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Commentary on   

 

“THE END of ERROR — Unum Computing”

 

 

 

 by  John L. Gustafson,  (2015) CRC Press

I am going to lose a friend by quoting a  

 

Yiddish

 

  saying appropriate for this very seductive book:

“Almost all  True  is altogether a  Lie.”

The first lie is the book’s title.  It promises that  Unum Computing  will end computational errors.  
It won’t.  These errors have numerous sources besides programmers’ correctable mistakes:

[1]  Answering the wrong question,  correctly or incorrectly.
[2]  Errors in models of physical,  chemical,  biological,  economic,  …  systems.
[3]  Discretization errors in approximations to the continuum and to movement.
[4]  Errors and uncertainties in measurements and other observations.
[5]  Roundoff in arithmetic and in  Decimal 

 

↔

 

 Binary  conversions.

Correct numbers can lie.  Mark Twain  attributed to  Benjamin Disraeli,  perhaps wrongly, …
 “There are three kinds of lies:  lies,  damned lies,  and statistics.”

So  Unum Computing  cannot possibly and does not try to put an end to all-too-common errors of 
type  [1],  nor of type  [2].   Pp. 327-332  assert that  unums  alleviate  

 

all

 

  errors of the other types,  
but they can’t.  Which kinds of errors can  unums  allay?  Many of type  [5],  and a few of type  
[4],  but provably not  

 

all

 

  of them.  Neither need  unums  perform their task economically when 
they succeed at it.  And they cannot always succeed without human mathematical error-analysis.

Unum Computing  resembles interval arithmetic with varying precisions determined more or less 
automatically at run-time to achieve a prescribed accuracy demand.  Good

 

 

 

!

 

  Interval arithmetic 
came into existence in the late  1950s  to cope with the consequences of uncertainties mainly of 
types  [3-4],  but succeeded only in relatively simple special cases because of limitations imposed 
by small  (by today’s standards)  memories and one-pass compilers.  Even when freed from these 
limitations,  even if it exploits vast memories and massive parallelism and varying precisions 
determined at run-time,  interval arithmetic remains vitiated by the  Curse of High Dimensions.  
And since  Unum Computing  is a tarted kind of variable-precision interval arithmetic, …

The same  Curse of High Dimensions  vitiates  Unum Computing.

Alas,  errors take so much longer to correct than to commit that I despair of correcting even the 
worst few errors in  Gustafson’s  book.  Its  433  pages offer misunderstandings,  misconceptions,   
misremembered history,  misleading comparisons and mistaken mathematics.  Where to begin?

The book’s  Preface  begins on  p. xiii  with an intentionally provocative quotation:
“The purpose of mathematics is to eliminate thought.”

Mere hyperbole.  Mathematics needs no purpose;  but when mathematics does have a purpose it is 
to promote economy of thought.  It can eliminate wasteful thought,  not all,  and certainly not 
thoughts that must accompany every approximate computation.  Among these thoughts are error-
analyses,  sometimes trivial,  sometimes not.  I have long yearned to automate them and spend 
time instead upon enjoyable kinds of mathematics.  No such luck.  Unum Computation  cannot  
END ERROR  because it cannot end the occasional necessity for an error-analysis.  Why not?
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§1: Why  Approximation = Sin

 

In the  1970s  D.H. Lehmer,  a renowned  Number Theorist  at  Berkeley,  used to warn me …
“Acquiescence to rounding errors places you in a state of sin.”

That sin occurs when an ideal mathematical algorithm is not distinguished from the computer 
program intended to implement it,  though the program was transliterated faithfully from the 
algorithm into the computer’s programming language.  Usually the program’s result is as close as 
desired to what was expected from the algorithm.  Occasionally results are wrong enough to cause 
trouble.  Unum Computing  purports to eliminate those occasions.  Why do they happen anyway?

Some algorithms suffer badly from roundoff at some otherwise innocuous input data.  When we 
recognize such an algorithm we call it  “Numerically Unstable”  and try to replace it by a different 
numerically stable algorithm to solve the same mathematical problem.  Often an error-analysis 
can distinguish the stable from the unstable algorithm by taking account of roundoff;  but there are 
complex algorithms in daily use for whose programs no satisfactory error-analyses exist yet.  This 
is why numerical computation can be somewhat uncertain.  Most programs are simple enough to 
have obvious error-analyses,  or they invoke subprograms from a tested and reliable library,  or 
they use stable algorithms programmers with  Science,  Engineering or Mathematics  degrees may 
have learned from a  University  course on modern  Numerical Analysis.

The book  END of ERROR …  is aimed at programmers who have taken no course on  Numerical 
Analysis  or have forgotten it,  and yet desire numerical results more than  

 

usually

 

  correct;  they 
want  

 

always

 

  correct.  The book promises  Unum Computation  

 

always

 

 delivers correct results.

 

No such promise can be fulfilled.

 

Deep mathematical and logical properties of real numbers prevent  Unum Computation,  and any 
other scheme restricted to perform only arithmetic operations of  

 

at  most

 

  some finite precision,  
no matter how wide that precision may be,  from  

 

always

 

  getting correct results out of  

 

every

 

 
program transliterated faithfully from an ideal mathematical algorithm that would work correctly 
with infinitely precise arithmetic.  These are the wages of the sin of approximate computation.  To 
know that a computed result is (in)correct may require an error-analysis,  which might not exist.

Everything in life is uncertain except death and taxes.  Compared with ordinary floating-point of 
an appropriately chosen precision,  the book’s  Unum Computation  often diminishes uncertainty,  
often exacerbates it,  and usually takes longer,  sometimes very much longer despite reliance upon 
parallel computation to an extent that not everyone can afford.  The book’s examples were chosen 
to show how well  Unum Computation  works.  To show how badly it can misbehave,  examples 
will be presented herein.  None are complicated;  most differ little from the book’s.

The first example is adapted from the book’s  pp. 173-6.  It exposes a fundamental difficulty in the 
computation of real numbers in general,  most the results of limit-processes.  The simplest one is 
an iteration  

 

x

 

n+1

 

 := 

 

ƒ

 

(

 

x

 

n

 

)

 

  that always converges to a limit  

 

z

 

 = 

 

ƒ

 

(

 

z

 

)

 

  as  n 

 

→

 

 

 

∞

 

 

 

,  and does so at a 
palpable rate,  though the limit  

 

z

 

  may depend upon the given initial value  

 

x

 

0

 

 

 

.  Ideally,  iteration  
can cease when  

 

x

 

n+1

 

 – 

 

x

 

n

 

  becomes smaller than some tolerance inferred from the known rate of 
convergence and the desired accuracy.  Thus an ideal mathematical algorithm derived from the 
text of  

 

ƒ

 

  and its properties can compute the limit  

 

z

 

  provably as accurately as desired. 
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Let that ideal algorithm be translated into a computer program including a subprogram  

 

F

 

  derived 
from the text of  

 

ƒ

 

  to  compute it to any desired accuracy using arithmetic of adequate precision.

 When and why should the computed iteration  

 

X

 

n+1

 

 := 

 

F

 

(

 

X

 

n

 

)

 

  be stopped ?

A stopping criterion suited to an ideal iteration  

 

x

 

n+1

 

 := 

 

ƒ

 

(

 

x

 

n

 

)

 

  might not work for its computed 
iteration  

 

X

 

n+1

 

 := 

 

F

 

(

 

X

 

n

 

)

 

 

 

,  especially when the limit  

 

z

 

  depends discontinuously upon  

 

x

 

0

 

  and also 
every subsequent iterate.  It happens to an iteration due to  J-M. Muller  slightly modified:

  w

 

n+1

 

 := 111 – (1130 - 3000

 

/

 

w

 

n–2

 

)

 

/

 

w

 

n–1

 

 ;    w

 

0

 

 := 2 ;    w

 

1

 

 := –4 .
This is the iteration in the book’s pp. 173-6.  It can be written in the form  

 

x

 

n+1

 

 := 

 

ƒ

 

(

 

x

 

n

 

)

 

  by setting

 

 

ƒ

 

(

 

)

 

 :=  ;     the iteration starts at  

 

x

 

0

 

 :=  .

Absent roundoff,  

 

x

 

n

 

 

 

→

 

 

 

z

 

 =   about as fast as  (5/6)

 

n

 

 

 

→

 

 0

 

 

 

;   but roundoff causes  

 

X

 

n

 

 

 

→

 

   at 

least about as fast,  ultimately,  as  (3/50)

 

n

 

 

 

→

 

 0  no matter how many significant digits are carried 
to compute  

 

F

 

  in ordinary floating-point.  53 sig.bits  (like 15 sig.dec.)  produces  W

 

13

 

 

 

≈

 

 6

 

.

 

1394

 

 .

What does  Unum Computing  get?  On  p. 175  the book exhibits iterates  w2  to  w13  as  ubounds  
(intervals)  carrying up to  57 sig.dec.  Their widths appear not to shrink;  their  w13  is roughly  

[6.1395,  6.1452] .  It seems a meager reward for such arduous arithmetic.  Unaided by an error-
analysis,  how long will  Unum Computing  take to get,  say,  13  sig.dec.  of the correct limit  z ?

Forever?

An error-analyst’s task goes beyond overestimating error.  When an overestimate is excessive,  a 
different way is sought to compute the desired result with an acceptable error at a tolerable cost.  
Correctly  w13 ≈ 6.142359  computed from an error-analyst’s replacement of the original function

ƒ  by a new  ƒ( ) :=   to get a numerically stable recurrence that computes accurately 

enough every iterate  xn  in floating-point arithmetic.  But iterates are not the desired result;  it is 
their limit  z .  Is there another way to compute it,  preferably sooner?

Iteration selects  z  from the roots of an equation  “ z = ƒ(z) ”.  Unum Computing  and interval 
arithmetic share a laborious scheme to find numerically every solution of an equation in some 
given part of its domain.  That part is partitioned into numerous small regions  (ubounds or 
uboxes)  on each of which the equation’s range is (over)estimated.  Regions within which the 
equation can nowhere be satisfied are discarded;  the rest are partitioned into smaller subregions,  
some discarded,  and so on until the remainder confine the equation’s roots as tightly as desired.

The book calls them a  c-solution.

The iteration  xn+1 := ƒ(xn)  amounts to a way to choose a fixed-point  z = ƒ(z)  of  ƒ .  As defined 
above,  it has three fixed-points at which  w = v = 5,  6  or  100 .  The choice depends upon  x0  
discontinuously in a way the  c-solution  of  “ z = ƒ(z) ”  cannot reveal.  In general an equation 
like it could have infinitely many roots  z  from which to choose.  Or the domain of  ƒ  could be a 
vector space of high dimension in which  z = ƒ(z)  on a continuum whose sufficiently tight  c-

w

v

111 1130 3000 v⁄–( ) w⁄–

w

4–

2

6

6

100

100

w

v

11 30 w⁄–

w
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solution  entails astronomically many tiny subregions  (the  Curse of High Dimensions),  but does 
not reveal the limit of the iteration  xn+1 := ƒ(xn) .  That kind of  c-solution  resembles more nearly 
an  Answer to the Wrong Question  than the evaluation of the desired limit  z .  Problems that foil  
Unum Computation  in similar ways will turn up in  §4  and  §6  below.

Approximate computation of a discontinuous function may seem foolish,  yet it happens often. As 
a function of its elements,  the rank of a matrix is discontinuous if less than both dimensions.  A 
square matrix’s  Jordan Normal Form  is discontinuous if it is not diagonal.  The greatest common 
divisor of polynomials with real coefficients varies with them discontinuously when nontrivial.

Such problems must be altered a little to make sense in the context of approximate computation.  
For instance,  instead of asking for the rank of a matrix,  compute its distances from the nearest 
matrices of ranks lower than its least dimension.  A seemingly slight alteration of the problem has 
incurred enormously many more approximate arithmetic operations than the unaltered problem’s 
solution would have entailed if exact  (like integer)  arithmetic were feasible.  Consequently most 
people resist accepting a complicated and costly answer to what seemed to be a simple question.

Still,  to ask  Unum Computing  to offset human folly may be deemed unfair,  so henceforth … 

We shall eschew computations of a discontinuous function at one of its discontinuities.

That was my motive for an example about which  Gustafson’s  book says on  p. 177 …

“… not many moments of  ‘high drama’  in a book … .
     Can unums defeat Professor Kahan’s monster? …”     [His italics.]

My  “monster”  showed how floating-point of every preassigned precision could deliver the same 
wrong result almost everywhere for a continuous function.  Frustrating  Unum Computation  was 
not the monster’s purpose.  Besides,  I advised that  “Numerical distress due solely to roundoff is 
relieved too often by increased precision for its use when available to be deterred by this example 
despite its worrisome simplicity.”  Let’s look at this example the book calls a  “monster”:

Real variables   x,  y,  z  ;
Real Function  T(z) :=  { If  z = 0  then  1  else  ( exp(z) – 1 )/z }  ;

Real Function  Q(y) :=  | y – √(y2 + 1) |  –  1/( y + √(y2 + 1) )  ;
Real Function  G(x) :=  T( Q(x)2 )  ;

For  Integer  n = 1 to 9999  do  Display{ n ,  G(n) }  end do.

( I don’t know why the book changed my names from   T  to  E   and   G  to  H .)

Ideal real arithmetic,  free from roundoff,  produces  Q(x) = 0  and  G(x) = 1  for every  x > 0 .  
Approximate arithmetic almost always produces something else tiny for  Q(x) ,  if not a rounding 

error then  –1/(2x)  when  x  is so huge that  “ x2 + 1 ”  rounds the  1  away.  Then  exp(Q(x)2)  

rounds to  1  and   G(x) := T( Q(x)2 )  ends up wrongly as  0  instead of  1 .  Almost always.

This disconcerting example comes from  §6  of my web-page posting  Mindless.pdf.  It is simple 
enough for a few computer programs  (one called  “Herbie”  was devised at the  University of 
Washington in  Seattle)  to scan the text of functions  T,  Q  and  G,  diagnose their error,  and offer 
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to cure it as would a human error-analyst.  Diagnosis exposes a culprit:  The analytic function  
T(z)  is a  Divided Difference with a  Removable Singularity at  z = 0 ,  but its removal is thwarted 
by roundoff in  exp(z)  when  |z|  is tiny and not zero.  A cure was presented in my posting just 
after the diagnosis.  Assuming that the  Math. library’s  exp  and  log  are accurate within less than 
a unit in the arithmetic’s last digit carried  (as should always be the case nowadays),  the following 
substitute for  T  was supplied:

Real Function  T(Real z) := { … Precautions against

t := exp( z ) ; … premature over/underflow,

If (  t ≠ 1 ) then  t := ( t – 1 )/log( t ) ; … superfluous here,  have been 

Return( t ) ;                 } … omitted for simplicity’s sake. 

With this substitution,  G(x) = 1  for every  x > 0  and for all supported precisions,  single,  double 
and quadruple,  of floating-point arithmetic.  The revised program counteracts roundoff in  exp .

After this example my posting  Mindless.pdf  goes on to say …
“Ironically,  if multi-precision  Interval Arithmetic  were used naively to compute  G(n) 
   either from its initial formula or from its accurate program,  the results at every precision
  would be intervals so excessively wide as could not distinguish the accurate program 
  from the inaccurate one.”

