

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 1/90

Desperately Needed Remedies for the Undebuggability of Large
Floating-Point Computations in Science and Engineering

W. Kahan, Prof. Emeritus
Math. Dept., and

Elect. Eng. & Computer Sci. Dept.
Univ. of Calif. @ Berkeley

Prepared for the

IFIP / SIAM / NIST Working Conference on
Uncertainty Quantification in Scientific Computing

3 Aug. 2011, Boulder CO.

Augmented for the

Annual Conference of the
Heilbronn Institute for Mathematical Research
8 Sept. 2011, University of Bristol, England.

And for

Computer Sci., Manchester University, 12 Sept. 2011

ICME, Stanford University, 13 Oct. 2011

This document is posted now at

<www.eecs.berkeley.edu/~wkahan/Boulder.pdf>

.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 2/90

Contents

Pp. 3 - 4 Abstract and Cautionary Notice
 5 - 7 Users need tools to help them investigate evidence of miscomputation
 8 - 11 Why Computer Scientists haven’t helped. Accuracy is Not Transitive
12 - 13 Summaries of the Stories So Far, and To Come

14 Kinds of Evidence of Miscomputation
15 - 19 EDSAC’s arccos, Vancouver’s Stock Index, Ranks Too Small, etc.
20 - 21 7090’s Abrupt Stall; CRAYs’ discordant Deflections of an Airframe
22 Clever and Knowledgeable, but Numerically Naive
23 How Suspicious Results may expose a hitherto Unsuspected Singularity

24 - 26 Pejorative Surfaces
27 - 30 The Program’s Pejorative Surface may have an Extra Leaf
31 - 35 Default Quad evaluation, the humane but unlikely Prophylaxis
36 Two tools to localize roundoff-induced anomalies by rerunning the program
37 - 38 Rare counterexamples expose the tools’ fallibility

39 - 42 Recomputation with three Redirected Roundings
43 - 45 Recomputation with Higher Precision

46 - 48 Floating-Point Exceptions Punished as Errors
49 - 52 Why default disruptions of control handle Floating-Point Exceptions badly
53 - 56 USS Yorktown, Ariane 5, Air France #447
57 Can losses of prestige, money and lives induce reconsideration of a policy?
58 - 60 Does this shoe leak at its toe?

61 To mitigate a Dangerous Dilemma
62 - 63 Proper Algebraic Completion for Default Presubstitution
64 - 65 Provision for individual non-default presubstitution

66 - 68

ƒlag

s serve also as Pointers to …
69 - 71 Retrospective Diagnostics
72 - 73 Retrospective Diagnostics’ Annunciator and Interrogator

74 To be Collected: a Constellation of Competencies
76 Publications Cited
77 - 89 Responses to Questions and Comments

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 3/90

Desperately Needed Remedies for the Undebuggability of Large
Floating-Point Computations in Science and Engineering

Abstract:

If suspicions about the accuracy of a computed result arise, how long does it take to either
allay or justify them? Often diagnosis has taken longer than the computing platform's
service life. Software tools to speed up diagnosis by at least an order of magnitude could
be

provided

but

almost

no

scientists

and

engineers

know

to

ask

for

them,

though

almost

all
these tools have existed, albeit not all together in the same place at the same time. These
tools would cope with vulnerabilities peculiar to Floating-Point, namely roundoff and
arithmetic exceptions. But who would pay to develop the suite of these tools? Nobody,
unless he suspects that the incidence of misleadingly anomalous Floating-Point results
rather exceeds what is generally believed. Ample evidence supports that suspicion.

This document is posted now at

<www.eecs.berkeley.edu/~wkahan/Boulder.pdf>

.
More details have already been posted at

<…/NeeDebug.pdf>

 and

<…/Mindless.pdf>

.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 4/90

“This … paper, by its very length, defends itself against the risk of being read.”

… attributed to Winston S. Churchill

To fit into its allotted time,

this paper’s oral presentation skips over most of the details;

but it is intended to induce you to look into those details.

“A fanatic is one who can’t change his mind and won’t change the subject.”

 … Winston S. Churchill (1874 - 1965)

 Am I a fanatic?

If so, you have been warned.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 5/90

What is the incidence of Floating-Point computations wrong enough to mislead,

but not so wrong as is obviously wrong?

Nobody knows. Nobody is keeping score.

Evidence exists implying an incidence rather greater than is generally believed.

Two Kinds of Evidence will be presented:

• Persistence in Software and in Programming Texts of numerically flawed formulas
 that have

withstood

 rather than

passed

 the

Test of Time

 . For example, …
 Naive solutions of quadratic equations; … of discretized differential equations

• Occasional Revelations of gross inaccuracies, in widely used and respected packages
like M

ATLAB

 and L

APACK

, caused by bugs lying hidden for years.

E.g

., …
Over 40 years of occasional

under

estimates, some severe, of matrices’ ranks.

Evidently, providers of numerical software need help to debug it; they need

abundant assistance from users.

How much debugging of numerical software is included in a chemist’s job-description?

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 6/90

Distinctions between users and providers of numerical software are blurred by developers
who incorporate, into their own software, modules developed by others.

e,g

., L

APACK

If providers expect users to help debug numerical software,
they (and we) must find ways to reduce the costs

in time and expertise
of investigating numerical results that arouse suspicions.

Later we shall see why the earliest symptoms of hitherto unsuspected gross inaccuracies
 that will befall our software at some unknown innocuous data

are highly likely to be inaccuracies, at other data, barely bad enough to arouse suspicions.

How much can investigation of a suspect Floating-Point computation’s accuracy cost?

Often more than the computed result is worth.

Computers are now so cheap, most perform computations of which no one is worth very much:

Entertainment, Communications, Companionship, Embedded Controllers
are computers’ most prevalent and most remunerative uses;

not our scientific and engineering computations.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 7/90

A Problem of Misperception in the Marketplace:

The software tools needed to reduce by orders of magnitude
the costs of debugging anomalous Floating-Point computations

have almost all existed, but not all in the same package,
and not in current software development systems.

Why not?

• The producers of software development systems are unaware that such
 tools could be produced, much less that there is a demand for them.

• The scientists and engineers who would benefit from such tools are
 hardly aware of them, much less that they should be requested.

Those tools will be surveyed in what follows. For more details about them see

<www.eecs.berkeley.edu/~wkahan/NeeDebug.pdf>

 and

<…/Mindless.pdf>

.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 8/90

Computer scientists worldwide are working hard on schemes to debug
and verify software, especially in the context of parallel computation,

but not Floating-Point software. Why not?

Computer Science has changed over my lifetime.

Numerical Analysis seems to have turned into a
sliver under the fingernails of computer scientists.

Symptoms of Change:

• In

1983

 a C.S. encyclopedia ed. by Ralston & Reilly included long articles …
… on Floating-Point error-analysis (by J.H. Wilkinson) and roundoff (by Ralston)
… on control structures for all kinds of exception-handling (by J.L. Wagener)

.

14 Years later

 .

• In

1997

 a longer C.S. encyclopedia ed. by Tucker explains a few numerical methods
but mentions neither roundoff nor Floating-Point exceptions.

• In

1997

 an issue of

Communications of the ACM

40

 #4 devoted pp. 26 - 74 to

 “The Debugging Scandal and What To Do About It”
with no mention of Floating-Point arithmetic.

File: Boulder

Desperately Needed Remedies …

 Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 9/90

Cover Feature: August 2011 Issue of IEEE computer society’s

Computer,

44

 #8

 THE IBM PC: 30-YEAR

RETROSPECTIVE

pp. 19 - 45

Four reminiscences of vignettes, design, construction, ICs, and marketing of the PC.

No mention of …

• Embarrassingly anomalous Floating-Point arithmetic of the 1981 PC’s ROM-

B

ASIC

 .

An early version of my

PARANOIA

 program printed out several pages of inexplicable
evaluations of arithmetic expressions. Almost all these anomalies were repaired by late 1982
in the IBM PC-XT’s ROM-

B

ASIC

. I wasn’t told whether my printout instigated these repairs.

• Why Microsoft’s software crippled the 80x87’s Floating-Point in PC’s, -XT and -AT.

Bill Gates predicted utterly wrongly that the PCs’ sockets for the 8087 coprocessor would
almost all stay empty, so he allocated at most minimal resources for its support. And today
Microsoft still begrudges support for IEEE 754’s arithmetic capabilities. Borland’s excellent
QUATTRO spreadsheet, programmed by Roger Schlafli, was the first to benefit from 80x87s’
arithmetic, avoiding most anomalies in VISICALC, Lotus/IBM 123 and now Microsoft EXCEL.
For instance see pp. 3 - 5 of <www.eecs.berkeley.edu/~wkahan/Mindless.pdf> .

Would Computer’s readers find these stories less interesting than the ones printed?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 10/90

What characteristics of Floating-Point computation
offend Computer Scientists?

• What you see is not exactly what you get.
What you get is not exactly what your program asked for.
Consequently what you get can be Utterly Wrong without any of the usual suspects:
i.e. no subtractive cancellation, no division, no vast number of rounded operations.

For a simple didactic example see <www.eecs.berkeley.edu/~wkahan/WrongR.pdf>

• Worse, unlike Correctness of non-numerical computer programs,
Accuracy of Floating-Point programs is Not Transitive:

This means that …
If program H(X) approximates function h(x) in all digits but its last, and
if program G(Y) approximates function g(y) in all digits but its last,
yet program F(X) := G(H(X)) may approximate function ƒ(x) := g(h(x))

Utterly Wrongly over a large part of its domain.
Here is a simple didactic example, albeit contrived:

 h(x) := exp(-1/x4) @ x > 1 ; g(y) := 1/4√-log(y) @ 0 < y < 1 ; ƒ(x) = x @ x > 1 .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 11/90

ƒ(x) = x vs. F(x) = (-log(exp(-x –4))) -1/4

This is explained in pp. 24 - 25 of my posting <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> .

4000 5000 6000 7000 8000 9000 10000 11000 12000
4000

5000

6000

7000

8000

9000

10000

11000

12000

X = [4000 : 10 : 11580]

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 12/90

Summary of the Story So Far:

I claim that scientists and engineers are almost all unaware …

• … of how high is the incidence of misleadingly inaccurate computed results.

• … of how necessary is the investigation of every suspicious computed result as a
 potential harbinger of substantially worse to come.

• … of the potential availability of software tools that would reduce those investigations’
 costs in expertise and time by orders of magnitude.

• … that these tools will remain unavailable unless producers of software development
 systems (languages, compilers, debuggers) know these tools are in demand.

If almost nobody (but me) asks for such tools,
the demand for them will be presumed inadequate to pay for their development.

Computer scientists and programmers already have lots of other fish to fry.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 13/90

Summary of the Story to Come:

• How high is the incidence of misleadingly inaccurate computed results?
What evidence suggests that it’s higher than generally believed?

• How necessary is the investigation of every suspicious computed result as a possible
harbinger of substantially worse to come?

What can turn almost infinitesimal rounding errors into grossly wrong results?

• Why can’t arithmetic exceptions, like Over/Underflow, Division-by-Zero, etc.,
that may invalidate the computation simply stop it? Isn’t continuation dangerous?

• What software tools would reduce those investigations’ costs, in expertise and time,
by Orders of Magnitude ? How do you know?

 On a few ancient computers I implemented and enjoy some of the tools I describe.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 14/90

• How high is the incidence of misleadingly inaccurate computed results?
We cannot know. Nobody is keeping score.

