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Trichotomy vs. NaN

 

Abstract:

 

Any two integers,  or rational numbers,  or real numbers  x  and  y  must satisfy just one of the 
three order predicates

x < y ,   or   x = y ,   or   x > y .
This is  

 

Trichotomy

 

.  It characterizes the totally ordered nature of those number systems.  And it 
is one of the properties of numbers that cannot be preserved in its entirety on real computers.  
What supplants  Trichotomy,  and why,  is explained in these notes,  which also suggest two 
notations by which programming languages may accommodate the loss of  Trichotomy  
gracefully.  Which notation do you prefer?

 

What goes wrong with  Real Numbers?

 

Obviously real computers are restricted to a finite subset of real numbers. This restriction gives 
rise to  

 

Overflow

 

,  

 

Underflow

 

  and  

 

Roundoff

 

  on computers.  Computers are restricted in another 
less obvious way;  they cannot stop to think and ask questions that their programmers had not 
anticipated.  Otherwise computers might be stopping thousands of times per second.  Instead 
computers must continue computing under programs’ control.  Every operation must either 
produce a result and continue or else,  in exceptional circumstances,  transfer control.  But what 
if the exception was unanticipated and no suitable site had been prepared to accept the transfer?  
In  1996  this brought down the  

 

Ariane V

 

,  a half-billion dollar rocket and its satellite payload.

Loss of control is a punishment too risky to impose indiscriminately upon all programs that 
encounter unanticipated exceptions.  Programmers should be allowed the option of deferring 
judgment;  programs should be able to detect the occurrence of exceptional events subsequently 
at times and places of the programmer’s choosing.  Otherwise programmers would be obliged to 
program  “defensively”  by inserting tests and branches to preclude every untoward eventuality 
regardless of how very rarely they can happen,  if they can happen at all.  Besides slowing the 
program down,  such tests and branches slow down the programmer by obscuring a program’s 
intent and exacerbating its vulnerability to error.

Thus we infer that a computer’s number system has to be a  

 

Completed

 

  system,  closed under 
all algebraic operations.  Exceptional operations like  3/0  or  0/0  have to be allowed to produce 
predefined results,  including a  

 

Signal

 

  as a side-effect,  and to continue along the expected path 
of control,  unless the programmer asks for a  

 

Trap

 

.  The signal can be a  

 

Flag

 

,  something like a 
global variable that is changed from its null value only if an exception of appropriate type 
occurs,  and can subsequently be sensed,  saved,  restored or reset by the program.

 

Infinity

 

Two kinds of exceptions will be discussed in these notes.  One is the  

 

Divide-by-Zero

 

   
exception,  though it would be better called

“ Exact Creation of Infinity from Finite Operands.”
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Examples of this exception are  3/0 ,  log(0)  and  arctanh(1) .  Its predefined result is always a 
signed infinity,  either  +

 

∞

 

  or  –

 

∞

 

 ,  and its signal is the raising of the  Divide-by-Zero Flag  
unless the Divide-by-Zero Trap  is enabled.

 

( 

 

Overflow

 

  is another way to generate  

 

±∞

 

  but it is an approximation,  not exact,  and raises the  Overflow Flag  
instead.  The distinction is important for an expression like  x/(y·z)  when all of  x,  y  and  z  are so huge that  y·z  
overflows and forces  x/(y·z)  to  0  although  (x/y)/z = 0

 

.

 

125 .  Programs must be permitted to detect this later.)

 

We have inferred that programmers’ needs are served best if the computer’s real number system 
is  Completed,  augmented by  

 

±∞

 

 ,  even though this augmentation is a mixed blessing.

To an augmented real number system,  exceptional values like  

 

∞

 

  look like potato chips:  one or 
two are never enough.  To keep  1/(1/x) = x  at least approximately for every real number  x  
including  

 

±∞

 

 ,  the augmented system has to distinguish  +0 := 1/(+

 

∞

 

)  from  –0 := 1/(–

 

∞

 

) . 
These two zeros are equal numerically  ( +0 == –0 )  but distinguishable in just two ways:

CopySign( 1, 

 

±

 

0 ) = 

 

±

 

1  respectively,   and
1/(

 

±

 

0)  produces  

 

±∞

 

  respectively,  just as  1/(

 

±∞

 

) = 

 

±

 

0 .
In other words,  the sign of zero is detectable only by performing one of the two discontinuous 
operations  CopySign(y, x)  or  1/x  when  x  is zero.  This allows applications programmers  
(but not compiler writers)  to ignore the sign of zero unless they care about it.  For all arithmetic 
operations the sign of a zero result is predictable from the following rules:

SignBit of a Product   =  Exclusive OR  of operands’  SignBits ;
SignBit of a Quotient  =  Exclusive OR  of operands’  SignBits ;
SignBit  of  x – y  is the same as that of  x + (–y)   and of   –y + x ;
SignBit  of  x + x  is the same as that of  x  for all  x ;
x – x  yields  +0  for all finite  x .

