

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 1/63

Desperately Needed Remedies for the Undebuggability of Large
Floating-Point Computations in Science and Engineering

W. Kahan, Prof. Emeritus
Math. Dept., and

Elect. Eng. & Computer Sci. Dept.
Univ. of Calif. @ Berkeley

Prepared for the

Seminar on Scientific and Statistical Computing

4:30 pm., Thurs. 10 April 2014, Eckart 133

University of Chicago

This document is posted at

<www.eecs.berkeley.edu/~wkahan/B 0u1der.pdf>

.
For most details omitted here see

<www.eecs.berkeley.edu/~wkahan/B oul der.pdf>

and

<www.eecs.berkeley.edu/~wkahan/Mindless.pdf>

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 2/63

Desperately Needed Remedies for the Undebuggability of Large
Floating-Point Computations in Science and Engineering

Abstract:

How long does it take to either allay or confirm suspicions, should they arise, about the
accuracy of a computed result? Often diagnosis has been overtaken by the end of a
computing platform's service life. Diagnosis could be sped up by at least an order of
magnitude if more users and developers of numerical software knew enough to demand
the needed software tools. Almost all these have existed though not all of them together in
one place at one time. These tools cope with vulnerabilities peculiar to Floating-Point,
namely roundoff and arithmetic exceptions. Programming languages tend to turn
exceptions into branches which are prone to error. In particular, unanticipated events
deemed ERRORs are handled in obsolete ways inherited from the era of batch computing.
There are better ways. They would have prevented the crash of Air France #447 in June
2009, among other things.

This document has been posted at

<www.eecs.berkeley.edu/~wkahan/B 0u1der.pdf>

.
More details appear at

<…/Boul der.pdf>

,

<…/NeeDebug.pdf>

 and

<…/Mindless.pdf>

.
All these documents remain susceptible to revision.

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 3/63

“This … paper, by its very length, defends itself against the risk of being read.”

… attributed to Winston S. Churchill

To fit into its allotted time,

this paper’s oral presentation skips over most of the details.

It is intended to induce you to investigate those details.

“A fanatic is one who can’t change his mind and won’t change the subject.”

 … Winston S. Churchill (1874 - 1965)

 Am I a fanatic?

If so, you have been warned.

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 4/63

What is the incidence of Floating-Point computations of the worst kind,

wrong enough to mislead but not so wrong as is obviously wrong ?

Nobody knows. Nobody is keeping score.

Evidence exists implying an incidence rather greater than is generally believed.

Two Kinds of Evidence:

• Persistence in Software and in Programming Texts of numerically flawed formulas
 that have

withstood

 rather than

passed

 the

Test of Time

 . For example, …
 Naive solutions of quadratic equations; … of discretized differential equations

• Occasional Revelations of gross inaccuracies, in widely used and respected packages
like M

ATLAB

 and L

APACK

, caused by bugs lying hidden for years.

E.g

., …
Over 40 years of occasional

under

estimates, some severe, of matrices’ ranks.

Evidently, providers of numerical software need help to debug it; they need

abundant assistance from users.

How much debugging of numerical software is included in a chemist’s job-description?

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 5/63

Distinctions between users and providers of numerical software are blurred by developers
who incorporate, into their own software, modules developed by others.

e,g

., L

APACK

If providers expect users to help debug numerical software,
they (and we) must find ways to reduce the costs

in time and expertise
of investigating numerical results that arouse suspicions.

Later we shall see why the

earliest symptoms

 of hitherto unsuspected

gross inaccuracies

 that will befall our software at some

unknown innocuous data

are highly likely to be inaccuracies, at other data, barely bad enough to arouse suspicions.

How much can investigation of a suspect Floating-Point computation’s accuracy cost?

Often more than the computed result is worth.

Computers are now so cheap, most perform computations of which no one is worth very much:

Entertainment, Communications, Companionship, Embedded Controllers
are computers’ most prevalent and most remunerative uses;

not our scientific and engineering computations.

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 6/63

A Problem of Misperception in the Marketplace:

The software tools needed to reduce by orders of magnitude
the costs of debugging anomalous Floating-Point computations

have almost all existed, but not all in the same package,
and not in current software development systems.

Why not? Ignorance.