• What evidence suggests that it’s higher than generally believed?

Two kinds of evidence, Revelation and Persistence :

• Revelation, after long use, that a widely trusted program produces, for
otherwise innocuous input data, results significantly more inaccurate than
previously believed.

• Persistence of numerically naive and thus vulnerable formulas in the source-
code of some programs, and in some published papers and textbooks.

Here is an example of naiveté too common in programming textbooks:

The zeros z of a real quadratic α·z2 – 2β·z + γ , assuming α ≠ 0 & γ ≠ 0 , are

z1 := (β + √(β2 – α·γ))/α and z2 := (β – √(β2 – α·γ))/α naively.

Numerically more reliable (absent over/underflow) formulas for the zeros are

δ := β2 – α·γ ; if δ < 0 then { z1 := β/α + ı√–δ/α ; z2 := β/α – ı√–δ/α }

else { ζ := β + copysign(β, √δ) ; z1 := ζ/α ; z2 := γ/ζ }.

Do you see why? Where are the formulas’ singularities? What happens near them?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 15/90

• After long use, a widely trusted program is discovered to have produced, for otherwise
 innocuous input data, results significantly more inaccurate than previously believed.

The earliest such instance I know befell one of the earliest electronic computers,
EDSAC at Cambridge University.

The program computed B(x) := arccos(x)/π from a neat algorithm (annotated here):

Set x1 := x = cos(B·π) ; ß0 := 0 ; B0 := 0 ; t0 := 1 ; … Note –1 ≤ x ≤ 1 .

While (Bj–1 + tj–1 > Bj–1) do … for j := 1, 2, 3, … in turn

 { tj := tj–1/2 ; … = 1/2j until it becomes negligible or zero.

µj := SignBit(xj) ; … = 0 or 1 according as xj ≥ 0 or not.

ßj := | µj – ßj–1| ; … = 0 or 1 according as µj = ßj–1 or not.

Bj := Bj–1 + ßj·tj ; … = ∑1≤k≤j ßk/2k < 1, a binary expansion.

xj+1 := 2·xj
2 – 1 } . … ≈ cos(2j·arccos(x)) = cos(2j+1·B·π/2) .

No subscript j appears in the actual program. With each pass around the While-loop,
the program commits at most one rounding error in the last statement “ x := 2·x2 – 1 ”.
EDSAC ran the loop in fixed-point until t = 0 to get as many bits of B as the wordsize.
To get the next graph the program was run in floating-point to simulate what EDSAC
would have gotten had its wordsize been 24 bits.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 16/90

Of 24 Sig. Bits Carried, How Many are Correct in EDSAC’s B(x) ?

Accuracy spikes down wherever B(x) comes near (but not exactly) a small odd integer multiple
of a power of 1/2 . The smaller that integer, the wider and deeper the spike, down to almost half
the sig. bits carried. Such arguments x are common in practice but were missed in EDSAC’s tests.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

14

16

18

20

22

24

C
or

re
ct

 S
ig

. B
its

 in
 B

(x
)

<- Ideal B(x) = arccos(x)/pi for 1 > x > -1 ->

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 17/90

Losing almost half the bits carried went unnoticed during conscientious (for that era) tests
and for two years (1949 - 1951) afterwards. The testers were slightly unlucky; their
probability of finding no bad errors during random testing exceeded 1/3. For details and
citations see pp. 37 - 42 of <www.eecs.berkeley.edu/~wkahan/MktgMath.pdf> .

• After long use, a widely trusted program is discovered to have produced, for otherwise
 innocuous input data, results significantly more inaccurate than previously believed.

The Vancouver Stock Exchange maintained an index of (mainly mining) stock prices.

On Fri. evening 25 Nov. 1983 the index ended at 524.811 .
On Mon. morning 28 Nov. 1983 the index began at 1098.892 .

But stock prices had not increased that much over the weekend. What had happened?

Rounding errors. The stock index was altered with each of about 3000 trades per day.
The updated index was calculated to four dec. and then chopped (not rounded) to three.
On average this lost over 20 index points/month for 22 months until three weeks’ work
by consultants from Toronto and California diagnosed and fixed the error that weekend.

 Toronto Star 29 Nov. 1983

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 18/90

• After long use, a widely trusted program is discovered to have produced, for otherwise
 innocuous input data, results significantly more inaccurate than previously believed.

The longest running instance I know about was exposed by Zlatko Drmac & Zvonimir
Bujanovic [2008, 2010] in a program used heavily by LINPACK, LAPACK, MATLAB
and numerous others since 1965 to estimate ranks of matrices. Given m-by-n matrix B
and a small tolerance τ , we seek the least “rank” r for which

Especially when r < min{m, n}/2 , this factorization reveals an important structure. The
most reliable way to compute r is a Singular Value Decomposition, but a roughly three
times faster “Pivoting QR” factorization had been preferred for over forty years despite
that it could sometimes over-estimate r . Moderate over-estimates cause little damage.

Drmac & Bujanovic discovered otherwise innocuous matrices B for which roundoff
overlooked in the Pivoting QR program caused r to be under-estimated so severely as to
violate tolerance τ when it was small enough, but not unreasonably small. This over-
simplified and broke the sought structure badly. They have repaired the program’s defect.

m

n r
r

B Q
R

≈ within tolerance ±τ .
·

m

n

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 19/90

Roundoff-Induced Anomalies Evade Expert Searches for Too Long:

• PATRIOT Anti-Missile Missiles missed a SCUD that hit a barracks in the Gulf War.

• From 1988 to 1998, MATLAB ’s built-in function round(x) that rounds x to a
nearest integer-valued floating-point number malfunctioned in 386-MATLAB 3.5
and PC-MATLAB 4.2 by rounding all sufficiently big odd integers to the next
bigger even integer. (Mac. MATLAB was O.K. thanks to Apple’s S.A.N.E.)

• For more than a decade, MATLAB has been miscomputing gcd(3, 2^80) = 3 ,
 gcd(28059810762433, 2^15) = 28059810762433 , lcm(3, 2^80) = 2^80 ,
 lcm(28059810762433, 2^15) = 2^15 , and many others with no warning. See
 <www.cs.berkeley.edu/~wkahan/MathH110/GCD5.pdf> for corrected programs
 and <.../HilbMats.pdf> for their application to the exact construction of Hilbert
 matrices and their inverses to be used to test numerical linear algebra software.

Anomalies due to Over/Underflow can evade expert searches for too long too.

In 2010, excessive inaccuracies were discovered in LAPACK’s programs _LARFP and
traced to underflows caused by the steps taken to avoid overflows. Whether the revisions
to those programs promulgated subsequently are fully satisfactory remains to be seen.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 20/90

• What if the user of a widely trusted program doesn’t know that its results, for some
 otherwise innocuous input data, are significantly more inaccurate than the user believes?

This almost happened to a graduate student of aeronautical engineering in the early 1960s
when his scheme to enhance lift for wings of Short-Takeoff-and-Landing aircraft seemed
to suffer from abrupt onset of stall, according to his computations on an IBM 7090.

Abrupt Stall of Lift Enhanced by Blown Slots ?

Abrupt stall “caused” by inaccurate LOG in Single, by lack of guard digit in Double precision.

Only after his was one of several programs chosen to test a new LOG’s accuracy did he
learn that the abrupt stall was entirely an artifact of roundoff. He resuscitated his research.
For details see pp. 23 - 26 of <www.eecs.berkeley.edu/~wkahan/NeeDebug.pdf> .

Lift /
Drag

Wing’s Angle
 of Attack

Intended — Gradual Stall

Single Precision
Abrupt Stall

Double Precision
Abrupt Stall

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 21/90

I took years after the abrupt stall episode to appreciate its relevance to a question:

What exposes a misjudgment due to rounding errors ?
• A calamity severe enough to bring about an investigation, and investigators thorough

and skilled enough to diagnose correctly that roundoff was the cause (if it was).
 This combination appears to have occurred extremely rarely, if at all.

• Suspicions aroused by computed results different enough from one’s expectations.
 Someone would have to be exceptionally observant, experienced and diligent.

• Discordant results of recomputations using different arithmetics or different methods.
 What would induce someone to go to the expense of such a recomputation?

In the mid 1990s a program written at NASA Ames predicted deflections under load of an airframe
for a supersonic transport that turned out destined never to be built. Though intended for CRAY-I and
CRAY-2 supercomputers, the program was developed on SGI Workstations serving as terminals.
When a problem with a mesh coarse enough to fit in the workstation was run on all three
machines, three results emerged disagreeing in their third sig. dec. This had ominous
implications for the CRAYs’ results from realistic problems with much finer meshes.

I traced the divergence to the CRAYs’ idiosyncratic biased roundings. Adding iterative refinement
to the program, a minor change, rendered the divergence tolerable. To rid the program of its worst
errors would have required a major change; see my web page’s <.../Math128/FloTrik.pdf> .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 22/90

What exposes a misjudgment due to rounding errors ?
It’s unlikely to be exposed.

Why must such misjudgments be happening?
Programs that depend upon some Floating-Point computation are being written by far
more people than take a course in Numerical Analysis with enough Error-Analysis to
sensitize them to the risks inherent in roundoff.

“Acquiescing to rounded arithmetic places you in a state of sin.” — D.H. Lehmer

People clever and knowledgeable in their own domains of science, engineering, statistics,
finance, medicine, etc., are naively using in their programs formulas mathematically
correct but numerically vulnerable, instead of numerically robust but unobvious formulas.

Many such formulas are posted on my web pages; for a lengthy list see p. 22 of
<www.eecs.berkeley.edu/~wkahan/NeeDebug.pdf> .

We may depend unwittingly upon some of these clever people’s programs via the world-
wide-web, the cloud, medical equipment, navigational apparatus, etc. How can we
defend ourselves against numerical naiveté, or at least enhance the likelihood that their
programs’ numerical vulnerabilities will be exposed, preferably before too late?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 23/90

How necessary is the investigation of every suspicious computed
result as possibly a harbinger of substantially worse to come?

… if not symptomatic of a failure of some physical theory —— a potential Nobel Prize !

“Les doutes sont fâcheux plus que toute autre chose.”
(Doubts cause more trouble than the worst truths.)
Le Misanthrope III.v (1666) by Molière (1622 - 1673)

After we have seen the most likely cause of a catastrophic numerical inaccuracy,
we shall see why its possibility is most likely to be exposed by incidents that raise

suspicions about computed results.

This is why suspicious computed results must be investigated.

To justify this necessity, we must understand what can turn almost infinitesimal rounding
errors into grossly wrong results:

Perturbations get Amplified by Singularities Near the Data.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 24/90

How Perturbations get Amplified by Singularities Near the Data.

Perturbed data x → x ± ∆x
perturbs ƒ(x) → ƒ(x±∆x) = ƒ(x) ± ∆ƒ(x) ≈ ƒ(x) ± ƒ̀ (x)·∆x .

∆ƒ(x) ≈ ƒ̀ (x)·∆x can be huge when ∆x is tiny only if derivative ƒ̀(x) is gargantuan.

This can happen only if x is near enough to a Singularity of ƒ where its derivative
 ƒ̀ = ∞ .

Let’s call the locus (point, curve, surface, hypersurface, …) of data x whereon ƒ̀(x) = ∞
the “Pejorative Surface” of function ƒ in its domain-space of data.

