus: \
The graph of p is the
ragged oscillatory graph.
It shows that p suffers
from roundoff by orders
of magnitude more than
cƒ does.
But there is a catch:

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 36/39

 cƒ([303/128, 304/128]) ⊂ [–0.158, 0.146] ; p([303/128, 304/128]) ⊂ [–5.02, 5.001] .
And ordinary unum/interval arithmetic produces NaN instead of cƒ(X) at any interval X that
contains 1, 2, 3 or 4 , and also produces NaN for p(X) if X is too wide; for instance …
 p(X) is NaN for X := [–0.75, 0.75], [0.8, 1.2], [1.99, 2.01], [2.95, 3.05], [3.9, 4.1] and [4.9, 5.1] .

Far fewer NaNs are produced when intervals containing ∞ are allowed during the computation
of cƒ . I called such intervals “Exterior Intervals” when I advocated them in 1968 during a
Summer Course on Numerical Analysis, #6818 at the University of Michigan at Ann Arbor. An
ordinary “Interior” interval [α, β] has α ≤ β ; an Exterior Interval X = [α, β] has α > β and
includes ∞ and all real numbers ξ ≥ α or ξ ≤ β . For instance, [6, 8]/[–1, 2] = [3, –6] .

Thus do exterior intervals close the set of all intervals under addition, subtraction, multiplication
and division. Exterior intervals occur rarely and typically exist briefly, disappearing after being
used as divisors, or else generating NaNs as does [3, –6]·[–1, 2] because it includes ∞·0 . At
all the intervals X above at which p(X) is NaN in ordinary interval arithmetic, cƒ(X) delivers
finite intervals when a transient exterior interval is allowed to occur. Here they are:

Exterior intervals complicate interval arithmetic severely. In 1968 core memory cost too much
to waste on complexities rarely needed, so exterior intervals were hardly ever implemented. Now
unum arithmetic is so complicated that a little more complexity would barely be noticed. The
alternative dumps complexity onto the user of Unum Computation, who must rewrite cƒ as …

 cƒ(x) = g(x) := 13 – 12·(x – 2)·((x – 5)2 + 4)/(x + ((x – 5)2 + 3)·(x – 2)2)
to obtain intervals from g(X) not much wider and occasionally narrower than from cƒ(X) . Still,
g([+100, –100]) cannot be computed so directly as can cƒ([+100, –100]) = [12.877, 13.118] .
And the challenge of figuring out whence g(x) came is left to the diligent reader.

 Unum Computation could have been closed under all rational operations, but it wasn’t.

• • • • • • •

A fair appraisal of Unum Computation will ignore Gustafson’s
misleading assertions intended to sell it as THE END OF ERROR.

Whatever the cost of Unum Computation, it would be worth its price
IF

it always delivered all of the benefits Gustafson’s book claims for it.

But it doesn’t,
not even usually.

X cƒ(X) ⊂ X cƒ(X) ⊂ X cƒ(X) ⊂

[–0.75, 0.75] [17.4, 23.4] [1.99, 2.01] [12.0, 14.0] [3.9, 4.1] [6.58, 7.36]

[0.8, 1.2] [22.7, 28.5] [2.95, 3.05] [2.85, 3.91] [4.9, 5.1] [8.22, 8.74]

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 37/39

§10: A Curate’s Egg

The curate, Mr. Jones, attends a luncheon hosted by his superior, the Bishop:
Bishop: “I'm afraid you've got a bad egg, Mr. Jones”.
Curate: “Oh, no, my Lord, I assure you that parts of it are excellent!”

From “True Humility”, a cartoon by George du Maurier,
 originally published in Punch, 9 November 1895.

Dictionary Definition:
A “curate's egg” describes something at least mostly bad, with perhaps some good bits.

• • • • • • •

Compared with variable precision interval arithmetic implemented in floating-point for a widely
used imperative language like C++ or Fortran, Unum Computation has its benefits and its costs.
The benefits come more from how it manages roundoff, less from how Gustafson uses it to
manage discretization errors and uncertain data.