• The producers of software development systems are unaware that such
 tools could be produced, much less that there is a demand for them.

• The scientists and engineers who would benefit from such tools are
 hardly aware of them, much less that those tools should be requested.

Those tools have been described on my web pages. For more details about them
see

<…/Boulder.pdf>

 ,

<…/NeeDebug.pdf>

 and

<…/Mindless.pdf>

.

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 7/63

Computer scientists worldwide are working hard on schemes to debug
and verify software, especially in the context of parallel computation,

but practically none for Floating-Point software.
What is it about Floating-Point that repels Computer Scientists?

Floating-Point arithmetic usually approximates

Real

 arithmetic closely, but not always.

• What you see is not exactly what you get.
 What you get is not exactly what your program commanded.

Consequently what you get can be

Utterly Wrong

 without any of the usual suspects:

i.e

. no subtractive cancellation, no division, no vast number of rounded operations.

For a simple didactic example see

<www.eecs.berkeley.edu/~wkahan/WrongR.pdf>

• Worse, unlike

Correctness

 of non-numerical computer programs,

Accuracy

 of Floating-Pt. programs is

Not Transitive

 if composed.

This means that …
If program H(X) approximates function

h

(

x

) in all digits but its last, and
if program G(Y) approximates function

g

(

y

) in all digits but its last,
yet program F(X) := G(H(X)) may approximate function ƒ(

x

) :=

g

(

h

(

x

))

Utterly Wrongly

 over a large part of its domain.
Here is a simple didactic example, albeit contrived:

File: B0u1der

Desperately Needed Remedies …

 Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 8/63

h

(

x

) := exp(-

x

–4

) @

x

 > 1

;

g

(

y

) := 1

/4√-log(y) @ 0 < y < 1 ; ƒ(x) := g(h(x)) = x @ x > 1 .

ƒ(x) = x vs. G(H((x)) = (-log(exp(-x –4))) -1/4

This is explained in pp. 24 - 25 of my posting <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> .

4000 5000 6000 7000 8000 9000 10000 11000 12000
4000

5000

6000

7000

8000

9000

10000

11000

12000

X = [4000 : 10 : 11580]

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 9/63

• How high is the incidence of misleadingly inaccurate computed results?
We cannot know. Nobody is keeping score.

• What evidence suggests that it’s higher than generally believed?

Two kinds of evidence, Revelation and Persistence :

• Revelation, after long use, that a widely trusted program produces, for
otherwise innocuous input data, results significantly more inaccurate than
previously believed.

• Persistence of numerically naive and thus vulnerable formulas in the source-
code of some programs, and in some published papers and textbooks.

A typical example of naiveté too common in programming textbooks:

The zeros z of a real quadratic α·z2 – 2β·z + γ , assuming α ≠ 0 & γ ≠ 0 , are

z1 := (β + √(β2 – α·γ))/α and z2 := (β – √(β2 – α·γ))/α naively.

Numerically more reliable (absent over/underflow) formulas for the zeros are

δ := β2 – α·γ ; if δ < 0 then { z1 := β/α + ı√–δ/α ; z2 := β/α – ı√–δ/α }

else { ζ := β + copysign(β, √δ) ; z1 := ζ/α ; z2 := γ/ζ }.

Do you see why? Where are the formulas’ singularities? What happens near them?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 10/63

• After long use, a widely trusted program is discovered to have produced, for otherwise
 innocuous input data, results significantly more inaccurate than previously believed.
 •
The Vancouver Stock Exchange maintained an index of (mainly mining) stock prices.

On Fri. evening 25 Nov. 1983 the index ended at 524.811 .
On Mon. morning 28 Nov. 1983 the index began at 1098.892 ; was it correct?

Stock prices didn’t rise so much over a weekend. Roundoff had accumulated over years.
 •
Given m-by-n matrix B and a small tolerance τ , we seek the least “rank” r for which

A fast “Pivoting QR” factorization had been used widely for over forty years despite
that it sometimes over-estimated r a little. Moderate over-estimates cause little harm.