For example …
Data Points Computed Result Data on a Pejorative Surface Threshold Data

Matrices Inverse Cone of Singular Matrices Not too “Ill-Conditioned”
Matrices Eigensystem … with Degenerate Eigensystems Not too near Degenerate
Polynomials Zeros … with Repeated Zeros Not too near repeated
4 Vertices Tetrahedron’s Volume Collapsed Tetrahedra Not too near collapse
Diff’l Equ’n Trajectory … with boundary-layer singularity Not too “Stiff”

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 25/90

All or Most Accuracy can be Lost if Data lie on a “Pejorative” Surface

Accuracy of ƒ(x) is Adequate at Data x Far Enough from Pejorative Surfaces.

Suppose the data’s “Precision” bounds its tiny uncertainty ∆x thus: ξ ≥ ||∆x|| .
Then ƒ(x ± ∆x) inherits uncertainty ξ·||ƒ̀(x)|| ≥ ||∆ƒ|| roughly.

How fast does ||ƒ`(x)|| → ∞ as x → (a Pejorative Surface) ?

Let π(x) := (distance from x to a nearest Pejorative Surface) . Typically (not always !)
||ƒ̀ (x)|| is roughly proportional to 1/π(x) while π(x) is small enough;

then uncertainty ξ ≥ ||∆x|| causes ƒ(x ± ∆x) to “Lose” to the data’s uncertainty roughly
 Const. – log(π(x)) + log(ξ) dec. digits.

Pejorative Surface

Threshold of
(In)Adequate Accuracy

Data-Points x

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 26/90

π(x) := Distance from data x to a nearest Pejorative Surface where derivative ƒ` = ∞ .
ξ ≥ ||∆x|| is a near-infinitesimal bound upon the uncertainty ∆x in data x . Typically,
ƒ(x ± ∆x) “Loses” roughly Const. – log(π(x)) + log(ξ) dec. digits to x’s uncertainty.

How many lost digits are tolerable?
Two choices come to mind to keep the loss below a given bound Λ dec. digits:

• If data x comes as close to a Pejorative Surface as π(x) = Ξ but no closer,
keep the data’s “Precision” high enough that log(ξ) < log(Ξ) – Const + Λ .

• If given the data’s uncertainty ξ , let log(Ξ) > log(ξ) – Λ + Const. constrain a
 Threshold Ξ , and eschew data x whose π(x) < Ξ , deeming such data
“Too Ill-Conditioned” to determine ƒ accurately enough. Not roundoff!

Pejorative Surface

Threshold of
(in)Adequate Accuracy

Data-Points x

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 27/90

Rounding Errors are like Uncertain Data
Suppose program F(X) is intended to compute ƒ(x) but actually F(X) = f(X, r) in
which column r represents the rounding errors in F and f(x, o) = ƒ(x) . The precision of
the arithmetic imposes a bound like ρ > ||r || analogous to the uncertainty ξ used above.
To simplify exposition, assume the data X we have equals the data x we wish we had.

Let fr(x) := ∂f(x, r)/∂r |r=o . Because ρ is so tiny, program F(x) actually computes

f(x, r) ≈ f(x, o) + fr(x)·r = ƒ(x) + fr(x)·r , so ||F(x) – ƒ(x)|| ≈ ||fr(x)·r || < ||fr(x)||·ρ .

Error F(x) – ƒ(x) can be huge when r is tiny only if derivative fr is gargantuan, which

can happen only if x is near enough to a Singularity of f where its derivative fr = ∞ .

Let’s call the locus (point, curve, surface, hypersurface, …) of data x whereon fr(x) = ∞

the “Pejorative Surface” of program F in its domain-space of data.

Function ƒ ’s Pejorative Surface is usually contained in program F ’s. Numerically bad
things happen when the program’s has an Extra Leaf extending beyond the function’s.

Then at innocuous data x too near that Extra Leaf of Pejorative Surface the program
F(x) produces undeservedly badly inaccurate results though ƒ(x) is unexceptional.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 28/90

All or Most Accuracy is Lost if Data lie on a “Pejorative” Surface

Accuracy of F(x) is Adequate at Data x far enough from Pejorative Surfaces.

Let π(x) := (distance from x to a nearest Pejorative Surface) . Typically (but not always)
||fr(x)|| is roughly proportional to 1/π(x) while π(x) is small enough; then roundoff’s

uncertainty ρ > ||r || can cause program F(x) to lose roughly Const. – log(π(x)) dec.
digits to roundoff. Since –log(ρ) is roughly the number of sig. dec. carried by the
rounded arithmetic, the number of correct decimal digits left in F(x) will be roughly
 min{ –log(ρ) , –log(ρ) + log(π(x)) – Const.} while π(x) is small enough.
Therefore some small threshold Ξ exists for which F(x) is accurate enough only while

π(x) > Ξ .

Threshold of
(In)Adequate Accuracy

Data-Points x

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 29/90

π(x) := (distance from x to a nearest Pejorative Surface of program F) . Typically,
the number of correct decimal digits in the result f(x, r) from program F(x) is roughly
 min{ –log(ρ) , –log(ρ) + log(π(x)) – Const.} while π(x) is small enough.
For some small threshold Ξ the accuracy of F(x) is adequate only while π(x) > Ξ .

But Ξ and π(x) are unknown, as is the location - - - - of the Extra Leaf, if it exists.

An opportunity to discover whether an Extra Leaf exists arises when the accuracy of
F(x) is inadequate enough to arouse suspicion. Does F(x) deserve its inaccuracy because
x is “Ill-Conditioned” — too close to the Pejorative Surface of ƒ ? Or is the inaccuracy
undeserved because innocuous data x is unlucky — too close to an Extra Leaf ?

These important questions are difficult to resolve. Why is their resolution necessary?

Threshold of
(In)Adequate Accuracy

Data-Points x

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 30/90

F(x) is inaccurate enough to arouse suspicion. Does F(x) deserve its inaccuracy because
x is “Ill-Conditioned” — too close to the Pejorative Surface of ƒ ? Or is the inaccuracy
undeserved because innocuous data x is unlucky — too close to an Extra Leaf ?

Though these important questions are difficult to resolve, their resolution is necessary lest
later we accept unwittingly an utterly inaccurate F(z) at some other innocuous data z
much closer to the Extra Leaf of whose existence we had chosen to remain unaware.

Two better choices present themselves:
• Enhance the likelihood of these difficult questions’ resolution by supplying tools to

reduce by orders of magnitude the cost in talent and time to resolve them. OR …

• Reduce by orders of magnitude the likelihood that these questions will arise or matter.

Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ? x ?

z

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 31/90

F(x) is inaccurate enough to arouse suspicion. Where is x ? Too near an Extra Leaf ?

Two options present themselves:

• Enhance the likelihood of these difficult questions’ resolution by supplying tools to
reduce by orders of magnitude the cost in talent and time to resolve them. OR …

• Reduce by orders of magnitude the likelihood that these questions will arise or matter.

The latter option is by far the more humane and more likely to succeed. It is accomplished
by changing programming languages to carry BY DEFAULT (except where the program
specifies otherwise explicitly) extravagantly more Floating-Point precision than anyone
is likely to think necessary. IEEE 754 (2008) Quadruple is enough; cf. COBOL’s Comp.

Smaller ρ ⇒ smaller threshold Ξ ⇒ smaller volume around the Extra Leaf, if any.

Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ? x ?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 32/90

Smaller ρ ⇒ smaller threshold Ξ ⇒ smaller volume around the Extra Leaf, if any:

Usually the threshold Ξ and volume around the Extra Leaf shrink in proportion with ρ .

Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ?

x ?

Smaller Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ?

x ?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 33/90

Why is 16-byte-wide IEEE 754 (2008) Quadruple most likely extravagant enough?

Although the foregoing relations among arithmetic precision (ρ) , distance π(x) to a
singularity, and consequent loss of perhaps all accuracy in F(x) are Typical, the next
most common relations predict a loss of about half the digits carried by the arithmetic. In
other words, many programs F(x) produce results with at least Const. – log(ρ)/2
correct dec. digits no matter how near x comes to a Pejorative Surface.

Some Examples:
• Nearly redundant Least-Squares problems.
• Nearly double zeros of polynomials, like the quadratic mentioned above.
• Most locations of extrema.
• Small angles between subspaces; see my web page’s <.../Math128/NearstQ.pdf> .
• EDSAC’s arccos described above. (Its Pejorative Surface looks like coarse sandpaper.)
• The financial Future Value function FV(n, i) := ((1 + i)n – 1)/i for interest rate i as a

fraction, and integer n compounding periods, but only if FV is computed thus:
Presubstitute n for 0/0 ; FV := ((1 + i)n – 1)/((1 + i) – 1) . Preserve Parentheses!

(Because FV is the divided difference of a polynomial, it can also be computed quickly
 but unobviously without a division, and without losing more than a few sig. dec.)

Arithmetic precision is usually extravagant enough if it is somewhat more than twice as
wide as the data’s and the desired result’s. Often that shrunken volume contains no data.

16-byte Quad has 113 sig. bits; 8-byte Double has 53; 4-byte Float has 24 .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 34/90

What experience suggests strongly that carrying somewhat more precision in
the arithmetic than twice the precision carried in the data and available for the
result will vastly reduce embarrassment due to roundoff-induced anomalies?

During the 1970s, the original Kernighan-Ritchie C language developed for the DEC
PDP-11 evaluated all Floating-Point expressions in 8-byte wide Double (56 sig. bits)
no matter whether variables were stored as Doubles or as 4-byte Floats (24 sig. bits).
They did so because of peculiarities of the PDP-11 architecture. At the time, almost all
data and results on “Minicomputers” like the PDP-11 were 4-byte Floats.

Serendipitously, all Floating-Point computations in C turned out much more accurate
and reliable than when programmed in FORTRAN, which must round every arithmetic
operation to the precision of its one or two operand(s), or the wider operand if different.

Alas, before this serendipity could be appreciated by any but a very few error-analysts, it
was ended in the early 1980s by the C-standards committee (ANSI X3-J11) to placate
vendors of CDC 7600 & Cybers, Cray X-MP/Y-MP, and CRAY I & II supercomputers.
Now most C compilers evaluate Floating-Point FORTRANnishly and eschew Quad.

Experience suggests strongly that not everyone likes Quad to be the default.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 35/90

Why object to Default Quad evaluation & variables?
1• Languages, compilers, software and practices would have to change. This, like any

other non-compatible change in the computing industry, incurs horrendous costs.

2• Quad occupies twice the memory of Double, especially in the cache, and takes twice
as long to move through the memory system, discouraging its use in large arrays of
intermediate results.

3• Quad arithmetic can take 2 to 10 times as long as Double, depending upon how
much of a processor’s area and power consumption is allocated to Quad. For the
forseeable future, Quad is likely to be microcoded, as it is on IBM mainframes, or
simulated slower in software, as it is on Sun/Oracle SPARCs and Intel Processors.

Default evaluation in Quad, the humane option, is unlikely to be adopted
widely. In consequence, at least for the forseeable future, the other option
may be our only option:

• Enhance the likelihood of these difficult questions’ resolution by supplying tools
to reduce by orders of magnitude the cost in talent and time to resolve them.

What tools?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 36/90

What tools?
Given a program F and data x at which F(x) has aroused suspicions for some reason,
we hope to find the smallest part (subprogram, block, statement, …) of F that also
arouses suspicions so that mathematical attention may be focussed upon it as a possible
cause of the suspicious (mis)behavior of F(x) . Data x is precious; our tools must not
change data lest the change chase away the program’s suspicious (mis)behavior.