The book runs my initial formula  G  (my “monster”)  in interval arithmetic to get  G ∈  [-∞, ∞]  
on  p. 177,  but nowhere mentions my accurate version.  Instead the book substitutes this for  T :

Real Function  T(z) :=  { If  z ≈ 0  then  1  else  ( exp(z) – 1 )/z }  ;
This version of  T  differs from my  monster’s  in just  one  crucial symbol,  which yields  G = 1 
correctly;  but it side-steps a fundamental question:

How small must a computed value  z  be to be deemed indistinguishable from zero?

The answer to this question requires an error-analysis or a lucky guess.  Gustafson  was lucky.  
Had my  monster  been designed to thwart  Unum Computing,  my  G  would have been different:

Real Function  G°(x) :=  T( Q(x)2 + (10.0–300)100000·(x+1) )  ;          
For  Integer  n = 1 to 9999  do  Display{ n ,  G°(n) }  end do.

Without roundoff,  the ideal value  G°(x) ≈ 1.0  for all real  x .  Rounded floating-point gets  0.0  
almost always for all practicable precisions.  What,  if anything,  does  Unum Computing  get for  
G°(n) ?  And how long does it take?  It cannot be soon nor simply  1 .  Why does the addition of a 
negligible deeply underflowed quantity to the argument of  T  cause neither of my programs to 
behave differently but distresses the text’s program?  We’ll see soon below.

The computation’s undiagnosed culprit is  Q .  In the early  1970s,  when the  monster  was born,  
no automated algebra system like  Macsyma,  Maple,  Mathematica, …  could  Simplify  (deduce 
that)  Q(y) = 0  for all real  y  in the absence of roundoff.  Now some systems,  like  Maple,  are 
smart enough to do it.  To outsmart them,  Q  can be replaced by a different expression provably 
zero although no current computer program can find the proof.  The question arose in the  1950s:

Given any collection  {ζj}  of at least two real numbers,  perhaps transcendental, 
 do real algebraic numbers  {αj} exist,  not all zero,  satisfying  ∑j αj·ζj = 0  ?
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The conjecture then was that the question is undecidable in general.  The conjecture persists so far 
as I know.  In  1968  D. Richardson  in  pp. 511-520 of J. Symbolic Logic 33  showed how,  if the 
conjecture is true,  any algorithm intended to decide which expressions simplify to zero can be 
thwarted by an expression built from integers,  finitely many algebraic operations,  absolute value,  
and one transcendental constant  log(2) .

In short,  whether an expression simplifies to zero can be very unobvious.  What an expression 
delivers when computed approximately can be unpredictable without an error-analysis,  which 
might not exist.  Replacing the predicate  “ z = 0 ”  by  “ z ≈ 0 ”  implies a tolerance whose 
appropriate choice is generally unobvious without an error-analysis,  which might not exist.

Gustafson  has dodged the zero-question by changing utterly the meaning of  “ ≈ ”  .  When he 

asserts  “ x ≈ y ”  he means that  ubounds  x  and  y  overlap in at least one point.  Consequently he 

would assert  “ [0, 100000000] ≈ 0 ”  .  An infinitesimal addition like the one in my revised  G°  
would alter that predicate to something like  “ (0, 100000000.000…001) ≈ 0 ”  whose open  
ubound  (interval)  now excludes the single point  0 ,  rendering the predicate  false.

In a numerical computation designed well,  a predicate like  “ x ≈ y ”  would select one of two 
paths through a program that both produce an adequate result when the predicate is nearly true or 
nearly false.  This is what my more accurate version of  T  does promptly.  The book’s version of  
T  must take an exceptionally long time,  or produce a wide unsatisfactory  ubound,  or both.

We have lived through such experiences before.  For instance,  in the mid-1960s  K. Iverson’s  
programming language  APL  was implemented on an  IBM 360/50  in the basement of  IBM’s 
Watson Research Laboratory  in  Yorktown Heights.  The implementers decided that the predicate  
“  x = y ”  should always be interpreted as if it were  “ x ≈ y  within a tolerance  CT ”.  Here the  
Comparison Tolerance  CT  was a  System Variable  which,  like the origin for indexing arrays,  
the programmer could alter from what the system supplied by default.  In  1967  the implementers 
admitted to me that,  had they known earlier what they had come to know by then,  they would not 
have done it.  Almost no programmer would figure out how to alter  CT ;  and after they ignored it 
some of their programs would misbehave badly.  Gustafson’s  “ ≈ ”  will revive that experience.

On  p. 178  just after his  Unum Computation  of the  “monster”,  his book reproduces without 
attribution a painting of the young hero  David  standing with his sling over the corpse of  Goliath.

More hyperbole.
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§2:  Oh,  Ye’ll take the Low Road  and I’ll take the High Road …
Both roads take you to  Scotland,  though the  “high road”  may take you there sooner.

Surprisingly many numerical programs deliver practically the same results by utterly different 
intermediate paths,  some of them sometimes taking substantially longer than others,  all chosen 
by accidents of roundoff.  Examples include  Gaussian  elimination with pivotal exchanges to 
solve linear systems,  QR  and  Jacobi  iterations to solve eigenproblems,  and  Newton’s  and 
other iterations to solve polynomial and other nonlinear equations,  especially in high dimensions.

Let’s focus upon a specific example:  QR  iteration to compute the eigenvalues and eigenvectors 
of a real symmetric matrix.  First it is reduced by orthogonal  Similarities  (matrix multiplications)  
to a tridiagonal form with the same eigenvalues within tolerable rounding errors.  Then many  QR  
iterations are performed to reduce the tridiagonal to a diagonal matrix with the same eigenvalues 
within tolerable rounding errors.  When some off-diagonal elements are small but not yet small 
enough to disregard,  the iteration is virulently unstable in so far as the iteration’s progress from 
one tridiagonal to the next becomes an accident of  roundoff/roundoff.  The picture below shows  
(smoothed)  the program’s roundoff-determined path through the space of tridiagonal matrices:

This can happen when the same data is presented to the same program but compiled by different 
compilers  (or different  “optimizations”)  leading to the performance of associative operations,  
like two additions or a multiplication-and-division,  in different orders.  No great harm is done to 
the eigenvalues though they may come out in an inconsequentially different order.

How will  Unum Computing  handle this kind of near-inconsequential indeterminacy?  If a book’s 
algorithm or a published  Fortran  program is transliterated to  Unum Computing,  will it expend 
extra time recomputing in higher precision until the indeterminacy is overcome?  Or will this 
indeterminacy be converted to uncertainty  (ubounds)  and propagated to the results?  Who makes 
the choice?  Without an error-analysis,  how can higher precision be justified when each matrix 
element is uncertain in its last bit,  though this uncertainty affects only the last few bits of the 
computed eigenvalues?

Unum Computing  proffers easy answers to questions about computational errors,
not necessarily helpful answers.

Diagonals

•

All the tridiagonal matrices in a sheet have
the same eigenvalues,  obvious in diagonals.

The eigenvalues of adjacent sheets differ,
inconsequentially,  in only their last few bits.

Curved paths are followed during a program’s
computation of the set of eigenvalues when …

…  no rounding error occurs:  “C”

…  the usual rounding errors occur:  “?”

…  a rounding error is altered:   “G”
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§3: Interval  and  Ubound  Evaluations of a Polynomial

We wish to evaluate a polynomial,  say    π(ξ) := α + β·ξ + δ·ξ2   to keep it simple,  given intervals 
for its coefficients and for its argument  ξ .  On  pp. 225-232  of  THE END of ERROR — Unum 
Computing  John L. Gustafson  asserts  “a general approach for evaluating polynomials with 
interval arguments without any information loss is presented here for the first time.”  [His 
bold-face.]  On p. 227  the book says  “Perhaps one reason this approach does not seem to appear 
in the literature for interval arithmetic is that it makes heavy use of the ubound ability to express 
whether an endpoint is open or closed”  No,  that is not the reason.  His scheme is unused partly 
because it is inefficient and partly because of a mistaken assertion on  p. 226:

“ Notice that the new coefficients each use  a, b, c, …  at most once.
 That means they can be computed without information loss.  …”  

Actually,  information  can be  lost when the coefficients are intervals  (or nontrivial  unums),  
rather than the exact scalars used in the text’s simple illustrative examples.  That information loss 
will be demonstrated below.  Consequently better ways than the book’s exist to evaluate the 
interval range of a polynomial,  even using unums.

First let us see how information gets lost.  Given that  ξ ∈  [x, X]  (which means  x ≤ ξ ≤ X ),  the 
book partitions the interval  [x, X]  into subintervals each narrow enough that its process,  that 
overestimates the range of the given polynomial  π  on each subinterval,  produces acceptably 
close overestimates.  “Acceptably close”  means that no overestimate is wider than the true range 
by more than an implied tolerance.  The process shifts the  ξ-origin  to subintervals’ ends.  The 
book claims that,  because each shift’s every new coefficient uses the given coefficients  “at most 
once”,  no information can get lost.  Here is a counter-example to that claim:

Given that  α ∈  [a, A] ,  β ∈  [b, B]  and   δ ∈  [d, D] ,  we infer that  π(ξ) ∈  [p(ξ), P(ξ)]  thus:

 If  ξ ≥ 0  then  { p(ξ) := a + b·ξ + d·ξ2 ;    P(ξ) := A + B·ξ + D·ξ2 }

    else  { p(ξ) := a + B·ξ + d·ξ2 ;   P(ξ) := A + b·ξ + D·ξ2 } .

An origin-shift to,  say,  ξ = 2  produces a polynomial  φ(ζ) = π(ζ+2)  with these coefficients:

 φ(ζ) := (α + 2β + 4δ) + (β + 4δ)·ζ + δ·ζ2 .
Here each of  φ’s  new coefficients uses each of the given coefficients  “at most once”.

Now we infer that  φ(ζ) ∈  [f(ζ), F(ζ)]  thus:

 If  ζ ≥ 0 then { f(ζ) := (a + 2b + 4d) + (b + 4d)·ζ + d·ζ2
 ;  F(ζ) := (A + 2B + 4D) + (B + 4D)·ζ + D·ζ2

 }

   else { f(ζ) := (a + 2b + 4d) + (B + 4D)·ζ + d·ζ2
 ;  F(ζ) := (A + 2B + 4D) + (b + 4d)·ζ + D·ζ2

 }.

Since  φ(-1) = π(+1) ,  we might hope that  [f(-1), F(-1)] = [p(+1), P(+1)] ,  but actually
  f(-1) = (a + 2b + 4d) - (B + 4D) + d  <  p(+1) = a + b + d    and

P(+1) = A + B + D  <  F(-1) = (A + 2B + 4D) - (b + 4d) + D
unless the given coefficients’ intervals are degenerate with  b = B  and  d = D .

The loss of information  (excessively wide  [f(ζ), F(ζ)])  can be avoided by taking the precaution 
to correlate the signs of  ζ  and  ξ  ,  but I have not found that precaution in the text’s process.

Anyway,  there is a process more efficient on average than  Gustafson’s.
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Having constructed the almost-polynomials  p  and  P  that barely constrain  π(ξ) ∈  [p(ξ), P(ξ)] ,  
we can determine the enclosure of  [p(ξ), P(ξ)]  for  ξ ∈  [x, X]  by computing the extrema of  p  
and  P  in that  ξ-interval.  The computation is easy if  π  is cubic or quadratic because internal 
extrema of  p  and  P  occur at internal zeros of their derivatives.  This is true also for a polynomial 
of higher degree,  but then the challenge is to compute  all  the extrema,  which requires that  all 
the internal zeros of the derivative be located.  The accuracy of those zeros is not challenging,  
because a polynomial varies so slowly around an internal extremum that it is easy to compute 
accurately enough around there by interval arithmetic carrying enough precision.

The challenge is to get  all  of the extrema.

The derivative of a polynomial is a polynomial of lower degree.  Each of a polynomial’s simple 
real zeros lies between two adjacent extrema of opposite signs.  This reduces the location of all 
extrema of a polynomial to the location of all extrema of that polynomial’s second derivative,  
whence follow locations of all the zeros of the first derivative.  Downward recursion reduces the 
challenge to finding all the real zeros internal to  [x, X]  of a cubic.  Bracketed between extrema,  
real zeros are computable efficiently by numerical processes like  Newton’s  or  Secant  iteration 
even if zeros are  (nearly)  repeated.  For further explanation see my lecture notes posted at

www.eecs.berkeley.edu/~wkahan/Math128/RealRoots.pdf ,   §7  and  §10.
Low accuracy suffices;  except for the polynomials  p  and  P ,  each zero of a derivative need only 
be accurate enough to determine the sign of an extremum.  Thus all of them will be found.  But if 
extrema of  p and  P  are needed to high  relative  accuracy,  and if any are nearly zero,  then  M. 
Mignotte’s  theorems from the early  1980s  imply that surprisingly high precision may be needed.

At first sight the foregoing recursive process seems to require the numerical computation of too 

many zeros,  roughly  n2/2  for a given polynomial  π  of degree  n .  That can happen,  but not 
usually.  A famous theorem  (due to  Erdos?)  says that among polynomials of degree  n  with real 
coefficients drawn independently and randomly from many a distribution centered at  0 ,  the 
expected number of real zeros is a modest multiple of  log(n) .  That theorem suggests that the 
foregoing recursive process might typically compute  n·log(n)  zeros,  but this far exceeds the 
numbers I have observed.

My experience is limited.  I have seen very little demand for interval evaluations of high-degree 
polynomials expressed as sums of monomials with diverse coefficients.  Either almost all the 
coefficients are the same,  or the polynomials are defined by recurrences like those for orthogonal 
polynomials.  These two situations require methods quite different from the ones discussed so far.

There is a demand for realistic estimates of uncertainties in the computed zeros of polynomials 
that never appear explicitly.  These zeros are the eigenvalues of matrices whose many elements are 
derived from fewer parameters uncertain within specified tolerances.  These determine a region in 
parameter-space that can be partitioned into small boxes each of which provides a matrix whose 
eigenvalues can be computed accurately enough using arithmetic of sufficiently high precision.  
Thus an image in eigenvalue-space of that region in parameter-space can be estimated.  A close 
estimate’s cost can be horrendous,  even with parallelism;  it is the  Curse of High Dimensions.

Computations like those keep error-analysts busy;
unums  will not render them no longer employable.



Filename: EndErErs                                                                               Version date:  July 15, 2016 4:45 pm

Prof. W. Kahan                                                                                                                                       Page 11/39

§4:  “Calculus considered evil: Discrete Physics”
This is the title for the book’s  ch. 21,  which begins on  p. 311  with half a page occupied by a 
picture of a raccoon saying

I HAVE INVENTED SOMETHING
EVIL

I WILL CALL IT CALCULUS
  DIYLOL .COM

Gustafson goes on to say …
“… Calculus and computers make for strange bedfellows,  and their combination can

destroy the validity of results.  Calculus deals with infinitesimal quantities; 
computers do not calculate with infinitesimals. …”

This quotation tells me that he suffers from a misapprehension that bewildered  Bishop Berkeley  
in the early  18th  century,  when he complained about the  “ghosts of vanished quantities”.  

Calculus  does  not  deal with infinitesimal quantities,  though it easily could.  Several decades ago  
Abraham Robinson  formulated an extension to algebra with real variables by including also rules 
for infinitesimals,  rendering them tractable by computerized algebra systems like  Mathematica.  
This extension does shorten some mathematical proofs,  but it is unnecessary for scientists’ and 
engineers’ applications of the calculus,  as a  Cal Tech. graduate in  Applied Math.  should know.  