In 2008 otherwise innocuous matrices B were discovered for which roundoff caused r
to be under-estimated severely enough that significant data was missed, and some control
systems misbehaved. Since then the program’s defect has been repaired, we hope.

m

n r
r

B Q
R

≈ within ±τ .
·

m

n When rank r is small, this
factorization reveals crucial
structural information used
to analyze Big Data and to
design control systems, etc.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 11/63

Of 24 Sig. Bits Carried, How Many are Correct in EDSAC’s B(x) ?

Unnoticed for two years, accuracy spiked down wherever B(x) came near (not exactly) a small
odd integer multiple of a power of 1/2 . The smaller the integer, the wider and deeper the spike,
down to near half the sig. bits lost. Such arguments x , common in practice, were missed in tests.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

14

16

18

20

22

24

C
or

re
ct

 S
ig

. B
its

 in
 B

(x
)

<- Ideal B(x) = arccos(x)/pi for 1 > x > -1 ->

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 12/63

Roundoff-Induced Anomalies Evade Expert Searches for Too Long:

• PATRIOT Anti-Missile Missiles missed a SCUD that hit a barracks in the Gulf War.

• From 1988 to 1998, MATLAB ’s built-in function round(x) , that rounds x to a
nearest integer-valued floating-point number, rounded all sufficiently big odd
integers to the next bigger even integer in PC-MATLAB s’ 3.5 and 4.2. Not Macs.

• For more than a decade, MATLAB has been miscomputing gcd(3, 2^80) = 3 ,
 gcd(28059810762433, 2^15) = 28059810762433 , lcm(3, 2^80) = 2^80 ,
 lcm(28059810762433, 2^15) = 2^15 , and many others, with no warning.

Anomalies due to Over/Underflow can evade expert searches for too long too.

In 2010, excessive inaccuracies were discovered in LAPACK’s programs _LARFP and
traced to underflows caused by the steps taken to avoid overflows. Whether the revisions
to those programs promulgated subsequently are fully satisfactory remains to be seen.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 13/63

What exposes a misjudgment due to rounding errors ?
• A calamity severe enough to bring about an investigation, and investigators thorough

and skilled enough to diagnose correctly that roundoff was the cause (if it was).
 This combination appears to have occurred extremely rarely, if at all.

• Suspicions aroused by computed results different enough from one’s expectations.
 Someone would have to be exceptionally observant, experienced and diligent.

• Discordant results of recomputations using different arithmetics or different methods.
 What would induce someone to go to the expense of such a recomputation?

In the mid 1990s a program written at NASA Ames predicted deflections under load of an airframe
for a supersonic transport that turned out destined never to be built. Though intended for CRAY-I and
CRAY-2 supercomputers, the program was developed on SGI Workstations serving as terminals.

When a problem with a mesh coarse enough to fit in the workstation was run on all three
machines, three results emerged disagreeing in their third sig. dec. This had ominous
implications for the CRAYs’ results from realistic problems with much finer meshes.

I traced the divergence to the CRAYs’ idiosyncratic biased roundings. Adding iterative refinement
to the program, a minor change, rendered the divergence tolerable. To rid the program of its worst
errors would have required a major change; see my web page’s <.../Math128/FloTrik.pdf> .

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 14/63

• What if the user of a widely trusted program doesn’t know that its results, for some
 otherwise innocuous input data, are significantly more inaccurate than the user believes?

This almost happened to a graduate student of aeronautical engineering in the early 1960s
when his scheme to enhance lift for wings of Short-Takeoff-and-Landing aircraft seemed
to suffer from abrupt onset of stall, according to his computations on an IBM 7090.

Abrupt Stall of Lift Enhanced by Blown Slots ?

Abrupt stall “caused” by inaccurate LOG in Single, by lack of guard digit in Double precision.

Only after his was one of several programs chosen to test a new LOG’s accuracy did he
learn that the abrupt stall was entirely an artifact of roundoff. He resuscitated his research.
For details see pp. 23 - 26 of <www.eecs.berkeley.edu/~wkahan/NeeDebug.pdf> .

Lift /
Drag

Wing’s Angle
 of Attack

Intended — Gradual Stall

Single Precision
Abrupt Stall

Double Precision
Abrupt Stall

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 15/63

Why are roundoff-induced misjudgments, formerly rare,
likely to become rather less rare?

Computers’ memories have become HUGE because memory has become CHEAP, and
more so are vast numbers of Graphics Processors produced & sold for entertainment.