Our tools will help to modify program F so as to detect hypersensitivity
to roundoff by rerunning F(x) with different roundings —

• different in Direction, • different in Precision.

We hope a few reruns will expose a small part of F responsible for its misbehavior; this
happens surprisingly often. But it does not always happen; it cannot happen in all cases.

Rare examples F exist that produce the same utterly wrong result F(x) no matter how
often rerun on different computer hardware, with different precisions, and with different
redirected roundings, even if redirected randomly. The neatest such (counter)example I
know was devised by Jean-Michel Muller in the mid-1980s and is discussed again on
pp. 8 - 10 in the comprehensive handbook produced by him [2010] and his students: …

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 37/90

Jean-Michel Muller’s (Counter)Example

His program implements a discrete dynamical system whose state at time N is the row
[xN, xN+1] . Starting with x0 := 2 and x1 := –4 , the sequence x2, x3, x4, …, xN+1, … is

generated by a recurrence xN+1 := 111 – (1130 – 3000/xN–1)/xN for N = 1, 2, 3, … in

turn. An interesting challenge is the computation of, say, x50 using the Floating-Point

hardware’s arithmetic in any commercial computer or calculator, new or old.
They all get x50 ≈ 100 .

 The correct value is x50 ≈ 6.0001465345614 .

Why do all those machines get the same utterly wrong result?

The recurrence has three fixed-points [5, 5], [6, 6] and [100, 100] . The first two are
repulsive; the last is attractive. The given initial state [2, –4] would generate a sequence
converging to the middle fixed-point if the sequence were not perturbed by roundoff.

Computerized algebra systems can confirm but, so far, only a human’s mathematical
analysis can discover a numerically stable way to compute the desired sequence:

 xN+1 := 11 – 30/xN ; … → 6 .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 38/90

Is Jean-Michel Muller’s (Counter)Example Unfair?
His example’s x50 closely approximates x∞ := limN→∞ xN , which is a discontinuous
function of x0 and x1 wherever x∞ ≠ 100 . This is explained in §5 of my web page’s

 <www.eecs.berkeley.edu/~wkahan/Mindless.pdf> .

Floating-Point computation of a non-trivial function at its discontinuity seems foolhardy:
• If the rank of a matrix is not maximal, one rounding error will likely increase it.
• If the Jordan Normal Form of a matrix is nondiagonal, roundoff will likely undo that.
• If x lies on a Pejorative Surface SS of ƒ , roundoff will likely push x a little off SS.

• • •

To counter objections to Muller’s (Counter)Example, §6 of <.../Mindless.pdf> has a

different example g(x) := t(q(x)2) which is is infinitely differentiable for all x > 0 , as is
q(x) ; and t(z) is infinitely differentiable for all z . However, when the obvious program

G(X) := T(Q(X)2) is invoked to compute G(11.), G(12.), G(13.), …, G(9999.) , all but a
few computed values turn out to be 0.0 , which is wrong. Depending upon the precision,
radix, and rounding of the arithmetic, at most a few computed values turn out to be 1.0
correctly. No mindless diagnostic tool can expose the naive part of program G unless the
Math. Library’s EXP has been implemented in an unlikely way.

Fortunately, this simple contrived smooth example G is extremely atypical.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 39/90

A Tool for Recomputation with Redirected Rounding
IEEE 754 provides four Rounding Modes selectable (ideally) by the programmer:
 The default Round-to-Nearest (even), Round Up, Round Down, Round-towards-Zero

These modes are ill-supported by programming languages; JAVA outlaws all but the first.

Given a program F and data x whose result F(x) has aroused suspicion, perhaps
because x is closer to the Pejorative Surface of F than ensures adequate accuracy, the
user/debugger of F would use this software tool to rerun all or parts of F(x) to find a part
that seems hypersensitive to roundoff. The tool would change all the Floating-Point
operations within a user-specified scope to round in a user-specified direction, and then
rerun at least that scope’s subprogram with exactly its input data that was supplied when
the result of F(x) aroused suspicion. (Of course, suspicion is insufficient for conviction.)

A crucial property of the tool is that each rerun runs about as fast as did the unaltered code.
This is crucial because loops traversed a few billion times in several seconds will have to be rerun;
and rerunning them too slowly will preclude that they be rerun at all.

Also crucial is that reruns must replicate intermediate results exactly up to the point where rounding
is first redirected. This may take special declarations to control resources on platforms offering both
resource-sharing with diverse users, and concurrency using many processors or cores. If differently
many of them act in different runs, bugs flitting in and out as resources change may never be caught.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 40/90

How Well does Recomputation with Redirected Rounding Work?
It works astonishingly well at exposing hypersensitivity to roundoff despite that, as we
have just seen above, no mindless tool can do so infallibly. Rerunning with Redirected
Roundings works on ten examples in <…/Mindless.pdf> , and on all the examples
appearing in the lengthy list on p. 22 of <…/NeeDebug.pdf> . A typical example is
summarized here; it comes from the section titled “Difficult Eigenproblems” in
<www.eecs.berkeley.edu/~wkahan/MathH110/HilbMats.pdf> .

The data consist of symmetric positive definite integer matrices A and H . Sought is a
column v of the eigenvalues λ that satisfy A·b = λ·H·b for some b ≠ o . Three such
columns get computed:
• One column u is computed by MATLAB ’s eig(A, H) .
• Another column w is computed by MATLAB ’s eig(X*A*X, X*H*X) where

X is obtained from the identity matrix by reversing its rows.
• A third column v is obtained from the squared singular values of a bidiagonal matrix

 derived in an unobvious way from the given A and H because they are both
 Hilbert matrices. (Rarely would we have an option to compute a third column.)

In the absence of roundoff we should get u = v = w , but the three computed (& sorted)
columns disagree in their leading digits. …

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 41/90

Columns u, v and w were computed with arithmetic rounded the default way To
Nearest. Column ∆uo = uo – u shows how u changed when computed with rounding

directed Toward Zero. Similarly ∆u↑ shows how rounding Up changed u , and ∆u↓ is

for rounding Down. Likewise for ∆v… and ∆w… .

Which column, if any, can be trusted? Rerunning each computation in three rounding
modes reveals that v is almost unperturbed by redirected roundoff, but it perturbs u and
w by about as much as they differ from v and each other. Afterwards an error-analysis
confirms v ’s accuracy and explains why MATLAB ’s u and w must be inaccurate.

u ∆uo ∆u↑ ∆u↓ v ∆vo ∆v↑ ∆v↓ w ∆wo ∆w↑ ∆w↓
 0.255 -0.007 -0.004 -0.389 0.2095058938478430 -3e-16 3e-16 -3e-16 0.247 -0.029 0.002 -0.001
 0.386 -0.060 -0.006 -0.136 0.3239813175038243 -9e-16 7e-16 -9e-16 0.377 -0.101 0.001 -0.000
 0.512 -0.133 -0.006 -0.133 0.4391226809250292 -12e-16 12e-16 -12e-16 0.502 -0.137 0.001 0.001
 0.631 -0.126 -0.006 -0.126 0.5528261852845718 -19e-16 22e-16 -19e-16 0.622 -0.129 0.002 0.002
 0.740 -0.114 -0.005 -0.115 0.6612493756197405 -22e-16 26e-16 -22e-16 0.731 -0.115 0.003 0.004
 0.833 -0.098 -0.004 -0.099 0.7603044306722687 -26e-16 36e-16 -26e-16 0.825 -0.098 0.003 0.005
 0.908 -0.078 -0.002 -0.079 0.8461150279850096 -33e-16 36e-16 -33e-16 0.903 -0.077 0.003 0.005
 0.962 -0.056 -0.001 -0.056 0.9152685078254560 -39e-16 40e-16 -39e-16 0.959 -0.055 -0.052 0.003
 0.993 -0.031 -0.000 -0.032 0.9649935940457747 -40e-16 42e-16 -40e-16 0.992 -0.032 -0.031 0.001
 5.724 -4.732 -3.016 -4.732 0.9932996529571477 -41e-16 44e-16 -41e-16 1.151 -0.159 -0.159 -0.005

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 42/90

Redirected Rounding’s Implementation Challenges
At first sight, Redirected Roundings appear to be implementable via a pre-processor that
rewrites a chosen part of the text of the program being debugged and then recompiles it.

It’s not always that easy.

Redirected Rounding is outlawed by JAVA and some other programming languages.

The most widespread computers redirect rounding, when they can, from a Control
Register treated by most languages and compilers as a global variable. Some other
computers redirect roundings from op-code bits that must be reloaded to change. In
consequence, precompiled modules like DLLs may be affected unpredictably.

Many optimizing compilers achieve concurrency by keeping pipelines filled; to do so they
interleave instructions from otherwise disjoint blocks of source-code, and “Inline” the
Math. Library’s functions. Then the scope of redirected rounding may be unpredictable.

For more see §14 of <www.eecs.berkeley.edu/~wkahan/Mindless.pdf> .

Redirected Rounding’s goal may be easier to reach with a different software tool:

Recomputation with Higher Precision
It doesn’t have to be much higher.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 43/90

A Tool for (Slower) Recomputation with Higher Precision
This tool would ease the task of running two programs F(x) and FF(x) in lock-step. Here
FF is derived from F by promoting all Floating-Point variables and some (probably not
all) constants to a higher precision. Both programs could start with the same data x .

The programs are NOT intended to be run forward in lock-step until they first diverge.
That would be pointless because so many numerical processes are forward-unstable but backward-
stable; this means that small perturbations like roundoff can deflect the path of a computation utterly
without changing its destination significantly. For instance, the path of Gaussian Elimination with
row-exchanges (“Pivoting”) can be deflected by an otherwise inconsequential rounding error if two
candidates for pivots in the same column are almost equal. Deflection occurs often in eigensystem
calculations; roundoff can change the order in which eigenvalues are revealed without much change
to computed eigenvalues.

DiagonalsAll the symmetric
matrices in a sheet
have the same
eigenvalues.

Adjacent
sheets differ
by practically
negligible
roundoff.

Paths followed during a program’s
computation of eigenvalues with …

… no rounding errors

… the usual rounding errors

… and altered rounding errors

•

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 44/90

Instead of running F and FF in lock-step from their beginnings, the user of this tool will
choose places in program F that I shall call “stages”. He will run F(x) up to a chosen
stage and then copy the values of all the variables alive at that stage exactly to their
counterparts in FF ; then run FF to its end to see how much its result disagrees with F(x) .
If they disagree too much, a later stage will be chosen; if they agree closely, an earlier
stage will be chosen. With luck two adjacent stages will straddle a short section of F that
causes F(x) and FF(x) to disagree too much. This section attracts focussed suspicion.

Keep in mind that suspicion is not yet conviction, which requires an error-analysis.

x F(x)A B C D E

x FF(x)AA BB CC DD EE

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 45/90

How Well does Recomputation with Higher Precision Work?
It almost always works, even if no short segment between stages of F can be blamed for
a substantial disagreement between F(x) and FF(x) , as is the case for Muller’s Example.
If all of program F has to be replaced by a better idea, this fact is well worth knowing.

Copying to FF all the values of variables in F alive at a stage can be extremely tedious
without help from a software tool. And help is needed to keep track of all the technical
decisions that cannot be taken out of the tool-user’s hands. For instance …

• Which functions in F from its Math Library (log, cos, …) should not be replaced in
 FF by their higher precision counterparts ?