Only the last is arbitrary,  and it changes if rounding is directed towards  

 

±∞

 

  instead of towards 
nearest.  The other rules are just what might be expected.  A consequence of these rules is that 
compilers must not  “Optimize”  expression  x 

 

±

 

 0  to  x ,  nor  x–y  to  –(y–x) ,  nor x·0  to  0 ,  
lest the uses of a signed zero be ruined.  Those uses are valuable enough to deserve an extensive 
exposition of their own;  this is not it.

 

NaN

 

Any augmented real number system must violate certain cancellation laws and identities.  The
first of them is familiar:

x/x  is not  1  if  x  is  0  or  

 

∞

 

 ;
x–x  is not  0  if  x  is  

 

∞

 

 .
x·0  is not  0  if  x  is  

 

∞

 

 .
What predefined values can these exceptional expressions produce?  

 

NaN

 

  (“Not a Number”)  
has been introduced to serve that purpose,  and is the last augmentation necessary to complete 
the real number system for all algebraic operations.  Besides  0/0 ,  

 

∞

 

/

 

∞

 

 ,  

 

∞

 

–

 

∞

 

  and  

 

∞

 

·0 ,  other 
real-valued operations,  for instance  

 

√

 

(–3) ,  log(–5)  and  arcsin(7) ,  produce  NaNs  too,  but 
sparingly:

A  NaN  is worth creating only if any other finite or
infinite real value would cause worse confusion.
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Unfortunately,  the  

 

Field

 

  of real numbers cannot determine its completions uniquely.  Smaller completions are 
augmented by  NaN  but no  

 

∞

 

 ,  or by  NaN  plus just one unsigned  

 

∞

 

  and one unsigned  0  instead of two of 
each.  Bigger completions can include the  

 

Algebraically Closed

 

 Field  of  

 

Complex

 

  numbers,  and the  non-Field  
of intervals used in  

 

Interval Arithmetic

 

.  Early in the  1980s  IEEE Standard 754 for Binary Floating-Point  chose 
augmentation by  

 

±

 

0,  

 

±∞

 

  and  NaNs  as a compromise between extreme parsimony and burdensome prodigality.

 

Note that algebraic operations with  NaNs  are  NOT  undefined.  On the contrary,  they follow a 
well-defined rule:

If  ƒ(x)  is an algebraic expression that can take different values as  x
runs through all finite and infinite real values,  then  ƒ(NaN)  is  NaN .

( But  ƒ(NaN)  must match  ƒ(x)  if this value is independent of  x .)
And when an operation creates a  NaN  from finite or infinite operands,  it must signal  

 

Invalid 
Operation

 

  and raise the  Invalid Operation Flag  unless the  Invalid Operation Trap  is enabled.

 

(The same signal or trap occurs when a  

 

Signaling NaN

 

  is acted upon arithmetically and turns into an ordinary 
silent  NaN  for lack of a trap handler.  IEEE 754  requires conforming systems to support at least one  NaN  of each 
kind,  and recommends that silent  NaNs  preserve at least partial information about their ancestry when they 
descend from  NaNs.  Thus,  a silent  NaN  can reveal its point of creation;  a signaling  NaN  can reveal which 
datum is not yet initialized.  These debugging aids remain mostly unexploited for lack of compiler support.)

 

When an operation upon a  NaN  produces a  NaN ,  no signal issues.  Consequently  NaNs  
propagate themselves silently through almost all arithmetic operations.  If that is all they did,  
we could never get rid of them and they would be useless;  we would be better off to quit 
computation at the first sign of a  NaN.

How do  NaNs  go away?

 

Extended Definitions

 

Many a function  ƒ  of real arguments can be extended in a natural way to accommodate  

 

±∞

 

  
and  NaN.  Extensions that accommodate  

 

∞

 

  usually are accomplished by a limiting process;  
examples are  exp(–

 

∞

 

) = 0  and ln(+

 

∞

 

) = +

 

∞

 

 ,  neither of which need signal.  Extension by a 
limiting process can fail utterly,  as in the example  sin(

 

∞

 

)  which generates a  NaN  and an  
Invalid Operation  signal.  Mere discontinuity is not a good reason for extension to fail but calls 
instead for consensus upon a convention or at least tolerance of diverse extensions;  for instance

signum(0) := 0 ,    SIGN(0) := 1   and    CopySign(1, 

 

±

 

0) := 

 

±

 

1

exemplify tolerance.  The power function’s  0

 

0

 

 := 1  and consequent  

 

∞

 

0

 

 := 1  and  NaN

 

0

 

 := 1  
exemplify conventions now followed widely if not universally.  Still,  troublesome cases remain.