But moving data through the memory system has become costly in TIME and ENERGY.
4-byte-wide float s cost half as much as 8-byte-wide double s .

Graphics Processors are optimized for float s.

So computations formerly performed in double are being converted to float instead.
Why not ?

Arithmetic precision of double : 53 sig. bits ~ 16 sig.dec. ε ≈ 2–52

 of float : 24 sig. bits ~ 7 sig.dec. ε ≈ 2–23

7 correct sig. dec. is more than adequate accuracy
 for almost all computed results used by scientists and engineers.

 But what you see is not always what you get.

A computation formerly carrying 16 sig.dec. could afford to lose 10 and still yield 6 .
 How many sig. dec. can that computation now carrying 7 afford to lose?

 Most computational methods lose a number of sig.dec. independent of how many were carried.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 16/63

What exposes a misjudgment due to rounding errors ?
It’s unlikely to be exposed.

Why must such misjudgments be happening?
Programs that depend upon some Floating-Point computation are being written by far
more people than take a course in Numerical Analysis with enough Error-Analysis to
sensitize them to the risks inherent in roundoff, especially in float computations.

“Acquiescing to rounded arithmetic places you in a state of sin.” — D.H. Lehmer

People clever and knowledgeable in their own domains of science, engineering, statistics,
finance, medicine, etc., are naively using in their programs formulas mathematically
correct but numerically vulnerable, instead of numerically robust but unobvious formulas.

Many such formulas are posted on my web pages; the next page exhibits a lengthy list
taken mostly from p. 22 of …/NeeDebug.pdf .

We may depend unwittingly upon some of these clever people’s programs via the world-
wide-web, the cloud, medical equipment, navigational apparatus, etc. How can we
defend ourselves against numerical naiveté, or at least enhance the likelihood that their
programs’ numerical vulnerabilities will be exposed, preferably before too late?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 17/63

Additional relevant postings on <www.cs.berkeley.edu/~wkahan/...>

Textbook formulas withstand, not pass, the Test of Time: <.../Triangle.pdf>

Simple geometrical miscalculations with cross-products: <.../MathH110/Cross.pdf>

Bad solutions for good equations <.../Math128/FailMode.pdf>

Lots about Iterative Refinement <.../p325-demmel.pdf>

Eigensystem refinement <.../Math128/Refineig.pdf>

General symmetric eigensystem refinement <.../Math128/GnSymEig.pdf>

Refine finite-differenced boundary-value problem <.../Math128/FloTrik.pdf>
<.../Cantilever.pdf>

Discriminants of quadratics <.../Qdrtc.pdf>

Roundoff creates spurious roots <.../Math128/SOLVEkey.pdf>

Roundoff causes mysterious overflows <.../CS279/DHBLNG.pdf>

MATLAB ’s loss is nobody’s gain <.../MxMulEps.pdf>

“Business Decisions” can undermine numerical integrity <.../ARITH_17.pdf>

The improbability of probabilistic assessments of roundoff <.../improber.pdf>

The futility of mindlessly automatic error-analysis <.../Mindless.pdf>

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 18/63

How necessary is the investigation of every suspicious computed
result as possibly a harbinger of substantially worse to come?

… if not symptomatic of a failure of some physical theory —— a potential Nobel Prize !

“Les doutes sont fâcheux plus que toute autre chose.”
(Doubts cause more trouble than the worst truths.)
Le Misanthrope III.v (1666) by Molière (1622 - 1673)

After we have seen the most likely causes of a catastrophic numerical inaccuracy,
we shall see why its possibility is most likely to be exposed by incidents that raise

suspicions about computed results.

That is why suspicious computed results must be investigated.

To justify this necessity, we must understand what can turn almost infinitesimal rounding
errors into grossly wrong results:

Perturbations get Amplified by Singularities Near the Data.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 19/63

How Singularities Near Data Amplify Perturbations of that Data.

Perturbed data x → x ± ∆x
perturbs ƒ(x) → ƒ(x±∆x) = ƒ(x) ± ∆ƒ(x) ≈ ƒ(x) ± ƒ̀ (x)·∆x .