• Which literal constants in F should not be replaced in FF by their higher precision
counterparts ?

• Which iterations’ termination criteria in F should be changed for FF , and how?

• What is to be done for FF about software modules in F obtained from vendors pre-
compiled without source-code ?

A tool to help recompute with higher precision is more interesting than first appears.

And after it works well it invites an error-analysis; learn how from N. Higham’s book [2002].

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 46/90

And now for something entirely different …

Floating-Point Exception-Handling

Conflicting Terminology:
Some programming languages, like Java, use “exception” for the policy, object or
action, like a trap, that is generated by a perhaps unusual but usually anticipated event like
a Time-Out, Division-by-Zero, End-of-File, or an attempt to Dereference a Null Pointer.

Here I follow IEEE 754’s slightly ambiguous use of “Floating-Point Exception”
for a class of events or one of them. There are five classes:

INVALID OPERATION like √–5.0 in a REAL arithmetic context
DIVISION-BY-ZERO actually creation of ±∞ from finite operand(s)
OVERFLOW an operation’s finite result is too big
UNDERFLOW an operations nonzero result is too close to 0
INEXACT an operation’s result has to be rounded or altered

Each exception generates, by Default (unless the program demands otherwise),
a value Presubstituted for the exceptional operation’s result, continues the
program’s execution and, as a side-effect, signals the event by raising a ƒlag
which the program can sense later, or (as happens most often) ignore.

When put forth in 1977, Presubstitution departed radically from previous practice.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 47/90

When put forth in 1977, Presubstitution departed radically from previous practice
which, at that time, was most often to …

•… Ignore Inexact, and ignore Underflow after “flushing” it to zero.

•… Abort the program after Division-by-Zero, Overflow, and Invalid Operation
as if they were Errors in a program that had failed to prevent them.

And they probably were errors if they occurred when a programmer was
debugging his program by running it upon input data devised to test it.

Aborting a promulgated “Debugged” program punished its user for running …
•… the program upon “Invalid” input data beyond its purview, or
•… a program that had not yet been fully debugged.

Punishment is a blunt instrument that too often befalls the innocent more than the guilty.

“ The rain it falleth on the just
And also on the unjust fella:

 But chiefly on the just, because
The unjust steals the just’s umbrella.”

English jurist Lord Bowen (1835-94)

Sane computer professionals had preferred not to think about arithmetic exceptions.
Instead they acquiesced too easily to policies that punish arithmetic exceptions as errors.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 48/90

Floating-Point Exceptions turn into Errors
ONLY when they are Handled Badly.

Tradition has tended to conflate “Exception” with “Error” and handle both via disruptions
of control, either aborting execution or jumping/trapping to a prescribed handler. …

FORTRAN: Abort, showing an Error-Number and, perhaps, a traceback.
Since 1990, FORTRAN has offered a little support for IEEE 754’s defaults and flags.

BASIC: ON ERROR GOTO … ; ON ERROR GOSUB … … to a handler.

C : setjmp/longjmp … to a handler; ERRNO; abort.
Since 1999, C has let compiler writers choose to support IEEE 754’s defaults and flags.

ADA: Arithmetic Error Falls Through to a handler or the caller, or aborts.

JAVA : try/throw/catch/finally; abort showing error-message and traceback.
JAVA has incorporated IEEE 754’s defaults but outlawed its flags; this is dangerous !

These disruptions of control are appropriate when a programmer is debugging his own code
into which no other provision to handle the exception has been introduced yet. Then the
occurence of the exception may well be an error; an eventuality may have been overlooked.

Otherwise IEEE Standard 754 disallows these disruptions unless a program(mer) asks for
one explicitly. They must not be the default for any Floating-Point Exception-class.

Why not ?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 49/90

Why must a Floating-Point Exception’s default not disrupt control?

As we shall see, …

• Disruptions of control are Error-Prone when they may have more than one cause.

• Disruptions of control hinder techniques for formal validations of programs.

• IEEE 754’s presubstitutions and flags seem easier (although not easy) ways
to cope with Floating-point Exceptions, especially by programmers who
incorporate other programmers’ subprograms into their own programs.

• Disruptions of control can be perilous; but so can continued execution after some
exceptions. The mitigation of this dilemma requires Retrospective Diagnostics.

Error-Prone?
Prof. Westley Weimer’s PhD. thesis, composed at U.C. Berkeley, exposed hundreds of
erroneous uses of try/throw/catch/finally in a few million lines of non-numerical code.
Mistakes were likeliest in scopes where two or more kinds of exceptions may be thrown.

See <www.cs.virginia.edu/~weimer> .

Floating-Point is probably more prone to error because every operation is
susceptible, unless proved otherwise, to more than one kind of Exception.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 50/90

Every Floating-Point operation is susceptible, unless proved otherwise, to more than one
kind of exception. A program with many operations could enter a handler from any one of
them, and for any of a few kinds of exception, and quite possibly unanticipatedly.

A program that handles Floating-point Exceptions by disruptions of
control resembles a game …

 … with an important difference …

 Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 51/90

 … with an important difference, for Floating-point Exceptions, …

None or else too many of the origins of jumps into an Exception handler
are visible in the program’s source-text. This hinders its formal validation.

 Invisible Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 52/90

Among programming languages, the predominant policy for handling exceptions,
including Floating-Point exceptions, either disrupts control or else ignores them.

UNDERFLOW, INEXACT are usually ignored.

INVALID OPERATION, DIVIDE-BY-ZERO, OVERFLOW usually disrupt control.

A policy that predisposes every unanticipated Exception
to disrupt control can have very bad consequences. e.g. …

• The USS Yorktown in 1997

• The Ariane 5 in 1996

• Air France #447 in 2009

• Searches abandoned

Let’s look into these examples …

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 53/90

 USS Yorktown (CG-48) Aegis Guided Missile Cruiser, 1984 — 2004

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 54/90

Now decommissioned, the USS Yorktown was among the first warhips extensively
computerized to reduce crew (by 10% to 374) and costs (by $2.8 million per year).

On 21 Sept. 1997, the Yorktown was maneuvering off the coast of Cape Charles, VA,
when a crewman accidentally ENTERed a blank field into a data base. The blank was
treated as a zero and caused a Divide-by-Zero Exception which the data-base program
could not handle. It aborted to the operating system, Microsoft Windows NT 4.0, which
crashed, bringing down all the ship’s LAN consoles and miniature remote terminals.

The Yorktown was paralyzed for 2 hours,
unable to control steering, engines or weapons,
until the operating system had been re-booted.

Fortunately the Yorktown was not in combat nor in crowded shipping lanes.

See <www.gcn.com/Articles/1998/07/13/Software-glitches-leave-Navy-Smart-Ship-dead-in-the-water.aspx>

If IEEE 754’s default had been in force, the division by zero
would have insinuated into the data-base an ∞ and/or NaN ,
which would have been detected afterwards without a crash.

. .

3
4

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 55/90

The half-a-billion-dollars Ariane 5 disaster of 4 June 1996

The Ariane 5 is a French rocket that serves nowadays to lift satellites into orbit.

On its maiden flight it turned cartwheels shortly after launch and was blown up, scattering
half a billion dollars worth of payload and the hopes of European scientists over a marsh
in French Guiana. The disaster was traced to an Arithmetic Error,— Overflow,– in a
software module monitoring acceleration (due to gravity and tidal forces) and used only
while the rocket was on the launch-pad. This module’s output was destined to be ignored
after rocket ignition, so it was mistakenly left enabled; but it aborted upon overflow.

A commission of inquiry blamed the disaster upon software tested inadequately.
What software failure could not be blamed upon inadequate testing?

Since then the question “Who is to blame?” has spawned dozens of responses :
 <www.rvs.uni-bielefeld.de/publications/compendium/incidents_and_accidents/ariane5.html>

 …updated to 13 July 2005 by Prof. Peter B. Ladkin

Nobody else has blamed the Fall-Through policy of the programming language ADA.

If the overflow had not been trapped, but instead had raised a flag and generated an ∞ or
any other value, both would have been ignored, and the Ariane 5 would not have crashed.

A trap too often catches creatures it was not set to catch.
. .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 56/90

Air France #447 (Airbus 330) lost 1 June 2009
Modern commercial and military jet aircraft achieve their efficiencies only because they fly
under control of computers that manage control surfaces (ailerons, elevators, rudder) and
throttle. Only computers have the stamina to stay “on the razor’s edge” of optimal
altitude, speed, and an angle of attack barely short of an Abrupt Stall.

35000 ft. over the Atlantic about 1000 mi. NE of Rio de Janeiro, AF#447 flew through a mild
thunderstorm into one so violent that its super-cooled moisture condensed on and blocked all
three Pitot Tubes. They could no longer sense airspeed. Bereft of consistent airspeed data, the
computers relinquished command of throttles and control surfaces to the pilots with a notice that
did not explain why. The three pilots struggled for perhaps ten seconds too long to understand
why the computers had disengaged, so the aircraft stalled at too steep an angle of attack before
they could institute the standard recovery procedure. Three minutes later, AF#447 pancaked
into the ocean killing all 228 aboard. The computers had abandoned AF#447 too soon.
See <www.bea.aero/fr/enquetes/vol.a.point.enquete.af447.27mai2011.en.pdf>, NOVA6207 from PBS, and
<www.aviationweek.com/aw/jsp_includes/articlePrint.jsp?headLine=High-Altitude%20Upset%20Recovery&storyID=news/bca0711p2.xml>

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 57/90

Naval embarrassment.

Half a billion dollars lost.

228 lives lost.
What more will it take to persuade the computing industry

and particularly the arbiters of taste and fashion in programming languages

to reconsider whether abortion should be the only default response
to unanticipated exceptions ?

Though a policy of continued execution after them may well pose
a difficult question for the programmer,

 especially where Embedded Systems are concerned,

who else is better equipped to incur the obligation to answer it?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 58/90

A policy that aborts execution as soon as a severe Exception occurs can also

Prematurely Abort a Search :
Suppose a program seaches for an object Z that satisfies some condition upon ƒ(Z) .
e.g.,

• Locate a Zero Z of ƒ(x) , where ƒ(Z) = 0 , or
• Locate a Maximum Z of ƒ(x) , where ƒ(Z) = maxx ƒ(x) .

How can the search’s trial-arguments x be restricted to the domain of ƒ if its boundary is
unknown? Is this boundary easier to find than whatever Z about ƒ is to be sought?

Example:
 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3) except shoe(0) := +∞ .

We seek a root Z > 0 of the equation shoe(Z) = 0 if such a root exists. (We don’t know.)
We know x = 0.5 lies in shoe’s domain, but (pretend) we don’t know its boundary.

Does your rootfinder find Z ? Or does it persuade you that Z probably does not exist ?

Try, say, each of 19 initial guesses x = 0.05, 0.1, 0.15, 0.2, …, 0.5, …, 0.9, 0.95 .

 fzero in MATLAB 6.5 on a PC said it cannot find a root near any one of them.
 root in MathCAD 3.11 on an old Mac diverged, or converged to a huge complex no.

Why did [SOLV] on HP-18C, 19C and 28C handheld calculators find what they didn’t ?

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 59/90

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

If no positive Z in shoe(x) ’s domain satisfied shoe(Z) = 0 ,
then the SHOE would leak at its toe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

X

 s
ho

e(
 X

)

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 60/90

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

The HP-28C found the root Z = 0.999906012413 from each of those 19 first guesses.