Expressions like  “ dy/dx ”  and  “ ∫…dx ”  that appear to involve quotients and infinite sums of 
infinitesimals are actually shorthand for processes that approximate limits as closely as desired if 
allocated enough time.  Equations  “ dy/dx = … ”  and  “ ∫…dx = … ”  often offer faster ways to 
compute their left-hand sides’ limits.  Sometimes they equate limits that seemed unrelated before.  
The limit-processes would take many more words to mention if abbreviations were unavailable.

I don’t know how seriously  Gustafson  wants readers to take his disparagement of the calculus.  
He is not joking.  On  p. 330  he includes among the advantages of  Unum Computing  this claim:

“ • An arbitrarily precise solution method for nonlinear ordinary differential equations 
       that uses  no calculus,  just elementary algebra,  geometry and  Newtonian  physics.”

He continues on  p. 331  with a peroration that deprecates floating-point computation as mere 
guesswork,  which indeed it would be in the absence of error-analyses.

“… Why should anyone continue to use floats when unum arithmetic can mimic floats but
       also has so many advantages?  And why should we tolerate numerical methods that
       are hard to write and treacherous to use,  when bounded methods like ubox sets can
       produce results that are complete solutions of maximum expressible accuracy?”

This quotation’s  “treacherous to use”  tells me that  Gustafson  suffers from a misconception 
widespread in the  1950s  and supported by assertions from luminaries,  like  Von Neumann,  who 
deprecated floating-point.  It was deemed so refractory to error-analysis that nobody tried to do it.  
Of course,  one consequence was unreliable floating-point computation.  That changed in the late  
1950s  when,  motivated partly by a comment  Turing  threw away in a paper published in  1949,  
we found ways to analyze floating-point error.  Some were called  “Backward Error-Analyses”.

Gustafson  has contempt for backward error-analysis.  He expresses his derision on  p. 76:
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   “It is a variation on the Original Sin, and amusingly, it puts the blame back on the computer user.

Gustafson  has mistaken an explanation for an excuse,  somewhat like a quotation from  Mme. De 
Staël  misrendered in  English  as  “To understand all is to forgive all.”  His is a common mistake.

Backward error-analysis never excused wrong answers.  When feasible  (which is not always)  it 
maps the rounding errors in a program to end-figure perturbations in the data for the mathematical 
function the program was intended to compute.  Now the consequences of the program’s roundoff 
can be appraised by a perturbation analysis of the mathematical function no longer complicated 
by the program’s details.  When a user’s data are uncorrelatedly uncertain by much more than 
end-figure perturbations,  that program’s roundoff becomes inconsequential;  this is the ideal 
situation.  Otherwise higher precision arithmetic must be used for the computation,  or a better 
algorithm  (which may be hard to find).

•  •  •  •  •  •  •
The time has come for another test of  Gustafson’s  claims for  Unum Computing.  It is a simple 
nonlinear differential equation he claims can be solved using  “… no calculus,  just elementary 
algebra, …”  for algorithm development,  and no human’s error-analysis.  A. Tissier  posed the 
problem on  p. 694  of the  Amer. Math. Monthly 94 (1987).  His differential equation

 “  dy/dx = x – 1/y ”  
has a solution  y(x)  that stays positive and bounded for all finite  x ≥ 0  provided the initial value  
y(0)  is just right.  Call that just-right initial value  y° .  If  y(0) > y°  then  y(x) → +∞  as  x → +∞ .  
If  0 < y(0) < y°  then a finite  x° > 0  exists at which  y(x) → 0  as  x → x°  from below.  The task 
is to find  y°  correct to,  say,  15 sig.dec.  without recourse to higher transcendental functions.

In  1988  or  1989  I tried that computation on a new  Intel i302  system with  i386  and  i387  chips 
whose floating-point I had helped design.  The  i302  came with an  Intel  compiler for  Fortran 77  
produced by people who tried to humor me,  so it worked very much as I desired.  After an error-
analysis of the differential equation,  including two elementary differential inequalities,  I tested a 
numerical method that converged at  6th  order to as much of the differential equation’s solution as 
needed to get  y° ≈ 1.2835987104636  provably correct to  15 sig.dec.  The program performed 
fewer than  1,600,000  rational arithmetic operations  (+, –, ·, ÷)  starting from integers;  no  √  nor  

ab
 ,  and no  log  except to count compactly  (not compute)  leading zeros in differences between 

approximations.  The program’s text occupies  5751  bytes,  mostly explanatory comments.

For corroboration,  another  6th  order program computed the same  y°  performing fewer than  

1,300,000  rational operations but including two irrational constants,  41/3  and  41/5
 ,  and  7832  

bytes of text.  Later the  i386 and i387  were updated to  Cyrix  clones,  so I have resurrected the 
programs and rerun them to get the same results but faster partly because the  Cyrix CPU  has a 
tiny  1KB  on-chip cache twice as big as needed to hold all my programs’ variables.

Given the foregoing  “guess”  y°,  how much will  Unum Computing  cost in human effort and 
computer time to corroborate the accuracy of  y°  using  “no calculus,  just elementary algebra” ?

Infinitely more than it cost me.
•  •  •  •  •  •  •

“I cannot give you the answer you requested,  and it is all your fault,  because you
  should have asked a slightly different question.  I gave you a perfect answer to the
  question you should have asked.”                                                           [His box]
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Is  Tissier’s  problem too artificial to serve as a fair test of  Unum Computing  without  Calculus?

If so,  here is a problem taken from  Photo-Chemical Kinetics,  but simplified by the absorption of 
rate-constants into variables to render them dimension-free.  Variables  u(τ)  and  v(τ)  represent 
concentrations of two pollutant gases in the atmosphere.  They react,  turning  v  into  u  at a rate 
proportional to  v ,  but also decomposing both at a rate proportional to their product  u·v .  Their 
differential equations are …

  du/dτ = (1 – u)·v     and      dv/dτ = – (1 + u)·v .
As time  τ → +∞ ,  the reaction approaches a steady state:  v(τ)  decreases to  0  while  u(τ)  tends 
monotonically to a limit determined by given positive initial values  u(0) := u°  and  v(0) := v° .

If we wished to compute the steady-state value  u(+∞)  we could construe it as the limit of an 
iteration whose fixed-points constitute a continuum,  as was mentioned on pp. 4-5 in  §1 above.  
The limit depends continuously upon the iteration’s starting point.  An application of  Differential 
and Integral Calculus  provides a fast way to compute  u(+∞)  at the cost of at most a few hundred 
floating-point operations.  Computing  u(+∞)  does not answer a more interesting question:

How long does  v(τ)  take to decrease from  v°  to,  say,  1%  of  v°  ?

Let  T(u°, v°)  answer that question.  What is the cost,  in human effort plus machine computation,  
of a program that computes  T(u°, v°)  to,  say,  3 sig.dec.  without invoking the allegedly evil  
Differential and Integral Calculus?  Infinitely more than the program cost me …:

When I used them to produce a  MATLAB   program for my old  Mac Quadra,  it computed each  
T(u°, v°)  with fewer than  10,000  floating-point operations according to  MATLAB ’s  flops count.  
The program occupies less than  3 KB  and runs entirely in the  µ68040’s  8 KB  cache.

To produce this table efficiently my program uses the reaction’s conservation of a transcendental 
relation between  u  and  v .  I see no way to find it without using that  Calculus  deemed evil.

At issue above are not the virtues nor deficiencies of  Unum Computing. 

At issue is  Gustafson’s  perverse anti-intellectual disdain for the past few 
  centuries’ mathematical analyses.  His scorn is a gratuitous distraction 
   from a fair evaluation of  Unum Computing’s  costs and benefits.

Table 1:  Decay times  T(u°, v°)  for  v(τ)  from  v°  to  v°/100 

v° = 0.001 v° = 0.01 v° = 0.1 v° = 1.0 v° = 10.0

u° = 0.001 4.597 4.5652 4.2926 3.197 2.3675

u° = 0.01 4.5561 4.5254 4.2615 3.1886 2.3669

u° = 0.1 4.1841 4.1624 3.9709 3.104 2.3616

u° = 1.0 2.3026 2.3026 2.3026 2.3026 2.3026

u° = 10.0 0.4187 0.4189 0.4211 0.4446 0.9284
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§5:  What does  Unum Computing  cost?
On today’s computers the cost,  in time and power dissipation,  of memory management often 
dominates arithmetic in the execution-time costs of a computation.  Its cost in human effort — 
data-gathering,  analysis,  (re)programming and debugging —  can dominate execution-time costs 
in engineering,  scientific and statistical work;  but let’s reconsider human costs later.  For now,  
let’s focus on the execution-time costs that the book says  Unum Computing  will save.  These 
savings are summarized on  pp. 193-4  where a bogus analogy is invoked to combat criticism:

 “What you see above are two identical sentences,  one with a monospaced typeface (Courier )
   and the other with a variable-width typeface  (Times)  of exactly the same font size.  Notice how
   much less space the variable-width typeface uses.  There was a time (before Xerox PARC …) 
   that computers  always  displayed monospaced font,  since system designers thought it 
   inconceivably difficult to manage text display with letters of variable width.  …  Unums offer 
   the same trade-off versus floats as variable-width versus fixed-width typefaces. … ”

  “Fewer bits means unums will be faster than floats in any computer that is bandwidth-limited …”

Bunkum!  Gustafson  has confused the way text is printed,  or displayed on today’s bit-mapped 
screens,  with the way text is stored in files and in  DRAM  memory by word-processor software.  
Look for yourself.  You will see strings of constant-width  ASCII  or  Unicode  characters plus a 
sprinkling of milestones and escape-characters.  Milestones mark the separations between lines,  
paragraphs and pages.  Escape characters supply formatting information about fonts,  sizes,  styles  
(bold,  italic,  underlined, …)  and how justified  (left,  centered,  right, …),  etc.  The files may 
include fonts.  In compressed files,  like  .pdf  files,  storage economy is achieved by exploiting 
redundancy in texts,  not by storing variable-width characters packed together tightly.  Text stored 
in variable-width characters would occupy more  DRAM  memory,  not less,  as we shall see.

To say  “… system designers thought it inconceivably difficult …”  is to misremember history  by 
forgetting  Nroff  and  Troff,  the  UNIX  software that drove expensive printers to print text with 
variable-width characters in the  1970s.  And these could be viewed on an expensive  IBM  8500-
series  (if I remember rightly)  bit-mapped display.  It was expensive because video memory and 
its processor occupied many chips on some boards.  Character-based displays were far cheaper 
and simpler to drive,  requiring only a  9-pin  connector.  I still have one somewhere.  Later in the  
1980s,  costs of  1-chip CPUs  and  VRAM  memory chips came down enough that a  bit-mapped 
color  VGA  display could be driven from a small card and a  15-pin  connector;  and  WYSIWYG  
word processors showed how variable-width characters would look when printed.  Now  DRAMs 
are cheap and big enough,  and  CPUs  fast enough,  to look up characters’ widths in a font table 
as they fly to the screen or page.  What used to be expensive was never  “inconceivably difficult”.

•  •  •  •  •  •  •

The biggest objection to unums is likely to come from the
fact that they are variable in size, at least when they are
stored in packed form.

The biggest objection to unums is likely to come from the fact that they are variable in 
size,  at least when they are stored in packed form.
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When the book counts how much a computation with unums costs,  it is displayed it in a box thus:

This box appears on  p. 191;  others are on  pp. 115, 175, 178, 183, 187  and  265.  The box shown 
here has the biggest of all costs the book displays.  It is for a  Fourier Transform  during which an 
array of unums are repeatedly read,  modified and stored back.  Some costs have been overlooked.

Can you see those costs omitted from the cost-box?
•  •  •  •  •  •  •  Pause. •  •  •  •  •  •  • 

How much does a unum cost to fetch?  After it has been modified,  its width may increase;  then 
how much will finding a new site to store it cost?  Can costs of address computations be ignored?

The book brushes the last question aside on  pp. 40-41:
      “… does the programmer then have to manage the variable fraction and exponent sizes?

    No.  That can be done automatically by the computer.”
So it can.  For an additional price paid in nanoseconds and picojoules  (as listed on his  p. 6).

This price is tolerable for computations small enough to fit entirely in the  CPU’s  multi-megabyte 
on-chip cache.  There arithmetic dissipates more time and power than does memory movement,  
especially when the thousands of extra transistors needed for unum arithmetic,  plus their wires 
and pipeline stages,  are taken into account.  The book’s worked examples of  Unum Computation  
all seem small enough to fit in a modern  CPU’s  on-chip cache.  Perhaps this explains why cost-
boxes have not been supplied for the book’s bigger computations of  “c-solutions”  and orbits.

A computation costly for  “any computer that is bandwidth-limited”  must entail  Big Data — vast 
collections of numbers that reside in  DRAM  or beyond,  perhaps in the  Cloud.  Moreover,  data 
destined only to be read,  not altered,  can cost relatively few more address bits besides the data 
bits;  the variability of unums’ widths will not much worsen the cost of randomly fetching them.

Address computations for  Unum Computations  become costly when the values of unum-valued 
variables can have their widths increased at run-time,  as happens in the  Fourier Transform.  An 
elaboration of the book’s analogy above will help expose these hidden costs.  Suppose a sentence

“Things are seldom what they seem.”
is  #374  in a corpus of  49215  sentences stored packed together consecutively in  DRAM  or in a 
file.  Each paragraph has an address,  say  32  bits wide,  that points to the start of the paragraph’s 
first sentence;  and each sentence begins with a field that counts the sentence’s characters.  To 
fetch a sentence,  the computer must find its paragraph,  unless it is already known,  by loading 
and searching a table,  and then skip along sentences until  #374  is reached.  Say it changes to

“Things are seldom what they seem;  skim milk poses oft as cream.”
Where will it be stored?  If squeezed where it went before,  all subsequent sentences will first be 
moved down to make way.  Otherwise  #374  must be pushed onto a Heap and its new address put 
into the old place.  Later,  Garbage Collection  (file or memory defragmentation)  may occur.

Omitting hidden costs paid for address (re)computations is disingenuous.

Numbers moved 178152

Unum bits moved 4043801

Average bits per number 22.7
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§6:  Never Wrong ? 
Unum Computation,  like interval arithmetic,  tends to produce pessimistic estimates of computed 
results’ uncertainties due to uncertain data.  Such an estimate is not deemed  “Wrong”  so long as 
it encloses the range of the true results,  no matter how pessimistic a computed enclosure may be.  
Grossly excessive pessimism is useless or,  worse,  misleading,  albeit not deemed  “Wrong”.

Grossly excessive pessimism is often lessened by a  Subdivide-and-Conquer  scheme that costs 
more computation,  sometimes vastly more computation.  However,  no such scheme,  lacking a 
human’s mathematical error-analysis,  can  always  reduce pessimism from grossly to moderately 
excessive.  Consequently a naive user of  Unum Computation  cannot know whether his result’s 
oversized uncertainty is deserved by the data or is an incidental by-product of an ill-chosen way to 
compute what he wishes to know.  We shall see how four attempts to alleviate his uncertainty fail.