∆ƒ(x) ≈ ƒ̀ (x)·∆x can be huge when ∆x is tiny only if derivative ƒ̀(x) is gargantuan.

This can happen only if x is near enough to a Singularity of ƒ where its derivative
 ƒ̀ = ∞ .

Let’s call the locus (point, curve, surface, hypersurface, …) of data x whereon ƒ̀(x) = ∞
the “Pejorative Surface” of function ƒ in its domain-space of data.

For example …
Data Points Computed Result Data on a Pejorative Surface Threshold Data

Matrices Inverse Cone of Singular Matrices Not too “Ill-Conditioned”
Matrices Eigensystem … with Degenerate Eigensystems Not too near Degenerate
Polynomials Zeros … with Repeated Zeros Not too near repeated
4 Vertices Tetrahedron’s Volume Collapsed Tetrahedra Not too near collapse
Diff’l Equ’n Trajectory … with boundary-layer singularity Not too “Stiff”

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 20/63

All Accuracy can be Lost at Uncertain Data on a Pejorative Surface

ƒ(x) ’s accuracy is adequate only at data x far enough from Pejorative Surfaces.

Suppose the data’s “Precision” bounds its tiny uncertainty ∆x thus: δξ ≥ ||∆x|| .
Then ƒ(x ± ∆x) inherits uncertainty δξ·||ƒ̀(x)|| ≥ ||∆ƒ|| , roughly, from uncertain data.

How fast does ||ƒ`(x)|| → ∞ as x → (a Pejorative Surface) ?

Let δπ(x) := (distance from x to a nearest Pejorative Surface) . Typically (not always !)
||ƒ̀ (x)|| is roughly proportional to 1/δπ(x) while δπ(x) is small enough.

Uncertainty δξ ≥ ||∆x|| causes ƒ(x ± ∆x) to “Lose” to the data’s uncertainty roughly
 Const. – log(δπ(x)) + log(δξ) dec. digits.

Pejorative Surface

Threshold of
(In)Adequate Accuracy

Data-Points x

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 21/63

Rounding Errors often resemble Uncertain Data
Suppose program F(X) is intended to compute ƒ(x) but actually F(X) = f(X, r) in
which column r represents the rounding errors in F and f(x, o) = ƒ(x) . The precision of
the arithmetic imposes a bound like ρ > ||r || analogous to the uncertainty δξ used above.
To simplify exposition, assume the data X we have equals the data x we wish we had.

Let fr(x) := ∂f(x, r)/∂r |r=o . Because ρ is so tiny, program F(x) actually computes

f(x, r) ≈ f(x, o) + fr(x)·r = ƒ(x) + fr(x)·r , so ||F(x) – ƒ(x)|| ≈ ||fr(x)·r || < ||fr(x)||·ρ .

Error F(x) – ƒ(x) can be huge when r is tiny only if derivative fr is gargantuan, which

can happen only if x is near enough to a Singularity of f where its derivative fr = ∞ .

Let’s call the locus (point, curve, surface, hypersurface, …) of data x whereon fr(x) = ∞

the “Pejorative Surface” of program F in its domain-space of data. Program F ’s
pejorative surface almost always contains function ƒ ’s.

Numerically bad things happen when the program’s pejorative surface has an Extra Leaf
extending beyond the function’s. Then at innocuous data x too near that Extra Leaf of
Pejorative Surface the program F(x) produces undeservedly badly inaccurate results
though ƒ(x) is unexceptional.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 22/63

All or Most Accuracy is Lost if Data lie on a “Pejorative” Surface

F(x) is accurate enough only at data x far enough from all pejorative surfaces.

An opportunity to discover whether the program’s pejorative surface has an Extra Leaf
arises when F(x) is inaccurate enough to arouse suspicion. Does F(x) deserve its
inaccuracy because x is “Ill-Conditioned” — too close to the Pejorative Surface of ƒ ?
Or is the inaccuracy undeserved because innocuous data x is unlucky — too close to a
hitherto unsuspected Extra Leaf ? These important questions are difficult to resolve.

Why is their resolution necessary?

A suspicious result may be the first and only warning that a defective program
will produce a badly misleading result from otherwise innocuous data.