What did the calculator know/do that the computers didn’t ? … Defer Judgment .

See P.J. McClellan [1987] I think some Casio calculators too may know how to do it.

0.9995 0.9996 0.9997 0.9998 0.9999 1 1.0001
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

X

 s
ho

e(
 X

)

Notice the 1000-fold
change in the scale
of the x - axis.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 61/90

Damned if you do and damned if you don’t

Defer Judgment
Choosing a default policy for handling an Exception-class runs into a …

Dangerous Dilemma:
• Disrupting the path of a program’s control can be dangerous.
• Continuing execution to a perhaps misleading result can be dangerous.

Computer systems need 3 things to mitigate the dilemma :
1• An Algebraically Completed number system for Default Presubstitutions.

2• Sticky ƒlags to Memorialize Leading Exceptions in each Exception-class.

3• Retrospective Diagnostics to help the program’s User debug it.
The program’s User may be another program composed by maybe a different programmer.

These things, to be explained hereunder, are intended for Floating-Point computations.

How well they suit other kinds of computations too is for someone else to decide.
Mathematicians do not need these 3 things for their symbolic and algebraic manipulations on paper.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 62/90

Three Proper Algebraic Completions of the Real Numbers

Proper Algebraic Completion maintains Algebraic Integrity while providing a result for every operation.

•• ••-∞ +∞
±0

IEEE 754’s:
NaNs

•

•

••

∞

0

+1-1 NaNs

NaNsNaNs

Projective Closure: Unsigned

Unsigned

• 0

(Stereographic
 Projection,
 like the
 Riemann
 Sphere of the
 Complex Plane)

(A NaN is
 Not a Number)

For more about NaNs
see p. 56 of <…/NeeDebug>

… is Topologically Closed.

… is Topologically Closed.

… is Topologically Open.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 63/90

Algebraic Integrity: Non-Exceptional evaluations of algebraically equivalent
 expressions over the Real Numbers produce the same values.

To conserve Algebraic Integrity as much as possible, every Proper Algebraic Completion
must ensure that, if Exceptions cause evaluations of algebraically equivalent expressions
over the Algebraically Completed Real Numbers to produce more than one value, they
can produce at most two, and if these are not +∞ and –∞ then at least one is NaN .

 Among a few others, the Completion chosen by IEEE Standard 754 does this.

Other Completions, like APL’s 0/0 := 1 and MathCAD’s 0/0 := 0 , destroy Algebraic Integrity.

For example, compare evaluations of three algebraically equivalent expressions:

Unlike Real, Floating-Point evaluations usually conserve Algebraic Integrity
at best approximately after the occurrence of roundoff and over/underflow, so

some algebraically equivalent expressions evaluate more accurately than others.
For more about Algebraic Completion and Algebraic Integrity see pp. 51 - 53 of <…/NeeDebug> .

x 2/(1 + 1/x) 2·x/(1 + x) 2 + (2/x)/(–1 – 1/x)

–1 +∞ ! −∞ ! −∞ !
0 0 ! 0 NaN !

±∞ 2 NaN ! 2

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 64/90

1• Presubstitution …
… provides, within its scope, each Exception-class with a short process that supplies

 a value for any Floating-Point Exception that occurs, instead of aborting execution.

IEEE Standard 754 provides five presubstitutions by default for …
INVALID OPERATION defaults to NaN Not-a-Number
OVERFLOW defaults to ±∞
DIVIDE-BY-ZERO (∞ from finite operands) defaults to ±∞
INEXACT RESULT defaults to a rounded value
UNDERFLOW is GRADUAL and ultimately glides down to zero by default.

These presubstitutions descend partly from the chosen Algebraic Completion of the Reals,
partly from greater risks other presubstitutions may pose if their Exceptions are ignored.

Untrapped Exceptions are too likely to be overlooked and/or ignored.
• From past experience, INEXACT RESULT and UNDERFLOW are almost always ignored regardless of

their presubstitutions if these are at all plausible. Ignored underflow is deemed least risky if GRADUAL.

• DIVIDE-BY-ZERO might as well be ignored because ∞ either goes away quietly (finite/∞ = 0) or else
almost always turns into NaN during an INVALID OPERATION , which raises its flag.

• INVALID OPERATION should not but will be ignored inadvertently. Its NaN is harder to ignore.

Consequently, each default presubstitution has a side-effect;– it raises a ƒlag. (See later.)

Ideally, a program should be allowed to choose different presubstitutions of its own.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 65/90

Ideally, (on some computers today this ideal may be beyond reach)
 a program should be allowed to choose different presubstitutions of its own.

INEXACT RESULT’s default presubstitution is Round-to-Nearest .
• IEEE 754 offers three non-default Directed Roundings (Up, Down, to Zero) that

a program can invoke to replace or over-ride (only) the default rounding.
… useful for debugging as discussed previously, and for Interval Arithmetic.

UNDERFLOW’s default presubstitution is Gradual Underflow, deemed most likely ignorable.
• IEEE 754 (2008) allows a kind of Flush-to Zero (almost), but not as the default.

 … useful for some few iterative schemes that converge to zero very quickly, and on some
hardware whose builders did not know how to make Gradual Underflow go fast.
 See <www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf> for details.

OVERFLOW’s and DIVIDE-BY-ZERO’s default presubstitution is ±∞ .
• Sometimes Saturation to ±(Biggest finite Floating-point number) works better.

INVALID OPERATIONs’ default presubstitutions are all NaN .
• Better presubstitutions must distinguish among 0/0 , ∞/∞ , 0·∞ , ∞ – ∞ , …

• The scope of a presubstitution, like that of any variable, respects block structure.
• Hardware implementation is easiest with Lightweight Traps, each at a cost very like

the cost of a rare conditional invocation of a function from the Math. library.

For examples of non-default presubstitutions see <www.cs.berkeley.edu/~wkahan/Grail.pdf> ,
its pp. 1-8 explain the urgent need to implement them, and how to do it in pp. 8-10.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 66/90

2• Flags
IEEE Standard 754 mandates a Sticky ƒlag for each Exception-class to memorialize its
every Exception that has occurred since its ƒlag was last clear. Programs may raise,
clear, sense, save and restore each ƒlag, but not too often lest the program be slowed.

The ƒlag of an Exception-class may be raised as a by-product of arithmetic.

The ƒlag is a function, a flag a variable of data-type FLAG in memory like other variables.

The ƒlag is not a bit in hardware’s Status Register. Such a bit serves to update its ƒlag
when the program senses or saves it, perhaps after waiting for the bit to stabilize.

Any flag’s data-type gets coerced to LOGICAL in conditional and LOGICAL expressions.

Any flag may also serve Retrospective Diagnostics by pointing to where it was raised.

An Exception that raises its ƒlag need not overwrite it if it’s already raised; … faster !

Three frequent operations upon flags are …
• Swap a saved flag with the current one to restore the old and sense the new.
• Merge a saved flag into the current ƒlag (like a logical OR) to propagate one.
• Save, clear and restore all (IEEE 754’s five) ƒlags at once.

Reference to the ƒlag is a Floating-Point operation the optimizing compiler must not
swap with a prior or subsequent Floating-Point operation lest the ƒlag be corrupted.
This constraint upon code movement is another reason to reference ƒlags sparingly.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 67/90

Flags’ Scopes
Variables of data-type FLAG are scoped like other variables, in so far as they respect block
structure, except for the five Exception-classes’ five ƒlags which, if supported at all,

have usually been treated as GLOBAL variables. Why?

By mistake; they have been conflated with bits in a status register.

The Exception-classes’ five ƒlags can implicitly be inherited and exported
by every Floating-point operation or subprogram (or Java “method”)
unless it can specify otherwise in a language-supplied initial Signature.

The least annoying scheme I know for managing ƒlags’ inheritance and export is APL’s
for System Variables []CT (Comparison tolerance) and []IO (Index Origin):

An APL function always inherits system variables and, if it changes one, exports the
change unless this variable has been Localized by redeclaration at the function’s start. If
augmented by a command to merge a changed flag with the ƒlag, this scheme works well.

Still, because they are side-effects, …

ƒlags are Nuisances !

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 68/90

ƒlags are Nuisances.
Why bother with them?

Because every known alternative can be worse :

Execution continued oblivious to Exceptions can be dangerous,
and is reckless.

Java forbids ƒlags, forcing a conscientious programmer to test for
an Exceptional result after every liable operation.

So many tests-and-branches are tedious and error-prone.
 Recall pp. 23-4 of <www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf> . Similarly for …

C’s single flag ERRNO must be sensed immediately lest another Exception overwrite it.

What can ƒlags do that try/throw/catch/finally cannot ?
If a throw is hidden in a subprogram invoked more than once in the try clause, the
catch clause can’t know the state of variables perhaps altered between those invocations.

 Recall W. Weimer’s discovery that try/throw/catch/finally is error-prone .

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 69/90

A Floating-Point Exception ƒlag costs relatively little unless the program references it.
• Apt Presubstitutions render most (not all) Exceptions and their ƒlags ignorable.
• Apt non-default presubstitutions render more Exceptions and ƒlags ignorable.

We should try not to burn out conscientious programmers prematurely.
Their task is difficult enough with presubstitutions and ƒlags; too difficult without.

And ƒlags let overlooked Exceptions be caught by Retrospective Diagnostics . …

3• Retrospective Diagnostics

We are not gods.
Sometimes some of us overlook something.

At any point in a program’s execution, usually when it ends, its
Unrequited Exceptions are those overlooked or ignored so far.

Evidence of one’s existence is its ƒlag still standing raised.

Retrospective Diagnostics help a program’s user debug Unrequited Exceptions
by facilitating interrogation of NaNs and raised ƒlags now interpreted as pointers
(indirectly, and perhaps only approximately) to relevant sites in the program.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 70/90

Earliest Retrospective Diagnostics See my web page’s …/7094II.pdf
In the early 1960s, programs on the IBM 7090/7094 were run in batches. Each program
was swept from the computer either after delivering its output, be it lines of print or card
images or compile-time error-messages, or upon using up its allotment of computer time.

Often the only output was a cryptic run-time error-message and a 5-digit octal address.

I put a LOGICAL FUNCTION KICKED(…) into FORTRAN’s Math. library, and altered
the accounting system’s summary of time used etc. appended to each job’s output. Then …

 IF (KICKED(OFF)) ... executable statement ...
in a FORTRAN program would do nothing but record its location when executed. If later
the program’s execution was aborted, a few extra seconds were allotted to execute the
executable statement (GO TO …, PRINT …, CALL …, or REWIND …) after the
last executed invocation of KICKED . Any subsequent abortion was final.

. .

IBM’s presubstitution for UNDERFLOW was 0.0 , and its other presubstitutions for …
• DIVISION-BY-ZERO a quotient of 0.0 , or 0 for integers,
• OVERFLOW ±(biggest floating-point number),

… were defaults a programmer could override only by a demand for abortion instead.

I added options for Gradual Underflow, and for Division-by-Zero to produce a hugest
number, and for an extended exponent upon Over/Underflow. I added sticky ƒlags for a
program to test etc. any time after the Exceptions, and added Retrospective Diagnostics.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 71/90

Earliest Retrospective Diagnostics continued

Each raised ƒlag held the nonzero 5-digit octal address of the 7090/7094 program’s site
that first raised the ƒlag after it had last been clear. I added tests for raised ƒlag to the
accounting system’s summary of time used etc. appended to each job’s output; and for each
ƒlag still raised at the job’s end I appended a message to the job’s output saying …

 “You have an unrequited … name of Exception … at … octal address … ”

This is the only change to IBM’s system on the 7094 for which I was ever thanked.
… by a mathematician whose results invalidated by a DIVIDE-BY-ZERO

 would have embarrassed him had he announced them to the world.