Unum Computation shares benefits and limitations with an interval arithmetic whose precision
can vary at run-time. Roughly, if computed interval results’ widths are too big by some factor
less than κ , say, and if those widths are due almost entirely to roundoff, then recomputation
with unum or interval arithmetic of a wider precision adequate to reduce rounding errors by a
factor smaller than 1/κ almost always produces acceptably accurate results. And if not, doubling
arithmetic’s precision almost always works. And if not, an error-analyst is needed to recast the
problem, if possible, perhaps as a Self-Validating Computation mentioned in §6 p. 18 above.

Rigorous unum/interval bounds for discretization errors can be costly in two ways. First, they
often require mathematically deft (re)formulations of a problem to render its discretization errors
subject to simple bounds, like those for ∫a

b
 ƒ(x)·dx in §7 p.23 above, or else eligible for Self-

Validation. For example, here is how an initial-value problem “ dy/dτ = ƒ(y) , y(0) = y° ” would
be reformulated:

Recasting this differential equation as a Volterra integral equation “ y(τ) = y° + ∫0
τ

 ƒ(y(ξ))·dξ ”
turns it into a fixed-point problem for a contractive map of a function-space. Now fixed-point
y(τ) becomes the limit of a convergent iteration that illustrates the second way that rigorous
interval bounds can be costly: They converge too slowly to be economical for high accuracy.

Rigorous interval bounds for discretization errors usually come from processes that converge
slower, as discretizations are refined, than do processes that yield error estimates (not rigorous
bounds) based upon asymptotic behaviors, like the ± estimates offered in §7 p. 23-4 above for
Takahashi-Mori quadrature. Some discretization errors are bounded rigorously by error-analyses
based upon differential inequalities or monotonicity theorems that cost far less to apply than does
interval arithmetic. Still, when really needed, perhaps for a certificate of correctness acceptable
as evidence in a lawsuit, rigorous interval bounds can be worth their cost in effort and time.

Some of the unacknowledged run-time costs of address computations during Unum Computation
were discussed above in §5, p. 15. Further run-time costs include increased latency incurred by
additional pipeline stages needed to cope with the greater complexity of unum arithmetic, if we

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 38/39

assume as Gustafson does that the CPU performs as much of unum arithmetic as possible on-
chip. The complexity worsens if both ends of ubounds must be computed in parallel to save a
factor greater than 2 in run-time throughput. These further costs seem similar to the run-time
costs of software support for variable-precision floating-point interval arithmetic at roughly the
same or better speed. However, the far greater complexity of on-chip circuitry needed to handle
tightly packed variable-width unums will likely increase substantially the price of the CPU chip.
Until one be built, cost estimates remain speculative.

Comparing costs with the value of benefits remains speculative too. Almost every computation
costs far less than an appraisal of its correctness would add to its cost. Over the past few decades,
as the cost of computation has dwindled, so has the value of an ever increasing fraction of what is
being computed. Not everyone is willing to pay extra for an appraisal that costs more than the
computation is worth, especially if this appraisal merely confirms what might otherwise be taken
for granted. Consequently there is little demand for error-analyses, and less for error-analysts,
though the demand is intense when and where it exists. The demand for error-bounds evaporates
when they cost more time, hardware or human labor to compute than they are worth.

As a scientist or engineer, I wish not to know how big rounding and discretization errors in my
results aren’t. I need to know only that they are negligible — so tiny that I need not know them.
I would rather increase arithmetic’s precision and refine discretization if necessary to render their
errors almost surely negligible. And I am unwilling to pay much for what I wish not to know.

Uncertainty Quantification is different: How much uncertainty have my results inherited from
uncertain data? I wish dearly to know that; but Unum Computation and interval arithmetic too
often overestimate uncertainty grotesquely without an intense error-analysis, and with one they
play a minor rôle. For example, take the topic of the book’s ch. 21.4, pp. 321-6, structural
analysis. The chapter begins with photos before and after the collapse of North Sea oil platform
Sleipner A in Aug. 1991. The engineer in charge had miscalculated concrete pillars’ strengths.