Threshold of
(In)Adequate Accuracy

Data-Points x

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ?x ?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 23/63

A computation has produced a suspicious result.
• Is it inaccurate because the data is “Ill-Conditioned” ? OR …
• Is the data innocuous except that the program dislikes it?

We must find out lest later we accept unwittingly an utterly inaccurate result at some other
innocuous data much closer to the program’s Extra Leaf of its Pejorative Surface,

 of whose existence we had chosen to remain unaware.

Two choices present themselves:
• Enhance the likelihood of these difficult questions’ resolution by supplying tools to

reduce by orders of magnitude the cost in talent and time to resolve them. OR …

• Reduce by orders of magnitude the likelihood that these questions will arise or matter.

If feasible, this latter choice is by far the more humane and more likely to succeed. It is
accomplished by changing programming languages to carry BY DEFAULT (except where
the program demands otherwise explicitly) extravagantly more Floating-Point precision
than anyone is likely to think necessary. IEEE 754 (2008) Quadruple almost always
suffices, as does COBOL’s Comp format, both with at least 33 sig.dec. of precision.

Higher precision ⇒ Smaller roundoff ρ ⇒ smaller volume around any Extra Leaf,
if there is one.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 24/63

Higher Precision ⇒ Smaller ρ ⇒ smaller volume around the Extra Leaf, if any:

Usually the hazardous volume around the Extra Leaf shrinks in proportion with ρ .

Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ?

x ?

Smaller Threshold of
(In)Adequate Accuracy

Data-Points

Pejorative Surface of F and ƒ
Extra Leaf of the
Pejorative surface of F

x ?

x ?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 25/63

Why is 16-byte-wide IEEE 754 (2008) Quadruple most likely extravagant enough?

Although the foregoing relations among arithmetic precision (ρ) , distance δπ(x) to a
singularity, and consequent loss of perhaps all accuracy in F(x) are Typical, the next
most common relations predict a loss of at most about half the sig.dec. carried by the
arithmetic no matter how near data x comes to a Pejorative Surface.

Some Examples:
• Nearly redundant Least-Squares problems.
• Nearly double zeros of polynomials, like the quadratic mentioned above.
• Most locations of extrema.
• Small angles between subspaces; see my web page’s <.../Math128/NearstQ.pdf> .
• EDSAC’s arccos described above. (Its Pejorative Surface looks like coarse sandpaper.)
• The financial Future Value function FV(n, i) := ((1 + i)n – 1)/i for interest rate i as a

fraction, and integer n compounding periods, but only if FV is computed thus:
Presubstitute n for 0/0 ; FV := ((1 + i)n – 1)/((1 + i) – 1) . Preserve Parentheses!

(Because FV is the divided difference of a polynomial, it can also be computed quickly
 but unobviously without a division, and without losing more than a few sig.dec.)

Ample experience (IBM mainframes, & with others’ compilers) implies that arithmetic
precision is usually extravagant enough if it is somewhat more than twice as wide as the
data’s and the desired result’s. Often that shrunken hazardous volume contains no data.

16-byte Quad has 113 sig.bits; 8-byte Double has 53; 4-byte Float has 24 .

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 26/63

What earlier experience supports carrying somewhat more precision in the
arithmetic than twice the precision carried in the data and available for the
result to vastly reduce embarrassment due to roundoff-induced anomalies?

During the 1970s, the original Kernighan-Ritchie C language developed for the DEC
PDP-11 evaluated all Floating-Point expressions in 8-byte wide Double (56 sig. bits)
no matter whether variables were stored as Doubles or as 4-byte Floats (24 sig. bits).
They did so because of peculiarities of the PDP-11 architecture. At the time, almost all
data and results on “Minicomputers” like the PDP-11 were 4-byte Floats.

Serendipitously, all Floating-Point computations in C turned out much more accurate
and reliable than when programmed in FORTRAN, which must round every arithmetic
operation to the precision of its one or two operand(s), or the wider operand if different.

Alas, before this serendipity could be appreciated by any but a very few error-analysts, it
was ended in the early 1980s by the C-standards committee (ANSI X3-J11) to placate
vendors of CDC 7600 & Cybers, Cray X-MP/Y-MP, and CRAY I & II supercomputers.
Now most C compilers evaluate Floating-Point FORTRANnishly and eschew Quad.