Failure Mode I:  The Curse of High Dimensions 
Given an interval (ubox)  X  containing a  d-dimensional uncertain vector  x ,  we wish to compute 
the uncertainty inherited by  y := HHHH(x)  from a continuous function implemented as a program  HHHH  .  
The image  Y = HHHH(X)  is a connected region in  y-space.  The shape of  Y  could be almost 
arbitrary;  it could resemble a pretzel.  It may lie inside a computed ubox far larger than necessary.

The  Subdivide-and-Conquer  scheme diminishes that pessimism by a factor typically near  1/k  

by subdividing the ubox  X  by a factor  1/k  in each dimension to get  kd  smaller uboxes;  then it 

(re)computes their unum images to get  kd  uboxes whose union contains the desired image  Y .  

If enough processors are available,  those  kd  images can be computed in parallel.  If their union 
seems still too big,  increase  k .  Thus does the  Curse of High Dimensions  loom over the scheme.

The  Subdivide-and-Conquer  scheme purports to cope with a phenomenon called  “the Wrapping 
Effect”,  but for a price.  To illustrate the effect in a simple way,  we consider a repetitive process

  HHHH(x) := h[N](x) := h(h(h(…h(h(h(x)))…)))  N times
for a big integer  N > 6 .  The  unum  version of  h  will produce  a  ubox  Y1 ⊇  h(X)  too big by 

some factor,  say  Λ > 1 ,  but not much bigger.  Repetition produces a  ubox  YN ⊇  Y = HHHH(X)  too 

big by a huge factor  ΛN  unless something intervenes to stop the process prematurely.  It could 
stop if  h  is nonlinear and has a singularity that  h(YN-3)  evades but  YN-2 ⊇  h(YN-3)  encloses.

Lest a singularity complicate a simple illustration,  let’s choose a linear function for  h :
  h(x) := H·x  where matrix  H := hadamard(20)/√20 .

Here  hadamard(n)  is  MATLAB ’s  Hadamard  matrix;  this  H  is a symmetric  20-by-20  matrix 

whose every element is one of  ±1/√20 .  Note that  H2 = I ,  the identity matrix.  Next let  X  be a 
hypercube-shaped ubox around an uncertain  x .  The smallest rectangular ubox around  h(X)  is a 

hypercube bigger by a factor  Λ := √20 ≈ 4.47 .  Now  YN ⊇  Y = HHHH(X) = HN·X  but grows too 

big by an enormous factor  20(N-1)/2
 .  Subdivision by a factor  1/k  to reduce this gross pessimism 

to mere moderate pessimism,  say a factor of  400,  would need  k ≥ 20(N-5)/2  and  kd ≥ 2010·(N-5),  
which is a humongous number of recomputations,  well beyond the capabilities of parallelism.
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Gustafson  is aware of the  Wrapping Effect.  He devotes  ch. 16.2 (pp. 215-219)  to dismissing it 

with a trivial example  (d = 2 ,  kd = 24)  and an appeal to massive parallelism,  concluding …

My example  HHHH(x) = HN·x  is trivial too but does not succumb to  “Mindless,  brute-force …”.

Nontrivial examples abound.  For instance suppose a nonlinear  h(x)  simulates a minute’s motion 
of a few asteroids and lots of artificial satellites and space junk in motion near the earth.  Such a 
simulation is intended to help predict and,  if possible,  avoid costly collisions.  Starting values of  
x  are a little uncertain because of errors in observations.  Starting from a globular region  X  in 
which the uncertain initial  x  lies,  h(h(…h(h(X))…))  evolves first into a slowly tumbling cigar,  
then a banana,  and ultimately into a ring or pretzel after many orbits.  The unum version of  h  
wraps a coffin,  a ubox with edges parallel to coordinate axes,  around a tilted cigar.  Some corners 
of the coffin spread faster than the cigar,  tilt,  and must be wrapped again.  Exponential growth.

The text’s  ch. 20 (pp. 287-310)  advocates  Gustafson’s  elaborate scheme to compute orbits after 
disparaging  (pp. 292-4)  a  “traditional method”  (4th order Runge-Kutta)  that  no  experienced 
practitioners have been using for orbit calculations.  The cost of his scheme is nowhere reckoned,  
and it is performed for only a small fraction of a two-body orbit.  Two-body orbits can be plotted 
without any numerical equation-solving,  so their uncertainty grows linearly,  not exponentially.  
See  www.eecs.berkeley.edu/~wkahan/Math128/KeplerOrbits.pdf  for a much simpler scheme.

Along orbits of three or more bodies,  Gustafson’s  expansion factor  Λ  exceeds  1  only slightly 
for each short step  h .  I think this explains his mistaken assertion on  p. 306  that  “the expansion 
of uncertainty is roughly linear,  not something that grows catastrophically fast.”  At the beginning 
of exponential growth it would appear linear.  Subdivision of the initial ubox  X  to attenuate that 

growth by a factor  1/k  would cost  k6N  parallel recomputations to simulate the motions of  N  
items around the earth;  there are thousands of items.  I doubt that his scheme is practicable.

“The unum method may show empirical validation of Kahan’s observation”  says the book on  p. 
307.  This refers without explanation to my schemes that compute tumbling (hyper)ellipsoids that 
wrap around tumbling cigars more tightly than coffins can,  and thus prolong the simulations for 
at least several orbits before growing excessively pessimistic.  The ellipsoids grow too fast but not 
exponentially too fast.  Six-dimensional ellipsoids,  one per item being simulated,  cost at least six 
times as much arithmetic and storage as the items’ simulation;  perhaps this explains why my 
ellipsoidal scheme has not yet become popular.

How do people get along without unums nor ellipsoids?  Numerous samples of initial values  x  
are drawn from the range of uncertainties,  and simulations are computed in parallel,  one for each 
sample,  using high-order numerical methods like  “Symplectic Integrators”  that conserve energy 
and momenta well enough to avoid the inward or outward spirals derided on  p. 292.  Arithmetic 
precision is adequate to render roundoff utterly negligible compared with uncertainties in the data 
and the equations of motion.  If a close encounter is observed among the samples simulated,  the 
simulations are redone with samples distributed more densely around initial conditions that led to 
the close encounter.  Thus do useful predictions become available in real time without unums.

“This is the essence of the ubox approach.  Mindless,  brute-force
application of large-scale parallel computing …”    (p. 219)
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Failure Mode II:  Unbounded Phantom  c-Solutions
“Self-Validating Computation”,  a method  favored by the  Interval Arithmetic  community,  is 
worth mentioning here though  Gustafson  does not mention it,  perhaps because his  “c-solutions”  
seem more general at first sight.  Suppose a solution  z  to some problem is sought;  perhaps  z  is 
a solution of some equation.  Infinitely many equations have exactly the same set of solutions,  if 
any.  Self-validating computation works when an equation  z = ƒ(z)  can be found that exhibits  z  
as a fixed-point of a sufficiently  contractive  map  ƒ .  This usually means that there is a matrix 
norm  ||…||  and a constant  λ  such that the  Jacobian  matrix  ƒ'(x)  of first partial derivatives 
satisfies  ||ƒ'(x)|| < λ < 1  for all  x  in some palpable neighborhood of  z .  If  ƒ  is a little uncertain 
then  λ  must be appreciably less than  1  so that the interval arithmetic iteration  Xn+1 := ƒ(Xn) ,  
possibly subdivided,  will converge to a region  Z  provably enclosing at least one solution  z .

Alas,  not every equation  Æ(z) = o  is equivalent to an equation  z = ƒ(z)  with a contractive map  
ƒ .  An instance is an equation whose  Jacobian  matrix  Æ'(x)  is not known beforehand to be  
singular  at  x = z  (i.e., det(Æ'(z)) = 0 ).   Here is a didactic example for column  2-vectors  x :

   Æ(x) :=  + ·x + /2    in which   C1 =   and  C2 =  .

Newton’s  iterating function  ƒ(x) := x – Æ'(x)-1·Æ(x)  would be a contractive map with a fixed-

point  z =   at which  Æ(z) = o ,  and to which the iteration  xn+1 := ƒ(xn)  converged almost 

always,  except for an inconvenience:  Æ'(z) = O  so  ƒ(z)  is indeterminate.  Worse,  Æ(x) = o  all 
along the line  £  whose equation is  [1,  1]·x = –2 .  Therefore no  Self-Validating Computation  
will find a contractive map for any of the infinitely many solutions  z  of the equation  Æ(z) = o .

The book’s’s  c-solutions  would reveal all solutions  z  within any ubox  X  big enough.  After  X  
has been subdivided into smaller uboxes,  those within which unum evaluations of  Æ(x)  cannot 
vanish will be rejected and the remainder further subdivided,  and so on,  until all the remaining 
uboxes strung along  £  are as small as desired.  The process is lengthy,  but …

Before rejoicing at the success of  Gustafson’s  c-solutions,  we must consider the possibility that 
the coefficients of the function  Æ(x)  are a little uncertain.  This means that  Æ(x) + ∆Æ(x)  is 
practically indistinguishable from  Æ(x)  if  ||∆Æ(x)||  is small enough but not zero.  However,  no 
matter how small  “small enough”  may be,  infinitely many such functions  Æ(x) + ∆Æ(x)  never 
vanish at any real  x .  This nonexistence does not alter the  c-solutions.  Then what do they mean?

If ostensibly negligible perturbations of a complicated equation
can cause its solution(s) to flicker in and out of existence,  how
will unum computation warn us about this kind of misbehavior?

Apparently not via  c-solutions.
•  •  •  •  •  •  •
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“This is the essence of the ubox approach.  Mindless,  brute-force
application of large-scale parallel computing …”     (p. 219)
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Failure Mode III:  Persistent  “  c-Solutions ”  that  Do Not Exist
During the search for  c-solutions  of an equation  Æ(z) = 0 ,  what must be done with a ubound or 
ubox  X  when  Æ(X)  encounters an invalid operation,  perhaps division by zero?  A policy that 
rejects  X  and searches elsewhere for  c-solutions  risks rejecting valid solutions of the equation.  

For instance,  Æ(x) := 3/(x+1) – 2/(x–1) + 1/(x–1)2  encounters invalid operations during the 
evaluation of  Æ([0, 4]) ;  but rejection of interval  X = [0, 4]  would reject both finite solutions  
z = 2  and  z = 3  of  Æ(z) = 0 .  Instead,  X  must be partitioned into subintervals until each is 
small enough to localize either a solution  z  or a singularity of  Æ  as accurately as desired.

Ubounds and uboxes need not include their entire boundaries.  Consequently they can avoid 
divisions by zero in some cases.  For instance,  the reciprocal of the interval  0 < x ≤ 1  is the 
unbounded interval  1/x ≥ 1 ,  both representable as  ubounds.  Alas,  this capability fails to 
preclude aberrant behavior near singularities.  For instance,  “ c-solutions ”  of equations involving 
rational functions can converge onto arbitrarily tiny uboxes that enclose no solutions of the given 
equations.  Here is a didactic example of the phenomenon designed to be understood easily:

Let   R(x, y) := (x – y)·(x + y)/(x2 + y2)   literally.    DO NOT “SIMPLIFY”  IT !  

We seek  c-solutions  (x, y) ,  if any,  of two equations:   R(x, y) = 1.125   and   R(y, x) = –1.125 .

Because  –1 ≤ R(x, y) = –R(y, x) ≤ +1  at the plane’s every finite point  (x, y)  other than  (0, 0) ,
no real solution  (x, y)  exists.

However,  subdivision of the plane into  uboxes,  no matter how tiny,  cannot reject every  ubox 
with a corner relatively near enough to  (0, 0) ,  though it be excluded from every  ubox.  Thereon 
Unum Computation,  like interval arithmetic,  gets overly wide intervals for  R .  For example,

 X := [0.01,  0.02] ,    Y := [0,  0.01] ,     R(X, Y) ⊂ [0,  6] . 
 X := [0.01,  0.011] ,  Y := [-0.001,  0.001] ,    R(X, Y) ⊂ [0.664,  1.44] .

Thus,  while  c-solutions  are sought,  ever tinier uboxes are found on which  Unum Computation  
overestimates the range of  R  to include  1.125 ;  and these tiny uboxes  (X, Y)  converge to but 
never overlap the singularity at  (0, 0) .  Only a mathematical analysis of the formula for  R  can 
defend against acceptance of one of these tiny uboxes as an approximation to a sought solution. 

The given equations can be handled properly,  but not  Gustafson’s  “Mindless, brute-force”  way.  

One way rewrites   R(x, y) = 1 – 2/(1 + (x/y)2) ,  which works only because  R  is so simple.  A 
second way multiplies all rational equations by their denominators to convert them to polynomial 
equations free from singularities;  but doing so can introduce spurious  c-solutions.  The spurious 
solution here,  (x, y) = (0, 0) ,  is easy to recognize as a singularity of  R .  The singularities of 
more general equations may be harder to distinguish from legitimate solutions by mere numerical 
evaluations without mathematical analysis.

C-solutions  can solve every equation only by  “solving”  also some that have no solution.
•  •  •  •  •  •  •
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Failure Mode IV:  Illegitimate Unbounded  c-Solutions
Given the  Cartesian  coordinates  o, u, v, w  of the four vertices of a tetrahedron  ∇  ,  we seek its  
Incenter  c ;  it is equidistant from  ∇ ’s  four faces and on the same side of each face as its opposite 
vertex.  This description translates to three linear equations for the coordinates of column  c  thus:

p := (v–u)×(w–u)/||(v–u)×(w–u)|| ;   … a column when  u, v and w  are columns

M := [ v×w/||v×w|| + p,      w×u/||w×u|| + p,      u×v/||u×v|| + p ]T ;  …  3-by-3

m := [u,  v,  w]T·p = uT·p·[1, 1, 1]T ; 
Solve   M·c = m   for  c .

Matrix  M  has  det(M) ≠ 0  provided tetrahedron  ∇   is non-degenerate  (has nonzero volume  

uT·v×w/6 ),  and then  c = M-1·m .  The incenter of a degenerate tetrahedron  ∇   is the limit of 
incenters of any non-degenerate tetrahedra that collapse continuously onto  ∇  .

Numerical Example:   [u,  v,  w] :=    has   uT·v×w = 36 ,  so  det(M) ≠ 0   and the 

incenter of  ∇   is  c ≈ [4789.4057,  5920.0275,  5488.1688]T .   However,  if each integer entry in the 
coordinates of  ∇   is  independently  uncertain by  ±1/2  then the ubox  X ⊇  ∇   must include some 
degenerate tetrahedra,  and then  Gustafson’s  c-solutions  of the equations  M·c = m  derived from  
X  must stretch off to infinity though no incenter wanders very far from the  c  exhibited above.

Infinite pessimism! 

Infinite pessimism is undeserved.  It arises from the choice of a numerically troublesome method 
to compute incenters.  The equation  “ M·c = m ”  is far more sensitive than is the geometry to ill-
oriented perturbations.  A far better numerical method is a simple explicit formula for  c  that 
satisfies the equation  “ M·c = m ”  without ever constructing it.  The simple formula is hard to find 
and little known;  see  p. 26  of  www.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf .

Do not confuse  ignorance  with  stupidity:
  “Against  Stupidity  even the  Gods  struggle in vain.”  J.C.F. von Schiller,  1759 - 1805

A programmer who derives the equation  “ M·c = m ”  to solve for  c  is far from stupid;  he is 
unlucky or too impatient or too beset by deadlines to pore through texts on vectors and geometry.