The book does not mention that Unum Computation would not have prevented that mistake.

The book treats a cantilevered structure with one strut and two cables, reducing its load to two
equations in two unknown forces rather than the more complicated equations for the structure’s
deflection under load. The chapter ends with a computer-generated picture of a structure with
hundreds of members. The thousands of equations that would have to be solved for the structure’s
deflections under loads have not been programmed. Instead Gustafson concludes that Unum
Computation of C-Solutions will provide “provable bounds on the results.” [His italics] And
so they will; but the bounds may be millions of times too big. It happens because the equations
are much more sensitive than the structure to ill-oriented perturbations, as was illustrated by an
example of Failure Mode IV on p. 20 above. Interval arithmetic used naively does no better.
Realistic sensitivity analyses of elastic structures continue to “require some artistic choices” of
variations in parameters notwithstanding his assurance on p. 324 that instead “With uboxes, all
the possible parameter sensitivity is already in the c-solution, for all to see.” Exaggerated.

• • • • • • •

What about BIG DATA? Much of it requires only one or two bytes per datum. Would the cost of
conversion to unums be repaid by better computations of uncertainty inherited from the data?

Filename: EndErErs Version date: July 15, 2016 4:45 pm

Prof. W. Kahan Page 39/39

Statistical methods, like regression and estimates of standard deviations, compute the uncertainty
inherited from randomly drawn samples of noisy data. Unum/interval arithmetic can do that, as
can ordinary floating-point, provided their precisions exceed twice the data’s and the desired
result’s. Either way, ubounds or roundoff become negligible compared with standard deviations.
(Carrying less precision increases the likelihood that ubounds or roundoff will obscure results
excessively when the data are nearly redundant.) Error-analysis has obviated interval arithmetic.

Long experience and some error-analyses support a rough rule-of-thumb that renders roundoff
extremely unlikely to causes embarrassment if all intermediate floating-point computations are
performed carrying a little more than twice the precision trusted in data and desired in results.
This rule has survived the test of time in statistics, optimization, root-finding, geometry,
structural analysis and differential equations. Of course exceptions exist, but they are so rare as
to have given rise to a wry joke among numerical analysts:

Nobody unlucky enough to have been betrayed by that rule of
thumb need concern us; he has already been run over by a truck.

Gustafson chooses unum/interval computation to insure against that betrayal. Doing so exposes
him instead to the risk of betrayal by the failure modes exposed in §6, pp. 16-20 above.

Memory movements so dominate the costs of parallel computation with big data that numerous
Communications-Avoiding algorithms have been developed to lessen costs, sometimes by orders
of magnitude. Some of these algorithms demand considerably more arithmetic precision than the
data’s during certain intermediate computations. For an example see

www.eecs.berkeley.edu/~aditya/caml-talk .
How would Unum Computation know which intermediate computations need higher precision
and how much? Or would end-figure uncertainties in the data be misinterpreted as justifying
degraded accuracy? Who decides? (A similar question was raised on p. 8, §2 above.)

• • • • • • •

Spectral analysis uses a fast Fourier transform to split a signal into its constituent frequencies.
The transform preserves in the spectrum the Root-Mean-Square of the signal’s noise, which is
usually unknown at the outset. The computation’s arithmetic should carry enough precision that
ubounds or roundoff will augment that noise negligibly. This can be assured if, for a signal of

length 2N , the arithmetic’s precision exceeds the data’s by at least N – 1 sig.bits. For a signal
stored in IEEE 754 (2008) half-precision numbers (2 bytes wide, 11 sig.bits), IEEE 754 single-

precision arithmetic (4 bytes wide, 24 sig.bits) can handle signals of lengths up to 213 = 8192 at

least. Whether a shorter signal of length, say, 210 = 1024 would benefit enough from a Unum
Computation, with slightly less precision, to offset the cost of its implementation seems unlikely
when the extra costs of storing diverse length unums (§5, p. 15 above) are taken into account.

• • • • • • •

Perhaps some uncertainty still beclouds the costs and benefits of Unum Computation. Anyway,
 it is certainly NOT THE END OF ERROR