Take  max{x, y, z, ...}  for example.  Surely its value should not change when its arguments are 
permuted,  but many an implementation violates this expectation when an argument is  NaN.  
One way to avoid confusion is to define  max{NaN, y, z, ...}  to be  NaN  and issue an Invalid 
Operation  signal.  However,  another way more useful for  “windowing”  is to ignore any  NaN  
among the arguments of  max{...}  unless all of them are  NaN,  and return  NaN  with no signal 
in only this case.  Ideally both ways of implementing  max{...}  should be available.  Alas,  no 
way preserves all relationships valid for finite real arguments;   max{x, y} == ( x+y + |x–y| )/2   
must be violated when both arguments are infinite or when either is  –

 

∞

 

  or  NaN,  as we’ll see.
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In general,  for real valued functions  ƒ  of real arguments the rule
“ Create a  NaN  (and signal  Invalid Operation)  or quietly propagate

    a  NaN  just when any other result would worsen confusion ”
is a clear statement of intent but not always dispositive.  And it gives no guidance at all for non-
numeric or integer functions of real variables.

 

Order Predicates

 

A programmer who has anticipated the possible creation of  NaNs  can test for their existence in 
three ways.  One way tests the  Invalid Operation Flag;  this is quicker than scanning arrays of 
intermediate results for  NaNs.  Another way invokes a predicate like  isNaN(x)  designed to 
return  

 

True

 

  if  x  is  NaN  and  

 

False

 

  otherwise.  A third way,  and the only way available to 
programs programmed in a language oblivious to  NaNs ,  is to detect the way a  NaN  affects 
the order predicates.  The predicate  x == x ,  

 

True

 

  for every finite and infinite  x ,  must be  

 

False

 

  by definition when  x  is  NaN .  ( Rashly optimizing compilers may spoil this.)  And  
x != y matches  !(x == y)  for every  x  and  y  and is therefore  

 

True

 

  only if  x  or  y  is  NaN .  
The four order predicates

x < y ,    x 

 

≤

 

 y ,    x 

 

≥

 

 y    and    x > y
are all  

 

False

 

  if  x  or  y  is  NaN .  Thus,  Trichotomy  is violated by NaNs ,  but their behavior 
in order predicates is well-defined.  Consequently a programmer can predict what  NaNs  will do 
in and to his program,  and can then code steps to replace or ignore  NaNs  if they arise.

 

It was not always so.  Things somewhat like  NaNs  have been built into the hardware of earlier computers.  CDC 
6000 and 

 

Cyber

 

 computers had  “Infinities”  and  “Indefinites”  in the  1960s.  In the  1970s  CRAYs  still had  
“Indefinites”;  and  DEC PDP-11  and  VAX  computers had very similar  “Reserved Operands.”  They were all 
printed or displayed as  “????.”  But their roles in order predicates were undefined and therefore accidental;  they 
were worse than useless to programmers.  Real  NaNs  have many uses,  but this is no place to enumerate them all.

 

Because programmers who had not anticipated that  NaNs  might arise could be ambushed by a 
violation of  Trichotomy,  the four order predicates

x < y ,    x 

 

≤

 

 y ,    x 

 

≥

 

 y    and    x > y
must also signal  Invalid Operation  whenever  x  or  y  is  NaN .  A programmer who does take  
NaNs  into account will find these signals to be nuisances.  This is why non-signaling order 
predicates have to be provided too,  all four of them  silently  

 

True

 

  if  x  or  y  is  NaN .  Two 
notations have been proposed for them:

x !

 

≥

 

 y   and   x <? y silently take the same value as      !( x 

 

≥

 

 y ) ,
x !> y   and   x 

 

≤

 

? y   "   "   "   "   "   "   "   "   "   "        !( x > y ) ,
x !< y   and   x 

 

≥

 

? y   "   "   "   "   "   "   "   "   "   "        !( x < y ) ,    and
x !

 

≤

 

 y   and   x >? y   "   "   "   "   "   "   "   "   "   "        !( x 

 

≤

 

 y ) .
The first column’s notation is analogous to  “ != ”.  The second column uses  “ ? ”  to stand for 
an  “Unordered”  relation between  NaN and everything  ( including itself )  in the augmented 
real number system.  But the symbol  “ ? ”  is used elsewhere in  

 

Java

 

’s conditional expressions 
of the form  “ ?( L, t, f ) ”  to abbreviate  

 

Algol

 

’’s  expression  “ ( if  L  then  t  else  f ) ”.  The 
symbol  “ ! ”  is used elsewhere in programming languages only to negate predicates.

Which of the notations in the first two columns do you prefer?   Why?