Unum Computation  is no defence against the mistake of choosing an  
algebraically correct but numerically precarious algorithm,  and then
accepting grossly oversized computed uncertainties as if they were

 deserved by the desired results.
•  •  •  •  •  •  •

The four failure modes exhibited above cast a long dark shadow over assertions implying a kind 
of infallibility for Unum Computation and for Interval Arithmetic.  They may beguile the unwary:

“Never Wrong”  does not imply  “Always Right”,  so

 Unum Computation  can’t be  THE END OF ERROR.

4182 5168 4791

5168 6388 5922

4791 5922 5490
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§7:  The Price Paid for Willful Ignorance 
On p. 194  Gustafson writes 

“… Since unum bounds resemble interval arithmetic,  how do we know they will 
  not suffer the same fate as traditional intervals in producing bounds that are much 
  looser than they should be and need to be?  If we already have an algorithm designed 
  for floats,  how do we make it work with unums without requiring that the programmer 
  learn about interval arithmetic and its hazards?  There is a general solution for this,  the 
  ubox  approach.”

Actually,  as we have just seen,  unum bounds  can  suffer from the same excessive pessimism as 
can traditional intervals.  Nevertheless,  he goes on in his  chs. 15.1 - 15.5,  pp. 195 - 210,  to 
demonstrate how his ubox approach estimates the area of a circular disk.  His demonstration does 
injustice to unums and to intervals because it is predisposed to adhere strictly to his  mantra: 

Consequently the demonstration panders to ignorant readers who believe they have … 

•  No need to know any  Calculus;   it is  “evil”.
•  No need to know about contemporary numerical analysis;  it is  “deeply unsatisfying”.
•  No need to know about any arithmetic operations beyond grade-school’s  (+, –, ·, ÷).
•  No need to know about the costs of arithmetic,  data structures,  and communications,

nor how costs grow when more than one or two sig.dec. of accuracy are needed.

“The deeply unsatisfying nature of classical error bounds”  is the heading for  ch. 15.2 (pp. 197-9)  
containing complaints about a formula misquoted on  p. 198  thus:                           [His box]   

This  “error”  is the difference between integral  ∫ab
 ƒ(x)·dx  and its approximation by the Midpoint 

Rule  after the interval from  a  to  b  has been broken into subintervals each of width  h ,  and  ƒ  
has been sampled at the midpoint of every subinterval.  Here  ƒ" (ξ)  is the second derivative …

“… at some unspecified point  ξ  between  a  and  b .  To compute the second derivative,
  we first have to know calculus to figure out what the function  ƒ"   is,  and then we have
  to somehow find the  maximum possible absolute value  of that derivative over the range
  from  a  to  b .” 

Gustafson  has exposed his misunderstanding.   Alas,  he shares it with too many mathematicians 
assigned to lecture about  Numerical Analysis.  This misunderstanding will be cleared up later.

Pp. 199-210  demonstrate his ubox approach to the estimation of  π/4 = ∫0
1 √(1 – x2)·dx  as the 

area of a quarter of the unit disk.  This area is bounded by   x2 + y2 ≤ 1   inside the square wherein    

0 ≤ x ≤ 1  and   0 ≤ y ≤ 1 .  Initially the square is partitioned into  K2  uboxes each a small square 
of side-length  h = 1/K  for a chosen positive integer  K .  The demonstration’s  K = 16 .  Next the 
uboxes in the quarter disk are counted.  There are two counts:  Lo  counts the uboxes entirely 
within the quarter disk;  Hi  counts the uboxes that intersect with the quarter disk.  Whether a ubox 

deserves to be counted can be decided by computing the predicate  “ x2 + y2 ≤ 1 ”  at the ubox’s 

“This is the essence of the ubox approach.  Mindless,  brute-force
application of large-scale parallel computing …”      (p. 219)

error ≤ (b – a)·h2·|ƒ" (ξ)|/24
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upper-right corner for  Lo ,  lower-left for  Hi ;  the demonstration uses a more complicated unum 

procedure to compute the predicates.  Anyway,  all  K2  uboxes’ predicates can be computed in 

parallel quickly.  Then  4·Lo/K2 < π < 4·Hi/K2
 .  The demonstration’s estimates for  K = 16  are …

  “ 2.859375 < π < 3.34375 ” .

  “Parturient montes,  nascetur ridiculus mus.”  Horace (65 - 8 BC) Ars Poetica 
[“The mountains heave in labor to bring forth a silly mouse.”]

256  uboxes’ predicates seem like too much work for so little as one sig.dec. of accuracy.  What 
would  5  sig. dec. cost?  The book doesn’t say.  Let’s find out:

It so happens that   Hi – Lo = 2·K – 1 ,  so the width of that interval estimate for  π  is  8/K – 4/K2
 .  

To achieve at least  5  sig.dec.  of accuracy would require  K > 80,000  roughly.  This would 

require predicates for humongously many,  over  64·108
 ,  uboxes if  “Mindless brute-force …”  

were the only option.  It isn’t.  At the bottom of  p. 209  the book mentions  “Grid refinement”  but 
offers no program for it,  leaving unknown its two costs:

<>  The time taken to write a parallel version of  Grid refinement,  with load balancing.
<>  How many uboxes’ predicates the program must compute,  as it depends upon  K .

At least  2·K – 1  uboxes have to be located;  these are the ones whose predicates  “ x2 + y2 ≤ 1 ”  
are true at the lower left corner,  false at the upper right.  They can be located by tracing the arc of 
the quarter circle,  a purely sequential process.  For  5 sig.dec.,  2·K – 1 > 160,000 .  Too huge.

“Mindless brute-force”  is a costly way to compute any but the crudest estimates of integrals;  and 
sometimes it cannot provide any estimates at all.  For instance,  take an ellipse’s circumference:

This circumference is needed to compute the weight of steel tubing intended for a racing bicycle.  
The tubing’s cross-section is elliptical instead of circular to reduce weight while retaining enough 

resistance to anticipated loads.  Let  x2 + y2/4 = 1  be the ellipse’s equation.  A little calculus gets 

an expression   L = 4·∫01
 √(1 + (dy/dx)2)·dx = 4·∫01

 √((1 + 3·x2)/(1 – x2))·dx   for the circumference  
L  of the ellipse.  It is an  improper  integral because the integrand rises to  +∞ ,  so  “Mindless 
brute-force”  would have to count infinitely many uboxes.  It can’t.  We will compute  L  later.

•  •  •  •  •  •  •

Now let’s clear up the misunderstanding of the misquoted formula in the box above.  It should say

Here  ƒ" (ξ)  and  ƒ" (η)  are differently weighted averages of the second derivative  ƒ" (x)  over  x  
between  a  and  b .  The weights are positive but not constant.  If  ƒ" (x)  is bounded throughout 

the range of integration,  each  Rule’s  error ultimately approaches zero no slower than  h2  as  h — 
the width of every subinterval in the interval of integration — approaches zero.  An algorithm 
suggested by the formulas repeatedly doubles the number of subintervals,  combines new samples 
of  ƒ  with old,  and gets new  Trapezoidal  and  Midpoint  estimates each nearer the integral than 
the old by factors ultimately at most  1/4 .  Other than that  ƒ"   be bounded,  it need not be known 
to estimate the integral as closely as desired,  though unpredictably many samples may be needed.

  (Midpoint Rule) – ∫a
b

 ƒ(x)·dx  =  (b – a)·h2·ƒ" (ξ)/24   and

   ∫a
b

 ƒ(x)·dx– (Trapezoidal Rule)  =  (b – a)·h2·ƒ" (η)/12 .
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The boxed formulas tell anyone who seeks guaranteed interval or ubound estimates for an integral  
something very much worth knowing:

If  ƒ" (x)  does not reverse sign between  a  and  b ,  then  ∫a
b

 ƒ(x)·dx  lies 
  between its estimates provided by the  Midpoint  and  Trapezoidal  Rules.

The two estimates differ by  (b – a)·h2·ƒ" (ω)/8  for another positively weighted average  ƒ" (ω) .  If  
ƒ" (x)  reverses sign at some  x = z  between  a  and  b ,  compute the integral as a sum of two:

 ∫a
b

 ƒ(x)·dx  =  ∫a
z

 ƒ(x)·dx  +  ∫z
b

 ƒ(x)·dx .
A computer program can turn the program for  ƒ(x)  into a program for  ƒ" (x)  and locate a zero  z  

within an error smaller than  h2/|b – a| ,  which is small enough to not matter.  The  Rules’  samples 
of  ƒ(x)  can be computed in parallel in batches,  each batch twice as big as the previous one.

Let’s compute  Gustafson’s  integral   π = 4·∫0
1 √(1 – x2)·dx   using the  Midpoint and Trapezoidal 

Rules.  Although the integrand’s second derivative never reverses sign,  it is unbounded;  this 

causes the gap between the two Rules to shrink like  h3/2  instead of  h2 ,  producing the interval  
  3.141580 ≤  π  ≤ 3.141596  after  K = 4097  samples of  √((1 – x)·(1 + x)) .

To produce an integrand free from infinite derivatives and inflection points  (where the second 

derivative reverses sign)  let us substitute  x = √(1 – w2)  and perform some extra calculus and 

algebra to get a very proper integral  π = 4·∫0
1/√2 dw/√(1 – w2)   and then compute the interval …

 3.141582 ≤  π  ≤ 3.141613  after  K = 257  samples of  1/√(1 – w2) .
A little of the  “evil”  Calculus  has beaten  “Mindless brute-force”  by orders of magnitude.

•  •  •  •  •  •  •

The most powerful methods of numerical integration have not (yet) been adapted to produce fully 
guaranteed interval estimates.  These powerful methods were first suggested in the  1960s  by a 
physicist  Charles Schwartz  in  Berkeley.  Then his methods were further developed in the  1970s 
and 1980s  by  Takahashi and Mori  in  Japan.  For details and pointers to long bibliographies see 

D.H. Bailey,  K. Jayabalan,  X.S. Li   “A Comparison of Three High-Precision 
Quadrature Schemes” pp. 317-329 of Experimental Mathematics 14 #3 (2005). 

A primitive version of these methods was stuffed into some  1980s  hand-held calculators;  see
W. Kahan  “Handheld Calculator Evaluates Integrals”

  pp. 23-32 of  The Hewlett-Packard Journal   Aug. 1980.
This article includes advice about avoiding the hazards of fast non-interval integration schemes.

Because my calculator can cope with mildly improper integrals it gets 

 π = 4·∫0
1 √(1 – x2)·dx ≈ 3.14159 ± 0.00002  after  31  samples of  √((1 – x)·(1 + x)) ;  and

 π = 4·∫0
1/√2 dw/√(1 – w2) ≈ 3.14159 ± 0.000014  after  31  samples of  1/√(1 – w2) .

Improper integrals like the ellipse’s  L = 4·∫01
 √((1 + 3·x2)/(1 – x2))·dx  pose severe challenges for 

numerical integration schemes because they have to avoid sampling an integrand at its pole,  lest  
∞  overwhelm everything else,  but must sample densely enough near the pole to appraise its 
contribution to the integral.  The appraisal’s accuracy is limited to a fraction of the arithmetic’s 
precision depending upon the pole’s strength unless the pole rises at  0.0 ,  in which case over/-
underflow may cramp the appraisal’s accuracy.  Better remedies are suggested in my  1980 article.
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One of them is a change to the variable of integration.  In  L  the substitution  x = 1 – w2  yields 

    L = 4·∫01
 √((12·(1 – w2)2 + 4)/(2 – w2))·dw ≈ 9.68844822 ± 0.00000003  after  127 samples

on the calculator.  A tedious interval estimate is feasible because the integrand’s second derivative 
reverses sign at only one point  w ≈ 0.6746936853…;  I have not programmed it.

An experimental  MATLAB   program that combines the calculator’s stopping criterion with the 
sampling strategy of  Takahashi and Mori  has coped with mildly improper integrals.  It gets …

   L = 4·∫01
 √((1 + 3·x2)/(1 – x2))·dx ≈ 9.6884482 ± 0.0000006   after  129 samples,  but better

   L = 4·∫01
 √((12·(1 – w2)2 + 4)/(2 – w2))·dw ≈ 9.68844822054768 ± 10–14  after  257 samples.

Despite the appearances of  “±…”,  the foregoing estimates obtained from relatively few samples 
are not produced by interval arithmetic.  Gustafson  would call them  “guesses”.  They are very 
good guesses computed by programs that can be foiled;  my  1980  article shows how.  Whether 
the risk is tolerable depends upon the value of a prompt result and the costs of other options,  and 
these depend upon the accuracy desired.  For high accuracy,  here are some indications of the 
costs of almost surely correct results soon  vs.  three ways to get certainly correct results later: 

Errors → 0  like  exp(– Const·K)  for  Takahashi-Mori  methods drawing  K  samples.

Error-bounds → 0  like  K–2  for interval arithmetic in  Trapezoidal and Midpoint Rules.

Error-bounds → 0  like  K–1  for  Gustafson’s  square-counting,  but following the arc.

Error-bounds → 0  like  K–1/2  for  Gustafson’s  “Mindless brute-force”  square-counting.

•  •  •  •  •  •  •

To whom is  Gustafson  trying to sell  “Mindless brute-force”?

It may be an appropriate way to estimate the content  (area or volume)  of a region whose 
boundary is very complicated,  like a  Rorschach  test.  For such a task the costs and benefits 
claimed for  Unum Computation  vs. short precision floating-point are practically irrelevant.

No.  His pitch seems aimed at someone who wishes to compute an integral without having to 
know anything about contemporary numerical analysis,  and without having to look up  
Numerical Quadrature  in a book or a software  Math. library. 

To sell  THE END OF ERROR  to that person panders to ignorance.
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§8:  Flogging a swing 
The book’s long chapter  19,  “Pendulums done correctly”  pp. 273-286,  begins with a photo of a 
little girl enjoying a swing on a sunny late autumn day.  Leaves have fallen off trees or changed 
color.  The caption under the photo reads

“When physicists analyze pendulums,  they prefer to talk about  ‘small oscillations.’ 
Have you ever met a child who didn't prefer the large kind?”

[Has  Gustafson  ever met a physicist who  prefers  to talk about small oscillations?]

Gustafson’s  snide caption sets the chapter’s tone.  Without ever exhibiting a differential equation  

(since Calculus is evil),  he sneers at a linearization  d2θ/dτ2 ≈ – θ  of the pendulum’s differential 

equation  d2θ/dτ2 = – sin(θ) .  The linearized pendulum’s deflection from the vertical,  θ ≈ sin(τ) ,  
does err when bigger than infinitesimal.  Let  Θ  be  |θ|’s  maximum amplitude.  If  Θ ≤ π/2 ,  the 

pendulum’s period  P(Θ)  does exceed the linearized period  2π  by very roughly  tan2(Θ/2) .  His 
method will eliminate this error while tolerating errors that are worse,  as we shall see.

The chapter explains his more accurate computation of the pendulum’s motion using only  “grade 
school algebra.  Without deep human thought but with brute force computing, …  This shows why 
it may be time to overthrow a century of numerical analysis.” (p. 281.)  Actually,  he uses more 
than grade school algebra’s rational operations  (+, –, ·, ÷)  because he uses middle school’s  √   
and high school’s   sin(θ)  or  cos(θ)  frequently;  and he takes  something crucial  for granted:

He  knows  that the pendulum’s total energy,  kinetic plus potential,  is conserved.