My other alterations to IBM’s system were taken for granted as if IBM had granted them.

Attempts over the period 1964-7 to insinuate similar facilities, all endorsed by a SHARE
committee, into IBM’s subsequent systems were thwarted by …

 … that’s a long story for another occasion.

 END OF REMINISCENCES.
. .

Note how NaNs, ƒlags and Retrospective Diagnostics differ from a system’s event-log:
• The system’s event-log records events chronologically, by time of occurrence.
• NaNs and ƒlags point (indirectly) to (earliest) sites (hashed) in the program.

If Exceptions were logged chronologically, they could slow the program badly,
overflow the disk, and exhaust our patience even if we attempt data-mining.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 72/90

Retrospective Diagnostics’ Annunciator and Interrogator
How shall a program’s Unrequited Exceptions be brought to the attention of its user?

• If the program’s user is another program denied access to the former’s ƒlags by the
operating system, retrospective diagnostics are thwarted.

• If the program’s user is another program with access to the former’s ƒlags, the latter
program determines their use or may pass them through to the next user.

• If the program’s user is human, the program can annotate its output in a way that
makes the user … • Aware that Unrequited Exceptions exist, and then

• Able to investigate them if so inclined.

“Aware” :
• Don’t do it this way:

On my MS-Windows machines, some error-messages display for fractions of a second.

• Do do it this way:
On my Macs, an icon can blink or jiggle to attract my attention until I click on it.

The Math. library needs a subprogram that creates an Annunciator, an icon that attracts
a user’s attention by blinks or jiggles, which a program can invoke to annotate its output.

Clicking on an Annunciator should open an Interrogator, dropping a menu that lists
unrequited Exceptions and allows displayed NaNs to be clicked-and-dragged into the list.
Clicking on an item in the list should reveal (roughly) whence in the program it came.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 73/90

Retrospective Diagnostics can Annoy …
They can annoy the programmer with an implicit obligation to annotate output upon whose
validity doubt may be cast deservedly by Unrequited Exceptions. This obligation is one of

 Due Diligence .
Is programming a Profession ? If so, one of its obligations is Due Diligence .

Retrospective Diagnostics can annoy a program’s user if the Annunciator resembles

The little boy who cried “Wolf ! ”
by calling the user’s attention to Unrequited Exceptions that seem never to matter. This
may happen because the programmer decided to “Play it Safe”, actually too safe.

My IBM 7094’s retrospective diagnostics were usually torn off the end of a program’s output and discarded.

To warn or not to warn. The dilemma is intrinsic in approximate computation by one
person to serve an unknown other. They share the risk. And the Law of Torts assigns to
each a share of blame in proportion to his expertise, should occasion for blame arise.

. .

Retrospective Diagnostics may function better on some platforms than on others, and not
at all on yet others. Debugging may be easier on some platforms than on others. Numerical
software may be developed and/or run more reliably on some platforms than on others.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 74/90

What Constellation of Competencies must be Collected
to develop the Diagnostic Tools described herein?

Languages must be altered to support Quad by Default unless a program refuses it.

Languages must be altered to support …
• Scopes for (re)directed roundings, and
• Scopes for non-default Presubstitutions, and for ƒlags.

Compilers must be altered to augment Symbol Tables and other information attached
to object modules to help debuggers (and the loaders on some architectures)
implement rerunning with redirected roundings or with higher precision.

Operating Systems must be altered to support Lightweight Traps for handling
non-default Presubstitutions, and ƒlags’ and NaNs’ Retrospective Diagnostics.

Debuggers must be augmented to support users of the foregoing capabilities.

Retrospective Diagnostics may function better on some platforms than on others, and not
at all on yet others. Debugging may be easier on some platforms than on others. Numerical
software may be developed and/or run more reliably on some platforms than on others.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 75/90

“This … paper, by its very length, defends itself against the risk of being read.”
… attributed to Winston S. Churchill

If there be better ideas about it,
and if the reader is kind enough to pass some on to me,

this is not the subject’s
Last Word.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 76/90

Publications Cited
Z. Drmac & Z. Bujanovic [2008] “On the failure of rank revealing QR factorization software — a
case study” ACM Trans. on Math. Software 35 #2 Article #12, 28 pp.

Z. Drmac & Z. Bujanovic [2010] “How a numerical rank revealing instability affects Computer Aided
Control System Design” 12pp. <www.slicot.org/REPORTS/SLWN2010-1.pdf>

N.J. Higham [2002] Accuracy and Stability of Numerical Algorithms 2d. ed. ≈700 pp. (SIAM,
Philadelphia).

P.J. McClellan [1987] “An Equation Solver for a Handheld Calculator” pp. 30 - 34 of the Hewlett-
Packard Journal 38 #8 (Aug. 1987).

J-M. Muller et al. [2010] Handbook of Floating-Point Arithmetic, xxii + 572 pp. (Springer/
Birkhäuser Boston, New York).

A. Ralston & E.D. Reilly Jr. [1983] eds. Encyclopedia of Computer Science and Engineering 2nd
ed., 1694 pp. (Van Nostrand Reinhold) The articles by Wilkinson and Ralston persisted in the 4th
ed. [2000] xxix+2034 pp. (Nature Publ. Group, London, England), but they disappeared from …

E.D. Reilly [2004] ed. Concise Encyclopedia of Computer Science (based on the 4th ed. above)
xxvi+875 pp. (Wiley, Chichester, England) which says nothing about roundoff etc. in Floating-Point.

A.B. Tucker Jr. [1997] ed. The Computer Science and Engineering Handbook 2650 pp. (CRC Press
& ACM).

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 77/90

Responses to Questions and Comments

... from the IFIP/SIAM/NIST WoCo conference, Boulder CO, 3 Aug. 2011

from Dr. Jeffrey Fong, NIST Gaithersburg U.S.
"This is a sobering lecture. Critical control using computers should
be duplicated online to show results of at least two independent
computations agree within reasonable bounds. Do you agree that is the
cost-effective way to manage a high-consequence system, where the
estimated cost of a failure multiplied by the failure probability
exceeds the extra cost of decision support with online verification?"

Response:
Your question and my response betray our ages. In the 1950s, when we
were young, experienced engineers distrusted floating-point computation
enough to follow your recommendation: Do it at least two independently
different ways. This was feasible because computers did fast what had
previously been done by hand using electro-mechanical calculators and
slide-rules. Collecting and organizing data to put into the computer,
and then presenting its output in an intelligible format, took long
enough that independent recomputation's additional cost was tolerable,
assuming an independent numerical method could be found. In some cases,
like flutter computations for an aircraft's wings, recomputation was
unavoidable because no single numerical method was likely enough to

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 78/90

produce reliable results. "Polyalgorithms" were proposed; these would
recompute in several different ways in the hope that two or three would
agree closely enough to be deemed correct.

Nowadays engineers use software packages whose numerical methods hardly
ever fail despite known and unknown failure modes. Whether sufficiently
different recomputation will be "cost-effective" can be decided only
after assessments of too many imponderables:

<> How likely is the chosen software package's numerical process to
 produce a misleading result?
<> How likely is this misleading numerical result to cause a calamity?
<> How much would such an imagined calamity cost, and to whom?
<> Can a sufficiently different recomputation be found and implemented
 at a cost under budget and in time to meet impending deadlines?
<> What are "reasonable bounds" for acceptance of different computed
 and recomputed results? Who determines these bounds, and how?
<> What if computed and recomputed results differ excessively?

 "Who shall decide, when doctors disagree, ... ?"
 Epistles ... iii, l.1, by Alexander Pope (1688-1744)

"Critical control" by software in embedded systems, like a computer
enhancing an aircraft's stability, would not afford their users much
time to decide what to do about computational disagreements "online".

Still, like you, I would urge scientists and engineers to corroborate

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 79/90

(it won't be "verified") the result of a computation by a sufficiently
different recomputation whenever time is available for both computations
and for reconsideration if the two appear to disagree intolerably.
Doing so exercises Due Diligence regardless of imponderable costs.

Enough philosophy. Now let's look at some examples:

<> Column u = sort(eig(A, H)) differs so much from recomputed
 w = sort(eig(X*A*X, X*H*X)) on pp. 41-2 that their errors call
 out for reconsideration. They are due to a shared near-null-space
 of columns z that both A and H nearly annihilate.

<> Single-precision's abrupt stall on p. 20 was thought to be
 corroborated by double-precision recomputation but, despite
 agreement, both were wrong, each for a different reason.

<> Mishaps that befell the Yorktown, Ariane 5 and AF447 (pp. 54-6)
 could not have been averted by independent recomputation so long as
 the default (unvoiced) policy of abortion, upon any unanticipated
 exception deemed "error", precluded completion of one computation.
 Incidentally, the rocket's computers were triply redundant.
 ...

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 80/90

from Dr. John Reid, JKR Associates, U.K.
"Fortran 2003 contains facilities for controlling the modes of
roundoff, although vendors are not obligated to support them."

Response:
Linguistic support for modes (rounding, precision, exception-handling)
and flags is crucial for their utility. Mere compiler access to them,
which is what I have had, treats them as global variables requiring
too many explicit saves and restores, and does not protect these from
optimizing compilers that move mode and flag references ahead or after
arithmetic evaluations, thus corrupting scopes. 1980s support for
modes and flags by the SANE (Standard Apple Numerics Environment) on
680x0-based Macs overburdened the programmer with the Localization of
modes and flags that should have been automatic; compare p. 67 here
with "Apple Numerics Manual" 2d ed. (1988) Addison-Wesley, scrapped by
John Sculley in the 1990s when he put "Power" processors into Macs.

Ideally a programmer indifferent to modes and flags should not have to
mention them in his program except perhaps when debugging; see the next
Response. ...

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 81/90

from Dr. John Reid, JKR Associates, U.K.
"What I mostly do is write programs and check them for bugs. I
therefore want the program to stop if a serious exception such as
divide-by-zero occurs. My experience is that I have to request this.
The default is to substitute a special value and continue, which is
exactly the behavior that you want."

Response:
Like you, while debugging I have to bracket those blocks of the program
where default presubstitutions would be unwelcome by statements that
enable and disable traps, provided the language offers such statements.
Then they must be removed before the program is put into service lest it
abort prematurely. Its documentation must specify its output for inputs
that precipitate an unwanted or unanticipated exception. I prefer NaNs
to innocuous-looking but incorrect numerical output with a raised FLAG
that is too likely to be ignored. However, NaNs can be dangerous too;
for instance, among the inputs to an unwary program, NaNs can put it
into an endless WHILE (Xnew .NE. Xold) DO loop.