How does he know that?  The concepts of kinetic and potential energies came into existence with 
the  Calculus,  and it is needed to deduce that their total is conserved by a friction-free pendulum.  

In dimensionless units,  the conserved total energy is  (dθ/dτ)2 + 4·sin2(θ/2) = 4·sin2(Θ/2) .  To 

confirm this,  differentiate the left-hand side and invoke the differential equation for  d2θ/dτ2
 .

Determined by initial conditions,  the total energy tells us that  θ  will vary between  ±Θ ,  and that 
the time elapsed between two deflections  θ(τ°) = θ°  and  θ(τ) = θ  can be computed from …

     τ(θ) – τ(θ°) =  =  .   

This is an  Improper  integral.  As  θ  runs back and forth between  ±Θ ,  the variable of integration  
α  reaches  ±Θ  and the integrand peaks up to  +∞ ,  though the integral remains finite.  This 
singularity reflects what happens when,  at the extremes  θ = ±Θ  of its swing,  the pendulum’s  θ   

reverses but time  τ  doesn’t.  The substitution  α = ±(Θ – 2ξ2)  removes the singularity.  For 
instance,  the integral for the pendulum’s period  P(Θ) := 2(τ(Θ) – τ(-Θ))  turns into … 

  P(Θ) = 4·  =  .  

This last integral is easy to evaluate numerically for any given positive numerical value  Θ < π .  

The  [ ]  key on my old  hp-15C  shirt-pocket calculator,  carrying  10 sig.dec.  (though each 
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keystroke may use a  13 sig.dec.  scratchpad),  gets  9  sig.dec.  of  P(Θ)  with an error-estimate.  

For example,    P(10-6) = 6.283185307 ± 1.34·10-9 ;     P(π/3) = 6.743001419 ± 1.51·10-9 ;

 P(π/2) = 7.416298709 ± 9.6·10-10 ;      P(3) = 16.15553937 ± 9.1·10-9 .      ( P(π) = +∞ )
 (Multiply integrals by  π/180  if angles  Θ,  α  and  θ  are specified in degrees instead of radians.)

Without ever exhibiting an integral,  the book does compute interval estimates of the integrand for 
elapsed times  τ(θ+∆θ) – τ(θ)  as areas under curves obtained by approximating  dτ/dθ  as a 
function of  θ  over short sub-intervals  [θ, θ+∆θ]  taking account of total energy’s conservation:

  dθ/dτ = ±2√( sin2(Θ/2) – sin2(θ/2) )   as an  Interval  over a short  subInterval  [θ, θ+∆θ] .

Also used is an interval estimate of  d2θ/dτ2 = –sin(θ)  over the subinterval.  This estimate may be 

needed in case the interval  [dθ/dτ]  includes  0 ,  just as the substitution  α = ±(Θ – 2ξ2)  was used 
above to remove the integrand’s singularity.  Thus the book gets a quadratic in  δτ  with interval 

coefficients,  namely  δθ = [dθ/dτ]·δτ + [d2θ/dτ2]·δτ2/2 ,  to estimate the distance  δθ  from  θ  
towards  θ+∆θ  traversed by the pendulum in any sufficiently short time  δτ .  For an interval that 
covers the time  ∆τ  taken to traverse all of the subinterval  [θ, θ+∆θ] ,  solve a quadratic equation  

∆θ = [dθ/dτ]·∆τ + [d2θ/dτ2]·∆τ2/2   for  [∆τ] .                  [Middle school algebra,  not grade school.] 

It all seems an extremely elaborate way to estimate  ∆τ =  ∫θ
θ+∆θ dα/√(…)  as an interval  [∆τ]  

about  Ω(∆θ3)  wide.  The book offers no estimate of  [∆τ]’s  width.  Instead we find on  p. 277 

    “This is a stunning result,  because it means we not only get rigorous bounds on the physical
      behavior,  but we can use  as many processors as we have  in a computer system to get any
      desired answer quality.”  [His italics.]
Gustafson  goes on to disparage purely serial computations that simulate physical phenomena:
    “…,  the time dependency of physical simulations has been misused as an excuse not to
        change existing serial software to run in parallel.  It is now time to retire that excuse, …”

Bunkum!  All that braggadocio merely distracts readers from questions the book never mentions:
•  If the  “answer quality”  is not yet as desired,  how much more will a better answer cost?
•  Why does  Gustafson’s  scheme malfunction for angles  Θ > π/2 ?   (His example’s  Θ = π/3 .)
•  He promised just  “grade school algebra”.  Instead trig functions are computed repeatedly.
•  What does he do if he doesn’t know what,  if anything,  the differential equation conserves?

Quality vs. Cost:  Starting from  θ := –Θ = 60° = π/3  at time  τ(–Θ) := 0 ,  the book twice plots 
sets of interval estimates for the elapsed time  τ ,  about  2P(Θ) , that  θ  takes to reach  –Θ  twice 
more in steps  ∆θ .  The book says the first graph’s  ∆θ = 10°,  which would take  72  steps;  but I 
could see only  47  steps with  ∆θ = 15°  on p. 286.  It says the second graph’s  ∆θ = (1/16)°;  this 
takes  11520 steps that merge into a continuous curve on the printed page.  Neither graph comes 
with a cost-box;  we cannot know their costs in bits moved.  However,  we can guess that costs are 
at least proportional to the numbers of steps.  Neither graph comes with a statement of the widths 
of the interval estimates  [τ]  of elapsed times;  we will have to estimate their widths.

All the traversal time bounds can be computed in parallel.
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I think  Gustafson’s  scheme has what numerical analysts call  “ 2nd order ”:  By decreasing a 
sufficiently small stepsize  ∆θ  to  ∆θ/k ,  which increases the number of steps by a factor  k ,  the 

computed result’s uncertainty or error is decreased by a factor near  1/k2  unless roundoff gets in 
the way.  The computation’s cost increases by the same factor  k  as the number of steps unless 
arithmetic of higher precision is invoked,  in which case the cost increases by a bigger factor.

The first graph printed on  p. 286  is about  112 mm. long;  its last  [τ]  is about  1 mm. wide,  
implying a measured uncertainty of about  ±0.06  in  τ = 2·P(π/3) ≈ 6.743 .  The second graph’s  
∆θ = (1/16)°  is smaller than the first’s by a factor  1/k = (1/16)/15 = 1/240 ,  reducing the first 

graph’s uncertainty  ±0.06  to about  ±0.06/2402 ≈ ±0.000001  at the cost of a computation over  
240  times longer  — 11520 steps —  unless vastly many parallel processors were previously idle.

Malfunction for  Θ > π/2 (90°):  Gustafson’s  scheme produces utterly wrong results for swings 
beyond  90°  because,  after the swing rises above the level of its pivot,  it does not reverse its 
rising trajectory but drops abruptly or else continues to spin around its pivot.  This happens to the 
young girl on a swing hanging by chains,  and to a pendulum hanging by  “ a string of length  L ”  
as is prescribed on  p. 274.  What happens after a drop is hard to predict — perhaps a fall off the 
swing,  perhaps some bouncing,  perhaps a break.  A rigid pendulum would not drop.

Gustafson  has overlooked the case when,  for a range of initial energies,  the pendulum’s bob 
attached by a string will depart from the circular path he predicts and follow a parabolic ballistic 
path until it intersects the circle again.  His  “grade school algebra”  has not coped with this case.

“Why beholdest thou the mote that is in thy brother’s eye,  but  
      considerest not the beam that is in thy own eye?”  Matthew 7:3

Only grade school algebra:  Gustafson’s  promise to use only  “grade school algebra.  Without 
deep human thought but with brute force computing, …”  can be fulfilled;  but understanding how 
and why will require a little evil  Calculus  and some of  “a century of numerical analysis.”   First,  

dθ/dτ = φ ,      dφ/dτ = – σ ,      dσ/dτ = γ·φ ,      dγ/dτ = – σ·φ  
are the rigid pendulum’s differential equations for the deflection angle  θ ,  its velocity  φ ,  and  
σ = sin(θ)  and  γ = cos(θ) ,  all functions of time  τ  initialized at,  say,  τ = 0 .  Of course we 

expect  σ2 + γ2 = 1 ,  and this relation will be conserved by our numerical procedures that we shall 
construct to approximate the four functions.  Call their approximations  th ≈ θ(τ) ,  ph ≈ φ(τ) ,  
sn ≈ σ(τ)   and  cs ≈ γ(τ) ;  and  τ  is the fifth variable.  Our first procedure,  named  up2,  updates 
(overwrites)  all five variables;  it adds any given  ∆τ  to  τ  and then computes four updated values  
th ≈ θ(τ+∆τ) ,  etc.  using no more than grade school algebra.  Here it is:

Procedure  up2(∆τ, τ, th, ph, sn, cs) := { 
τ := τ + ∆τ ;
th := th + ph·∆τ/2 ;
ph := ph – sn·∆τ/2 ; 

{  β := ph·∆τ/2 ;     [cs,  sn] := [cs,  sn] – [β·cs+sn,   β·sn–cs]·2β/(1 + β2) ; } ;  
ph := ph – sn·∆τ/2 ;
th := th + ph·∆τ/2 ;  }. 
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Procedure  up2  is  Anadromic  in the sense that two successive calls,  up2(∆τ, τ, th, ph, sn, cs)  
followed immediately by  up2(–∆τ, τ, th, ph, sn, cs) ,  restore all five variables to their former 
values.  Thus  up2  conserves a crucial property possessed by every ordinary differential equation:

Running a solution from  τ  to  τ+∆τ  and then back from  τ+∆τ  to  (τ+∆τ) – ∆τ  
   returns to the solution at  τ  ,  retracing the solution’s path exactly but for roundoff.

Though most numerical algorithms are not  Anadromic,  all the ordinary differential equations of 
classical  Mathematical Physics  and  Physical Chemistry  can be approximated by  Anadromic  
numerical methods regardless of what else,  if anything,  those differential equations conserve.  

Here  up2  conserves   cs2 + sn2 ,  and all using only grade school’s rational operations  (+, –, ·, ÷).

Like  Gustafson’s  scheme,  up2  has  2nd order.  This means that if  k  steps  ∆τ = T/k  are used to 
advance all five variables from  τ = 0  to  τ = T ,  then errors in  th(T)  and  ph(T)  will be nearly 

proportional to  T·∆τ2 = T3/k2  provided  k  is big enough,  yet not so big that roundoff interferes.

To render roundoff harmless until  th  and  ph  are correct to within several units in the last digits 
carried by the arithmetic,  either store all five variables to twice arithmetic’s precision,  or else use  
Compensated Summation,  a trick published in  1960  used now by savvy  Numerical Analysts.  

Digression:  Compensated Summation  will be illustrated by application to a silly sum  Gustafson  
uses on p. 120 to justify what unums do as intervals do,  namely,  convey numerical uncertainty 
via their widths.  He adds up  1.0  a billion times into a  Float  variable holding  24  sig.bits,  about  
7  sig.dec.,  and expresses faux chagrin when most of the addends fall off the variable’s right-hand 
end and get rounded away after that variable gets big enough,  which is far less than a billion.

Crude Program      With Compensated Summation         All in  Floats
  sum := 0.0 ;        sum := 0.0 ;    comp := 0.0 ;
  for  i = 1 to 1000000000  do {        for  i = 1 to 1000000000  do { 

sum := sum + 1.0 ;      }       comp := comp + 1.0 ;  oldsum := sum ;
     sum := oldsum + comp ; 
     comp := (oldsum – sum) + comp ; } 

   Printout: sum is  16777216.0 = 224         sum is  1000000000.0 = 109  exactly

End of Digression  

Convergence as  ∆t → 0  is slow at  2nd  order.  For smooth solutions of differential equations,  
higher accuracies are usually achieved sooner with  4th  order schemes.  Here is such a scheme:

Procedure  up4(∆τ, τ, th, ph, sn, cs) := { 
δτ := ∆τ/6 ; 
for  j = 1 to 4  do  call up2(δτ, τ, th, ph, sn, cs) ; 
call up2(–2·δτ, τ, th, ph, sn, cs) ;
for  j = 1 to 4  do  call up2(δτ, τ, th, ph, sn, cs) ;   } .

This  up4  is the simplest  4th  order  Anadromic  updating scheme,  not the most efficient;  and it 
uses only grade school algebra,  no repeated calls upon the  Math. Library’s  cos(…)  nor  sin(…) .

At first  up4  seems constrained to answer the question  “Where will the pendulum be at time  T ?”  
using  k  calls upon  up4  with  ∆τ = T/k  and  k  big enough.  However,  up4  lets  ∆τ  vary.
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Instead of advancing  τ  in steps  ∆τ  until  τ = T ,  up4  can be used to advance the numerical 
approximations  th(τ)  and  ph(τ)  until they satisfy some other condition.  To match the book’s  
results we initialize  th(0) := –π/3 ,  ph(0) := 0 ,  cs(0) := 0.5 = cos(–π/3) ,  sn(0) := –√0.75 ,  and 
we stop when  ph(T) = 0 > th(T)  for the third time,  making  T ≈ 2·P(π/3) .  Knowing only that 
period  P(|th(0)|) > 2π ,  we can try  ∆τ := 4π/k  for  k ≥ 4  initially,  say,  and double  k  as often as 
necessary until successive re-estimates  Tk  nearly settle down.  How nearly is nearly enough?

While  up4’s  convergence at  4th  order implies  (Tk – T∞)/(Tk/2 – T∞) ≈ 1/24  for  every  k  big 

enough,  it implies  (T2k – Tk)/(Tk – Tk/2) ≈ 1/24  too,  and  vice-versa.  These approximations 

provide an estimate   T∞ ≈ T2k + (T2k – Tk)/(24 – 1)   acceptable when  |T2k – Tk|  is almost small 

enough and   (T2k – Tk)/(Tk – Tk/2) ≈ 1/24
 .

The following process approximates  2·P(Θ)  for a rigid pendulum starting at  th(0) := – |Θ| :

Function  T = prd2(Θ, tol) := {  %… approximates   2·P(Θ) ± tol   for  |Θ| < π .
if  |Θ| ≥ π ,  ErrorStop( “ prd2(Θ)  needs  |Θ| < π ” ) ;
τ° := 0 ;  th° := – |Θ| ;  ph° := 0 ;  cs° := cos(th°) ;  sn° := –√(1 – cs°)·(1 + cs°) ; 
if sn° = 0 ,  return( T := 4·π ) ;   
  k := 4 ;  ∆τ° := 8·π/k ;   oT := -4 ;   T := -1 ;   K := 0 ;  
do { ∆τ° := ∆τ°/2 ;  ∆τ := ∆τ° ;  ooT := oT ;  oT := T ;  
        τ := τ° ;  oτ := τ ;  th := th° ;  ph := ph° ;  sn := sn° ;  cs := cs° ;  L := -1 ; 
        do while ( (L < 2) or (τ ≠ oτ) ) {   oτ := τ ;  %… advance  τ  to  τ+∆τ

   call up4(∆τ, τ, th, ph, sn, cs) ;  K := K+1 ;    %…  K  counts calls on  up4 . 
   if ( |L| = 1 ),  { if ((sn < 0) & (ph < 0)),  L := L+1 ; } 
       elseif ( L = 0 ),   { if (ph > 0),  L := L+1 ; }
       else  { ∆τ := min( ∆τ°,  ph/sn ) ; } ; }    %…  after  L = 2  in  2nd period 

       T := τ ;   %…  τ  solved  “ ph(τ) = 0 ”  by cubically convergent  Newton  iteration

    } until  ( ( | T – oT | < 10·tol ) & ( | (T – oT)/(oT – ooT) – 2–4
 | < 10–2 ) ) ; 

return( T := T + (T – oT)/15 ) .  %…  approximately  2·P(Θ) ± tol .

Do  up2  and  up4  conserve the rigid pendulum’s total energy   ph2 + 4·sin2(th/2)  ?   Not exactly.  
It neither accretes nor decays but fluctuates periodically within bounds separated by an amount 

that shrinks like  ∆τOrder  provided  ∆τ  is not too big.  This conforms to a theorem published 
several years ago by  Prof. J. Marsden  and a collaborator at  Cal. Tech.:

A scheme that predicts approximately the behavior of a friction-free mechanical system 
after any given elapsed time,  and that also conserves both total energy and all momenta,  
must be exact,  not approximate.                  [Exact schemes are uncommon in numerical work.] 

Neither do  up2  and  up4  conserve the relations  cs = cos(th)  and  sn = sin(th)  exactly;  they too 
are conserved approximately.  To some extent  th  is redundant,  since it can be recovered after 

many updates from a formula like   th ≈  2·arctan( (sn/(1 + |cs|))sign(cs)
 ) ,  in which case the two 

lines  “ th := th + ph·∆τ/2 ; ”  could be deleted from  up2  to save a little time.  And then,  if an 
approximation for total energy is needed after updates,  it too could be approximated by 

 ph2 + 4·sin2(th/2)  ≈  e :=  ph2 + 2·sn·(sn/(1 + |cs|))sign(cs)  .
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Numerical Results  from a  MATLAB  5.2  version of  prd2(Θ) ≈ 2·P(Θ)  on a  Mac Quadra 950:

prd2(π/3) = 13.486003 ± 0.0000013  in  156  calls upon  up4 ;  e  fluctuated by ±0.0000006  

    = 13.48600284 ± 10-8  in  296  calls upon  up4 ;  e  fluctuated by  ±3.7·10-8 

    = 13.486002838501 ± 1.5·10-12  in  2226  calls upon  up4 ;  e  fluctuated by  ±10-11 

prd2(π/2) = 14.832597 ± 2.2·10-6  in  167  calls upon  up4 ;  e  fluctuated by  ±1.2·10-6 

    = 14.83259741841 ± 2.4·10-11  in  1233  calls upon  up4 ;  e  fluctuated by  ±3·10-10 

prd2(3) = 32.311079 ± 5·10-6  in  343  calls upon  up4 ;  e  fluctuated by ±2.5·10-6 

 = 32.311078744787 ± 7·10-11  in  2655  calls upon  up4 ;  e  fluctuated by  6·10-10 

The extravagantly accurate values are exhibited here only to corroborate the  ±error  estimates of 
the less accurate values.  Further corroboration comes from the calculator’s integrations exhibited 
four pages ago.  Compare the  ±error  estimate of  prd2  after our  156  steps with the interval 
estimate of  ±0.000001  the book did not mention after  11520  steps.  Our  ±error  estimates were 
derived using the evil  Calculus,  using ideas that were misrepresented along with the misquoted 
formula from the book’s  p. 198.  We addressed that on  p.22  above.  What matters here is less that 
our method can reproduce the book’s at a far lower computational cost,  more that … 

Gustafson’s method is incorrigibly unrealistic.

If Energy is NOT Conserved:   Gustafson  intentionally disregards friction;  instead he says 
“(We can ignore air resistance and assume someone is giving the child a 
    slight push at the end of each cycle to keep the amplitude at  ±60°.)”  p. 275

Why disregard friction?  How slight a push suffices to keep a young girl happy and unafraid?
(A typical young boy may ask for a harder push.)

Without conservation of energy,  time  τ  is not an integrable explicit elementary function of  θ .  
His time-bounds can no longer all be computed in parallel because friction shortens successive 
swings,  so the range of values to be taken by  θ  is unknown until the pendulum’s motion has been 
simulated.  This simulation must compute  θ  as a function of  τ  ,  instead of  Gustafson’s  τ  as a 
function of  θ .  His disparagement on  p. 277  of such sequential simulations resembles his sneer 
at backward error-analysis.  We could paraphrase it thus:  

But what if  (as  Gertrude Stein  said of  Oakland  CA)  there is no  there  there?

Our numerical method does not assume  Conservation of Energy,  and can account for friction as  

Gustafson’s  method cannot.  The pendulum’s differential equation  d2θ/dτ2 = – sin(θ)  changes to

 d2θ/dτ2 = – sin(θ) – ρ·(dθ/dτ)·|dθ/dτ|   for some small  ρ > 0  
at small air velocities  |dθ/dτ| .  The constant  ρ  depends in a complex way upon the girl’s shape 
and size and the air’s density.  Ideally  ρ  could be determined by experiments in a wind tunnel.

You asked  “ Where  will it be  then ?”
I cannot give you the answer you requested,  and it is all your fault,  because you
should have asked a slightly different question.  I gave you a perfect answer to the
question you should have asked:  “ When  will it be  there ?”   Cf. his box from p. 76.
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Rather than put a little girl in a wind tunnel,  we can estimate  ρ  by observing how the amplitudes 
of the swings decrease from one swing to the next,  assuming the swing’s pivot is lubricated well 
enough to render friction there negligible compared with air resistance.  Then it changes both 
appearances above of   “ ph := ph – sn·∆τ/2 ; ”   in procedure  up2  to 

   ph := ph – (sn + ρ·ph·|ph|)·(∆τ/2)/(1 + ρ·|ph|·∆τ/2) ;

which is only approximately  Anadromic  with a negligible departure of the order of  ρ·ph2·sn·∆τ  
just when  ph  reverses sign from a value of the order of  ∆τ .  Also changed is  prd2 ;  for each 
value of  ρ ,  prd2  must stop to deliver  th ≈ θ(τ)  when  τ > 0  and  dθ/dτ = φ ≈ ph = 0 > th  for 
the second time after starting from,  say,  ph = – Θ = – π/3 = 1.047197551… .

Here is  ρ  plotted  vs.  the difference between this second extreme  θ < 0  and initial  – Θ = – π/3 :  

The foregoing computation can exploit parallelism if a separate thread is allocated to each value 
of  ρ  though each thread must compute its  θ(τ)  sequentially because its terminal values of  τ  and  
θ  are unknown initially.  Ditto  for interval arithmetic’s  Self-Validating Computation.  The graph 
cannot be obtained from  Gustafson’s  methods;  they rely upon conservation of energy and,  in a 
later chapter,  momenta,  to reduce the dimensions or order of a differential equation.  His scheme 
is inapplicable when he does not know what is conserved,  with or without the evil  Calculus.

By ignoring friction he laboriously computes rigorous bounds for unrealistic physical behavior.

Not yet is it  “time to overthrow a century of numerical analysis”  in favor of  “Mindless,  brute-
force application of large-scale parallel computing.”  Neither are  Gustafson’s  choices of crude 
methods to solve unrealistic physical problems relevant to a fair appraisal of  Unum Computation.

Why,  then,  does his book denigrate so many other things he appears to misunderstand?
•  •  •  •  •  •  •
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§9:  Puffery instead of Percipience
THE END OF ERROR  goes far beyond a text about  Unum Computation.  The book also attempts 
to sell  Unum Computation  to gullible readers.  Like late-night  TV  commercials for diet pills,  
unregulated herbal remedies and magnetic bracelets,  the book takes full advantage of the  First 
Amendment’s  freedom of speech to tell ignorant readers what they wish to believe — that their 
ignorance is no impediment to reliable computation.  TV  commercials usually append a  caveat :

“This product is not intended to prevent,  diagnose,  treat or cure any disease.  Results may vary.”.

Gustafson  has left out the fine print.  His worked numerical examples serve the same rôle as do 
testimonials from  “satisfied customers”  voiced on  TV  by paid actors.  He vents misguided 
opinions regardless of facts,  and assert bold generalities uninhibited by inconvenient details.

P. 316  has an instance of one of  Gustafson’s  bold generalities:

“Every physical effect can be modeled without rounding error
   or sampling error if the model is discrete.”    [His boldface] 

What he says here differs from what he means.  Because he accepts the usual definitions of energy 
and momentum in terms of derivatives,  and accepts their conservation by the usual differential 
equations of friction-free motion,  his models of physics are the usual models.  His numerical 
treatments of these models using unum/interval arithmetic,  when they work,  take roundoff into 
account and render it negligible by extending precision at run-time.  His  “discrete”  means only 
that his intervals encompass  “sampling”  (discretization)  errors too.  He doesn’t say how much 
more computation his chosen numerical methods will cost to produce better than poor accuracy.

None of his physical models are actually  discrete.

“ ‘When I make a word do a lot of work like that,’  said  Humpty Dumpty,  ‘I always 
      pay it extra.’ ”  Ch. VI  of  Through the Looking-Glass  by  Lewis Carroll

We have experienced discretized  Physics  before.  What  Gustafson  imagines he has done was 
actually done in the  1960s  by  Donald Greenspan  at the  Univ. of Wisconsin at Madison.  He  
advocated discrete mechanics to do away with calculus and derivatives by redefining energy and 
momentum in terms of discrete divided differences.  For example,  he replaced velocity  dx(τ)/dτ  
by  (x(τ+∆τ/2) – x(τ–∆τ/2))/∆τ .  Then he redeveloped  Newtonian-like  laws of motion that do 
conserve discretized energy and momenta.  He wrote a book about them.  It never caught on for 
reasons now familiar.  To obtain adequate accuracy from his discrete models required time-steps  
∆τ  so small and consequently computations so time-consuming that they could not compete with 
numerical methods of higher than  2nd  order derived for differential equations by using calculus.

Gustafson’s  methods for evaluating integrals and solving differential equations have  2nd  order 
at best.  Like  Greenspan’s  methods,  they are uneconomical for better than poor accuracy.

•  •  •  •  •  •  •
In a free country,  we all have the right to be wrong.  Gustafson  exercises his rights to assert 
misguided opinions about floating-point arithmetic conforming to  IEEE Standard 754.  He does 
not understand why each of the standard’s flags and arithmetic exceptions is needed,  so he scoffs 
at them all,  saying on  p. 30 …

“No one ever looks at these flags.”  [His italics.] 
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“Computer languages provide no way to view the flags,  … 
  … computer users find them useless at best,  and annoying at worst.”

[ If flags cannot be viewed by a program(mer),  how could they be useful,  or annoying?]
He goes on to say … 

His opinions are shared widely,  but not by the committees responsible for revised standards for  C  
and  Fortran.  Their recent language standards provide for  IEEE 754’s  flags.  What do they see 
that  Gustafson  doesn’t?

Most exceptions occur very rarely in debugged programs.  Testing every vulnerable floating-point 
operation to detect whether it was exceptional is intolerably expensive.  Testing a big array’s every 
element to detect whether it is wrong because of an exception can be expensive too if the elements 
were computed in parallel each from a short formula.  There are too many ways for an element to 
inherit a misleading unexceptional value from prior exceptions like over/underflow often harmless 
but otherwise tedious to detect without a flag.  Rather than waste time testing every element for 
troubles that almost never happen,  a program can run faster on average by testing one or two flags 
after the array has been computed and,  if a flag was raised,  recompute the array some better way.  

Most people ignore the  Inexact  flag.  It matters to someone generating data to test the  Math. 
library’s accuracy,  where the slightest error in test data can overwhelm the accuracy of a carefully 
crafted function.  For example,  see  “Accuracy Tests for Polynomials’ Zero-Finders”  posted at  
www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf .  Another use for that flag would arise 
among programming languages that do not distinguish big integer variables from floating-point 
variables when computing  Greatest Common Divisors  and  Least Common Multiples,  which 
roundoff ruins with no other warning.  It has happened in  MATLAB ,  which lacks access to flags.

•  •  •  •  •  •  •

Relatively few computer practitioners have tried to debug immense floating-point programs used 
by scientists and engineers,  especially programs thought already debugged.  Gustafson  must lack 
that experience.  Perhaps that is why he scoffs at  IEEE 754’s  flags and won’t  “waste bit patterns 
on a plethora of NaNs” (p. 49).  On  p. 24  he dismisses peremptorily their use for debugging.

Ideally,  in a software development ambience devised to help debug those immense floating-point 
programs,  flags and  NaNs  would do double-duty as pointers  (indirectly)  to places in programs 
where a flag was first raised or a  NaN  first created.  The rules for propagation of  NaNs  through 
arithmetic operations reveal something about the origin of a final result that is  NaN.  If it was 
caused by a reference to an uninitialized variable,  that would be revealed after a program’s work-
space had been initialized to  NaNs  that point to their variables’ names.  Names of such variables 
rarely outnumber the capacity of a  NaN  as a pointer;  and the sites in a program at which a flag 
can first be raised or a  NaN  created rarely outnumber their pointing capacities.  The first creation 
is the one most worth recording;  the consequent cascade of exceptions matters less to debugging.

A fundamental mistake in the IEEE design is putting the “inexact” description in
three processor flags that are very difficult for a computer user to access.  The
right place is in the number itself,  with a ubit at the end of the fraction.  Putting just
that single bit in the number  eliminates the need for  overflow,  underflow,  and
rounding flags. 
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What alternative are there to these debugging aids?  Must a program crash at its first encounter 
with an arithmetic exception deemed an error?  Whose error?  The programmer’s or the user’s? 

Crashing a program at the first exception deemed an error seems a reasonable policy while the 
author of a short program is debugging it,  but to enforce that policy universally is a bad policy.  
That policy would preclude interwoven speculative execution of two processes of which one will 
succeed when the other doesn’t.  That policy would prematurely abort searches that jumped out 
beyond the domain of a subprogram;  the correct response is to shrink the jump back inside the 
domain and resume the search.  That bad policy would cause software embedded in a controller to 
abandon the process being controlled,  rather than detect and diagnose the exception to maintain 
control of a nuclear power plant,  an aircraft,  an automobile,  or a medical life-support system.

Crashing is a bad policy to enforce universally.  Continued execution oblivious to every arithmetic 
exception is a bad policy to enforce universally,  as  JAVA   does.  Flags help programs detect 
exceptions economically,  diagnose them and compensate for them.  NaNs  convey information 
helpful to programmers and users of programs who must debug them.  The computing industry 
has been very slow to recognize and support these debugging capabilities of  IEEE 754.  That does 
not excuse  Gustafson  for scoffing at what he does not appreciate.

•  •  •  •  •  •  •

“The set of ubounds is closed under  addition,  subtraction,  multiplication,  and division.”  
This assertion on  p. 63  is misleading.  The book defines division by  0  to be  NaN  (p. 137),  and 
defines division by a ubound (interval) containing  0  to produce  NaN  instead of an interval that 
contains  ∞ ,  though infinite unums are defined on  p. 29.  What are these good for? 

Unum Computation’s ubounds differ from the usual interval arithmetic’s intervals in this one way:
A ubound may include or exclude either or both endpoints.