MATLAB is different. It lacks access to FLAGs, and requires that
blocks in which default presubstitutions are acceptable be bracketed by
statements that disable and re-enable WARNING messages. WARNINGs are
now diverse, with elaborate links to MATLAB's debugger, much more
complicated than FLAGs and less helpful to the programmer who wishes
to cope with all exceptions in his program without troubling its user.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 82/90

Inserting/removing enabling/disabling or WRITE statements followed by
recompiling has a serious flaw: the object-code debugged differs from
the object-code put into service. They can differ in optimization and
register allocation by the compiler, thus obscuring its bugs; see
§3 of Drmac & Bujanovic [2008]. If I had my way, enabling/-
disabling would be unnecessary. Instead FLAGs and NaNs would point
retrospectively to the places where they were raised or created in a
program unaltered by recompilation.
...

from Sir Brian Ford , NAG, U.K.
"Why have we been so unsuccessful in addressing and correcting these
issues within the technical computing industry over the last forty
years?"

Response:
Reform is inhibited by ignorance of better possibilities and by costs,
the costs of changes and the costs of details, incurred initially by
implementers more than beneficiaries of reform. And the talent that
could institute these reforms has been fully engaged elsewhere.

Attempts to change programmers' styles and habits incur discouraging
costs. Linguistic support for MODEs and FLAGs implies explicitly an
obligation to attend to eventualities that previously had been ignored
as uneconomical or impossible for a programmer to handle properly. How

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 83/90

many programmers would welcome the added burden of these obligations?
That burden cannot be borne by programs intended to be widely portable
so long as compiler "vendors are not obligated to support" and some
choose not to support Modes and Flags, as John Reid mentioned above.

 "Le bon Dieu est dans le détail." (God is in the details.)
 ... often attributed to Gustave Flaubert (1821-1880)
 "Der Teufel steckt im Detail." (The devil is in the details.)
 (First said in the 20th century, but by whom I don't know.)

Whatever resides in details, whoever pays to cope with them must wonder
whether costs will ever be recovered. Apple abandoned its SANE just
before finding out if it would attract developers of numerical software
to prefer Macs over other platforms, and so invade a market hitherto
dominated by more expensive workstations. Now this market is negligible
compared with the markets from which Apple profits most today.

Here is an instance of a detail pertinent to your question: Properly to
support recomputation with different roundings or precisions requires
compilers to augment their symbol tables AND object-codes with marks
to identify the line of source-code and subprogram from which each line
of object-code came, especially if the math library is "inlined" and
when aggressive optimization exploits concurrency in pipelines, cores
and threads. These marks are needed to debug the object-code. Though
source-code would be easier to debug if recompiled with optimization
inhibited, that would obscure a deployed object-code's bug caused by
overly aggressive optimization, as has often afflicted LAPACK.

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 84/90

Costly details multiply. Recomputation with redirected rounding can
exploit those marks planted by the compiler in object-code only if it is
susceptible to alteration by a sufficiently cultivated debugger without
access to source-code. Further cultivation would enable the debugger to
interrogate NaNs and raised flags and reveal where in the program they
were created and first raised, provided the operating system provides
lightweight traps to insert the necessary pointers when floating-point
exceptions occur. "Lightweight" means that the trap-handlers can live
and operate entirely within memory preallocated to the program without
the time-consuming overhead incurred by changes to memory protection.

In short, the reforms I believe to be needed desperately entail a host
of changes to programming practice and languages, compilers, operating
systems annd debuggers, changes that a few computer architectures may
be unable to tolerate. The talent needed to implement such changes is
preoccupied nowadays with the exploitation of parallelism on ever more
diverse computer architectures, and with the exponentially growing
disparities among the speeds of arithmetic, memory management, and
communications. As programs spawned by our preoccupations proliferate,
so do their bugs.
 ...

File: Boulder Desperately Needed Remedies … Version dated April 24, 2012 6:41 am

Prof. W. Kahan Subject to Revision Page 85/90

from Dr. Richard Hanson, Rogue Wave, U.S.
      ~~~~~~~~~~~~~~~~~~
"Occasionally the use of exceptions -- e.g. divide-by-zero -- helps
performance by avoiding tests in inner loops.  Example:  Sturm
sequences for  [symmetric] tri-diagonal matrix  eigenvalue problems."

Response:
Thanks for this comment.  I think your example's loop goes like this:

 ...{ Real finite  x  and  a[1..n]  and  bb[1..n] > 0  are given.}
           d := -infinity ;  ...{ or else  d := -1  and  bb[1] := +0 }
           k := 0 ;
           for  j = 1 to n  do
              { d := (x - a[j]) - bb[j]/d ;     ...{ it's never  -0 }
                k := k + signbit(d)     } ;
      ...{ Now  k  counts the eigenvalues exceeding  x .}

Minor restrictions upon the ranges of input data  a[..],  bb[..]  and  x
avert harmful over/underflows,  so let's simplify discussion by ignoring
them.  Then the only noticeable exception is division-by-zero whenever
d  vanishes,  making the next  d = -infinity .  The next pass around the
loop divides by this infinite  d  to get a new finite  d  that is quite
correct,  or else the last  d = -infinity  with the correct sign.  Here
    signbit(z) := if ( z < 0  or  z  is  -0 )  then  1  else  0 ;
but it is normally computed by a logical right-shift of leading bits
rather than by a test-and-branch.



File:  Boulder                                                           Desperately Needed Remedies …                                                              Version dated  April 24, 2012 6:41 am

Prof. W. Kahan                                                                                             Subject to Revision                                                                                                Page  86/90

When the last  d  vanishes,  x  is eigenvalue #(k+1) counting down.  The
loop is embedded in a program that uses  k  and  d  to find a sequence
of values  x  convergent fast to a desired eigenvalue.

That pristine loop was devised in the  1950s  by a physicist,  Boris
Davison,  so far as I know.  Nowadays the divide operation is so much
slower than all the others that  d,  k  and  x  are arrays to exploit
overlapped divisions by using more than one approximation  x  to one
eigenvalue,  and/or  approximations  x  to more than one eigenvalue.
This usage would be hindered if a test-and-branch were needed to avoid
division-by-zero,  so instead a tricky addition can be inserted thus:
              { d := ((x - a[j]) - bb[j]/d) + eta ;
here  eta  is a tiny positive quantity,  tinier than a rounding error,
whose introduction noticeably restricts the admissible ranges of input
data  a[..]  and  bb[..] .  This pornographic trick accommodates those
few computers that must otherwise trap into the operating system to
produce or consume each infinity,  thereby taking at least an order of
magnitude longer than an unexceptional division.

This example illustrates an importamt notion:  The presubstitutions of
infinity for  bb[j]/0  and zero for  bb[j+1]/infinity  avoid pornography
incurred to prevent floating-point exceptions without thereby incurring
severe performance penalties.  Try to choose a value for  eta  so tiny
as maintains the validity and monotonicity of  k ,  but not so tiny as
risks overflows of  bb[j]/eta ,  to discover how greatly pornography
inflates that pristine loop's capture-cross-section for programming



File:  Boulder                                                           Desperately Needed Remedies …                                                              Version dated  April 24, 2012 6:41 am

Prof. W. Kahan                                                                                             Subject to Revision                                                                                                Page  87/90

errors.  More general presubstitutions' necessity and implementations
are discussed in  <www.eecs.berkeley.edu/~wkahan/Grail.pdf> .

The default presubstitutions of  IEEE Standard 754  cannot be considered
adequate without  FLAGs.  These figure in computations that almost never
encounter exceptions like over/underflow that would invalidate results.
Rather than test frequently for such exceptions,  these computations
test appropriate  FLAGs  occasionally at the programmer's convenience,
and recompute by an alternate method when a raised  FLAG  requires it.
The same result could be achieved by  TRY-THROW-CATCH-FINALLY  clauses,
and faster,  except that most programming languages cannot  THROW  when
UNDERFLOW  or  INEXACT  occurs.  Besides,  the scopes of  THROWs  and
CATCHes  are no easier to manage than the scopes of  FLAGs.
 .......................................................................



File:  Boulder                                                           Desperately Needed Remedies …                                                              Version dated  April 24, 2012 6:41 am

Prof. W. Kahan                                                                                             Subject to Revision                                                                                                Page  88/90

... from the  Heilbronn Conference,  Bristol University,  8 Sept. 2011

... from an anonymous member of the audience:
"Do you assert that defective software caused Air France #447's crash?"

Response:
Yes and no.  AF#447  would not have crashed if any one of six mishaps
had not befallen it.  ...

<>  Flying at  35000 ft.,  the aircraft entered a violent thunderstorm
    hidden from the weather  RADAR  by an intervening weak storm.

<>  The storm's supercooled moisture froze in all three  Pitot  tubes,
    blocking them despite heaters intended to prevent this.  (Since
    then,  stronger heaters have been retrofitted to  AirBus  aircraft.)

<>  Blocked  Pitot  tubes sent low or no airspeed indications to the
    instrument panel and to the automatic pilot's computer.  It deemed
    these  "speeds"  to be  "Invalid Data"  inconsistent with continued
    flight at  35000 ft.

<>  The automatic pilot's computer announced that it was relinquishing
    to the pilots command of the control surfaces  (ailerons,  elevator,
    rudder) and throttles,  displaying only  "Invalid Data"  to say why.
    This is the software's defect.  It did not say  "Altitude and speed
    are inconsistent".  It did not say  "Try standard recovery procedure



File:  Boulder                                                           Desperately Needed Remedies …                                                              Version dated  April 24, 2012 6:41 am

Prof. W. Kahan                                                                                             Subject to Revision                                                                                                Page  89/90

    (2/3 throttle,  and maintain level flight)".  Intead  "Invalid Data"
    was classified implicitly as an error condition deserving abortion.
    Shortly afterwards,  as the aircraft fell through warmer air,  ice
    melted and the airspeed indicators recovered,  but the computer did
    not inform the pilots that they could now trust their instruments.

<>  At night,  in pitch-black with no external visual references,  three
    pilots tried to deduce which data was invalid from the instrument
    panel's multitudinous displays.  Flying optimized  "On the razor's
    edge"  (close to stalling),  the aircraft stalled before the pilots
    could figure out what to do.  The crash came three minutes later.

<>  The pilots must have been perplexed because the throttles had been
    reset to idle,  which is no way to escape from a stall;  and the
    younger copilot was wrongly pulling back on his joystick as if trying
    to climb while the older copilot was correctly pushing his forward to
    dive and gain speed.  Because of a mistake in the design of  Airbus’s
    controls,  neither copilot nor the senior pilot behind them realized
    until too late that the computer was averaging their cross-purposes,
    quietly cancelling them out.

Recently Jeff Wise’s article “What Really Happened Aboard Air France 447”  
appeared in  Popular Mechanics : see <www.popularmechanics.com/technology
/aviation/crashes/what-really-happened-aboard-air-france-447-6611877>.  
It is based upon extracts from the now recovered flight recorder.  This 
posting on the internet is followed by a long list of commentators’ nasty 
accusations about  Air France’s  pilot training procedures,  Airbus,  and 



File:  Boulder                                                           Desperately Needed Remedies …                                                              Version dated  April 24, 2012 6:41 am

Prof. W. Kahan                                                                                             Subject to Revision                                                                                                Page  90/90

especially the younger copilot,  who appears likely to have to bear all 
the blame posthumously for the crash.  But nobody objected to an implicit 
(accepted without debate or explanation)  convention among programming 
languages that obliges no programmer to consider the effect his error-
message  (if any)  would have upon users of his program after it aborts,  
nor to consider the states in which the program’s data structures will be 
left after abortion caused by an unanticipated event deemed an error.  
(Is it the user’s error,  or the programmer’s?)  This convention amounts 
to a licence for irresponsibility among programmers,  so it should be at 
least deprecated by computing professionals.

 .......................................................................