This detail matters rarely,  and then it can matter greatly if  0  is an endpoint of an interval divisor :
 2/(1 + [0, 3]/[0, 1]  ) = 2/(1 + NaN )  is  NaN   because  0/0  is  NaN ;  however
 2/(1 + [0, 3]/(0, 1]  ) = 2/(1 + [0, ∞) ) = 2/[1, ∞) = (0, 2] .

Thus does infinity go away after it serves as a divisor.  It can do the same if it is inside an interval,  
though the idea of an interval containing infinity seems strange at first.  Such intervals  (ubounds)  
would exist if the set of ubounds really were closed under all the rational arithmetic operations.

What good are intervals containing infinity?

They are needed to evaluate continued fractions.  This ratio of  Bessel  functions is one of them:

  Jn(2√x)/Jn–1(2√x) =  .

Many higher transcendental functions have continued fraction expansions.  These often converge 
over a wider domain in the complex plane than do power series.  Rather than get involved in that 
topic,  let’s consider a simpler didactic example restricted to a real variable: 

x

n x

n 1 x

n 2 x
n 3 …–+
------------------------–+

-------------------------------------------–+
-------------------------------------------------------------–

----------------------------------------------------------------------
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cƒ(x) := 13 –  = p(x) :=  .

Of these two  expressions  for the same rational  function,  p(x)  is by far the more vulnerable to 
over/underflow and to roundoff,  though the function is otherwise well-behaved at every real  x :

 Ideally,  cf(x) = p(x) :   

  cf(x)  and  p(x)  computed in  4-byte float  arithmetic (24 sig.bits):

The computation of  cƒ(x)  encounters divisions by zero at   x = 1,  2,  3  and  4 .

Instead of rounding,  unum/interval arithmetic widens intervals,  and widens them vastly more for  
p  than for  cƒ .  For instance,  

12

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
------------------------------------------------–

------------------------------------------------------------------- 2152 x 2551 x 1000 x 194 13 x⋅–( )⋅–( )⋅–( )⋅–
112 x 151 x 72 x 14 x–( )⋅–( )⋅–( )⋅–

-----------------------------------------------------------------------------------------------------------------------

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

35

X

 c
 f 

( 
X

 )
 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x10-4

-6 -4 -2 0 2 4 6

x10-5 X - 4851 / 2048 

  c
˜(

X
) 

 &
  p

(X
) 

cƒ(x)  and  p(x)  are here
computed at about  500
consecutive  float  values
of  x ,  each in  24 sig.bits.

The graph of  cƒ  is the
comparatively smooth 
line sloping from upper
left to lower right thus:  \
The graph of  p  is the
ragged oscillatory graph.
It shows that  p  suffers
from roundoff by orders
of magnitude more than
cƒ  does.
But there is a catch:
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    cƒ([303/128,  304/128]) ⊂ [–0.158,  0.146] ;       p([303/128,  304/128]) ⊂ [–5.02, 5.001] . 
And ordinary unum/interval arithmetic produces  NaN  instead of  cƒ(X)  at any interval  X  that 
contains  1,  2,  3  or  4 ,  and also produces  NaN  for  p(X)  if  X  is too wide;  for instance …
     p(X) is  NaN  for  X := [–0.75, 0.75],  [0.8, 1.2],  [1.99, 2.01],  [2.95, 3.05],  [3.9, 4.1]  and  [4.9, 5.1] . 

Far fewer  NaNs  are produced when intervals containing  ∞  are allowed during the computation 
of  cƒ .  I called such intervals  “Exterior Intervals”  when I advocated them in  1968  during a 
Summer Course on  Numerical Analysis,  #6818  at the  University of Michigan at Ann Arbor.  An 
ordinary  “Interior”  interval  [α, β]  has  α ≤ β ;  an  Exterior Interval  X = [α, β]  has  α > β  and 
includes  ∞  and all real numbers  ξ ≥ α  or  ξ ≤ β .  For instance,  [6,  8]/[–1,  2] = [3,  –6] .

Thus do exterior intervals close the set of all intervals under addition,  subtraction,  multiplication 
and  division.  Exterior intervals occur rarely and typically exist briefly,  disappearing after being 
used as divisors,  or else generating  NaNs  as does  [3,  –6]·[–1,  2]  because it includes  ∞·0 .  At 
all the intervals  X  above at which  p(X)  is  NaN  in ordinary interval arithmetic,  cƒ(X)  delivers 
finite intervals when a transient exterior interval is allowed to occur.  Here they are:

Exterior intervals complicate interval arithmetic severely.  In  1968  core memory cost too much 
to waste on complexities rarely needed,  so exterior intervals were hardly ever implemented.  Now 
unum arithmetic is so complicated that a little more complexity would barely be noticed.  The 
alternative dumps complexity onto the user of  Unum Computation,  who must rewrite  cƒ  as …

  cƒ(x)  =  g(x) :=  13 – 12·(x – 2)·((x – 5)2 + 4)/( x + ((x – 5)2 + 3)·(x – 2)2 )  
to obtain intervals from  g(X)  not much wider and occasionally narrower than from  cƒ(X) .  Still,  
g([+100,  –100])  cannot be computed so directly as can  cƒ([+100,  –100]) = [12.877,  13.118] .  
And the challenge of figuring out whence  g(x)  came is left to the diligent reader.

  Unum Computation  could have been closed under  all  rational operations,  but it wasn’t.

•  •  •  •  •  •  •

A fair appraisal of  Unum Computation  will ignore  Gustafson’s  
misleading assertions intended to sell it as  THE END OF ERROR.  

Whatever the cost of  Unum Computation,  it would be worth its price
IF

it  always  delivered all of the benefits  Gustafson’s  book claims for it.

But it doesn’t,
not even  usually.

X cƒ(X) ⊂ X cƒ(X) ⊂ X cƒ(X) ⊂

[–0.75,  0.75] [17.4,  23.4] [1.99,  2.01] [12.0,  14.0] [3.9,  4.1] [6.58,  7.36]

[0.8,  1.2] [22.7,  28.5] [2.95,  3.05] [2.85,  3.91] [4.9,  5.1] [8.22,  8.74]
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§10: A Curate’s Egg 

The curate,  Mr. Jones,  attends a luncheon hosted by his superior,  the  Bishop:
Bishop:  “I'm afraid you've got a bad egg,  Mr. Jones”. 
Curate:  “Oh,  no,  my Lord,  I assure you that parts of it are excellent!” 

From  “True Humility”,  a cartoon by  George du Maurier, 
            originally published in  Punch,  9 November 1895.

Dictionary Definition:
A  “curate's egg”  describes something at least mostly bad,  with perhaps some good bits.

•  •  •  •  •  •  •

Compared with variable precision interval arithmetic implemented in floating-point for a widely 
used imperative language like  C++  or  Fortran,  Unum Computation  has its benefits and its costs.  
The benefits come more from how it manages roundoff,  less from how  Gustafson  uses it to 
manage discretization errors and uncertain data.

Unum Computation  shares benefits and limitations with an interval arithmetic whose precision 
can vary at run-time.  Roughly,  if computed interval results’ widths are too big by some factor 
less than  κ ,  say,  and if those widths are due almost entirely to roundoff,  then recomputation 
with unum or interval arithmetic of a wider precision adequate to reduce rounding errors by a 
factor smaller than  1/κ  almost always produces acceptably accurate results.  And if not,  doubling 
arithmetic’s precision almost always works.  And if not,  an error-analyst is needed to recast the 
problem,  if possible,  perhaps as a  Self-Validating Computation  mentioned in  §6 p. 18 above.

Rigorous unum/interval bounds for discretization errors can be costly in two ways.  First,  they 
often require mathematically deft (re)formulations of a problem to render its discretization errors 
subject to simple bounds,  like those for   ∫a

b
 ƒ(x)·dx  in  §7 p.23 above,  or else eligible for  Self-

Validation.  For example,  here is how an initial-value problem  “ dy/dτ = ƒ(y) ,  y(0) = y° ” would 
be reformulated:

Recasting this differential equation as a  Volterra  integral equation   “ y(τ) = y° + ∫0
τ 

 ƒ(y(ξ))·dξ ” 
turns it into a fixed-point problem for a contractive map of a function-space.  Now fixed-point  
y(τ)  becomes the limit of a convergent iteration that illustrates the second way that rigorous 
interval bounds can be costly:  They converge too slowly to be economical for high accuracy.

Rigorous interval bounds for discretization errors usually come from processes that converge 
slower,  as discretizations are refined,  than do processes that yield error estimates  (not rigorous 
bounds)  based upon asymptotic behaviors,  like the  ±  estimates offered in  §7 p. 23-4  above  for  
Takahashi-Mori  quadrature.  Some discretization errors are bounded rigorously by error-analyses 
based upon differential inequalities or monotonicity theorems that cost far less to apply than does 
interval arithmetic.  Still,  when really needed,  perhaps for a certificate of correctness acceptable 
as evidence in a lawsuit,  rigorous interval bounds can be worth their cost in effort and time.

Some of the unacknowledged run-time costs of address computations during  Unum Computation 
were discussed above in  §5, p. 15.  Further run-time costs include increased latency incurred by 
additional pipeline stages needed to cope with the greater complexity of unum arithmetic,  if we 
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assume as  Gustafson  does that the  CPU  performs as much of unum arithmetic as possible on-
chip.  The complexity worsens if both ends of ubounds must be computed in parallel to save a 
factor greater than  2  in run-time throughput.  These further costs seem similar to the run-time 
costs of software support for variable-precision floating-point interval arithmetic at roughly the 
same or better speed.  However,  the far greater complexity of on-chip circuitry needed to handle 
tightly packed variable-width unums will likely increase substantially the price of the  CPU  chip.  
Until one be built,  cost estimates remain speculative.

Comparing costs with the value of benefits remains speculative too.  Almost every computation 
costs far less than an appraisal of its correctness would add to its cost.  Over the past few decades,  
as the cost of computation has dwindled,  so has the value of an ever increasing fraction of what is 
being computed.  Not everyone is willing to pay extra for an appraisal that costs more than the 
computation is worth,  especially if this appraisal merely confirms what might otherwise be taken 
for granted.  Consequently there is little demand for error-analyses,  and less for error-analysts,  
though the demand is intense when and where it exists.  The demand for error-bounds evaporates 
when they cost more time,  hardware or human labor to compute than they are worth.

As a scientist or engineer,  I wish not to know how big rounding and discretization errors in my 
results aren’t.  I need to know only that they are negligible —  so tiny that I need not know them.  
I would rather increase arithmetic’s precision and refine discretization if necessary to render their 
errors almost surely negligible.  And I am unwilling to pay much for what I wish not to know.

Uncertainty Quantification  is different:  How much uncertainty have my results inherited from 
uncertain data?  I wish dearly to know that;  but  Unum Computation  and interval arithmetic too 
often overestimate uncertainty grotesquely without an intense error-analysis,  and with one they 
play a minor rôle.  For example,  take the topic of the book’s  ch. 21.4,  pp. 321-6,  structural 
analysis.  The chapter begins with photos before and after the collapse of  North Sea oil platform 
Sleipner A  in  Aug. 1991.  The engineer in charge had miscalculated concrete pillars’ strengths.

The book does not mention that  Unum Computation  would not have prevented that mistake.

The book treats a cantilevered structure with one strut and two cables,  reducing its load to two 
equations in two unknown forces rather than the more complicated equations for the structure’s 
deflection under load.  The chapter ends with a computer-generated picture of a structure with 
hundreds of members.  The thousands of equations that would have to be solved for the structure’s 
deflections under loads have not been programmed.  Instead  Gustafson  concludes that  Unum 
Computation  of  C-Solutions  will provide  “provable bounds on the results.”  [His italics]  And 
so they will;  but the bounds may be millions of times too big.  It happens because the equations 
are much more sensitive than the structure to ill-oriented perturbations,  as was illustrated by an 
example of  Failure Mode IV  on  p. 20 above.  Interval arithmetic used naively does no better.  
Realistic sensitivity analyses of elastic structures continue to  “require some artistic choices”  of 
variations in parameters notwithstanding his assurance on  p. 324  that instead  “With uboxes,  all 
the possible parameter sensitivity is already in the c-solution,  for all to see.”   Exaggerated.

•  •  •  •  •  •  •

What about  BIG DATA?  Much of it requires only one or two bytes per datum.  Would the cost of 
conversion to unums be repaid by better computations of uncertainty inherited from the data?



Filename: EndErErs                                                                               Version date:  July 15, 2016 4:45 pm

Prof. W. Kahan                                                                                                                                       Page 39/39

Statistical methods,  like regression and estimates of standard deviations,  compute the uncertainty 
inherited from randomly drawn samples of noisy data.  Unum/interval arithmetic can do that,  as 
can ordinary floating-point,  provided their precisions exceed twice the data’s and the desired 
result’s.  Either way,  ubounds or roundoff become negligible compared with standard deviations.  
(Carrying less precision increases the likelihood that ubounds or roundoff will obscure results 
excessively when the data are nearly redundant.)  Error-analysis has obviated interval arithmetic.

Long experience and some error-analyses support a rough rule-of-thumb that renders roundoff 
extremely unlikely to causes embarrassment if  all  intermediate floating-point computations are 
performed carrying a little more than twice the precision trusted in data and desired in results.  
This rule has survived the test of time in statistics,  optimization,  root-finding,  geometry,  
structural analysis and differential equations.  Of course exceptions exist,  but they are so rare as 
to have given rise to a wry joke among numerical analysts: 

Nobody unlucky enough to have been betrayed by that rule of 
thumb need concern us;  he has already been run over by a truck.

Gustafson  chooses unum/interval computation to insure against that betrayal.  Doing so exposes 
him instead to the risk of betrayal by the failure modes exposed in  §6, pp. 16-20 above.

Memory movements so dominate the costs of parallel computation with big data that numerous 
Communications-Avoiding  algorithms have been developed to lessen costs,  sometimes by orders 
of magnitude.  Some of these algorithms demand considerably more arithmetic precision than the 
data’s during certain intermediate computations.  For an example see

www.eecs.berkeley.edu/~aditya/caml-talk .
How would  Unum Computation  know which intermediate computations need higher precision 
and how much?  Or would end-figure uncertainties in the data be misinterpreted as justifying 
degraded accuracy?  Who decides?  (A similar question was raised on  p. 8, §2  above.)

•  •  •  •  •  •  •

Spectral analysis uses a fast  Fourier  transform to split a signal into its constituent frequencies.  
The transform preserves in the spectrum the  Root-Mean-Square  of the signal’s noise,  which is 
usually unknown at the outset.  The computation’s arithmetic should carry enough precision that 
ubounds or roundoff will augment that noise negligibly.  This can be assured if,  for a signal of 

length  2N ,  the arithmetic’s precision exceeds the data’s by at least  N – 1  sig.bits.  For a signal 
stored in  IEEE 754 (2008)  half-precision numbers  (2 bytes wide,  11 sig.bits),  IEEE 754 single-

precision arithmetic  (4 bytes wide,  24 sig.bits)  can handle signals of lengths up to  213 = 8192  at 

least.  Whether a shorter signal of length,  say,  210 = 1024  would benefit enough from a  Unum 
Computation,  with slightly less precision,  to offset the cost of its implementation seems unlikely 
when the extra costs of storing diverse length unums  (§5, p. 15 above)  are taken into account.

•  •  •  •  •  •  •

Perhaps some uncertainty still beclouds the costs and benefits of  Unum Computation.  Anyway, 
  it is certainly  NOT  THE END OF ERROR