Experience also tells us that not everyone likes Quad to be the default. It
can double (or worse) the computation’s cost in TIME and ENERGY.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 27/63

Widespread practices resist change stubbornly. Default evaluation in Quad,
the humane option, is unlikely to be adopted widely. In consequence, at
least for the forseeable future, the other option may be our only option:

• Enhance the likelihood of these difficult questions’ resolution by supplying tools
to reduce by orders of magnitude the cost in talent and time to resolve them.

What tools?
Given a program F and data x at which F(x) has aroused suspicions for some reason,
we hope to find the smallest part (subprogram, block, statement, …) of F that also
arouses suspicions so that mathematical attention may be focussed upon it as a possible
cause of the suspicious (mis)behavior of F(x) . Data x is precious; our tools must not
change data lest the change chase away the program’s suspicious (mis)behavior.

Our tools would help modify program F so as to detect hypersensitivity
to roundoff by rerunning F(x) a few times with different roundings —

• different in Direction, • different in Precision.

We hope a few reruns will expose a small part of F responsible for its misbehavior; this
happens almost always. (It cannot happen in all cases; contrived exceptions exist.) I put
such tools on my old computers; for details: <…/Boulder.pdf> & <…/Mindless.pdf> .

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 28/63

How Well does Recomputation with Redirected Rounding Work?
It works astonishingly well at exposing hypersensitivity to roundoff despite that no
mindless tool can do so infallibly. Rerunning with Redirected Roundings works on ten
examples in <…/Mindless.pdf> , and on all the examples appearing in the lengthy list on
p. 22 above. A typical example comes from the section titled “Difficult Eigenproblems”
in <www.eecs.berkeley.edu/~wkahan/MathH110/HilbMats.pdf> .

The data consist of symmetric positive definite integer matrices A and H . Sought is a
column v of the eigenvalues λ that satisfy A·b = λ·H·b for some b ≠ o . Three such
columns get computed:
• One column u ≈ v is computed by MATLAB ’s eig(A, H) .
• Another column w ≈ v is computed by MATLAB ’s eig(X*A*X, X*H*X) where

X is obtained from the identity matrix by reversing its rows.
• A third column v is obtained from the squared singular values of a bidiagonal matrix

 derived unobviously from the given A and H because both are Hilbert
 matrices. (Rarely would a third accurate column v be computable so quickly.)

In the absence of roundoff we should get u = v = w , but the three computed (& sorted)
columns disagree in their leading digits despite 8-byte Double precision arithmetic. …

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 29/63

Columns u, v and w were computed with arithmetic rounded the default way To
Nearest. Column ∆uo = uo – u shows how u changed when computed with rounding

redirected Toward Zero. Similarly ∆u↑ shows how rounding Up changed u , and ∆u↓

is for rounding Down. Likewise for ∆v… and ∆w… , all computed at full speed.

Rerunning each computation in three rounding modes revealed that v is practically
unperturbed by redirected roundoff, but it perturbs u and w by about as much as they
differ from v and each other. Afterwards an error-analysis confirmed v ’s accuracy and
explained why u and w must be inaccurate. Big payoff for a small investment of time.

u ∆uo ∆u↑ ∆u↓ v ∆vo ∆v↑ ∆v↓ w ∆wo ∆w↑ ∆w↓
 0.255 -0.007 -0.004 -0.389 0.2095058938478430 -3e-16 3e-16 -3e-16 0.247 -0.029 0.002 -0.001
 0.386 -0.060 -0.006 -0.136 0.3239813175038243 -9e-16 7e-16 -9e-16 0.377 -0.101 0.001 -0.000
 0.512 -0.133 -0.006 -0.133 0.4391226809250292 -12e-16 12e-16 -12e-16 0.502 -0.137 0.001 0.001
 0.631 -0.126 -0.006 -0.126 0.5528261852845718 -19e-16 22e-16 -19e-16 0.622 -0.129 0.002 0.002
 0.740 -0.114 -0.005 -0.115 0.6612493756197405 -22e-16 26e-16 -22e-16 0.731 -0.115 0.003 0.004
 0.833 -0.098 -0.004 -0.099 0.7603044306722687 -26e-16 36e-16 -26e-16 0.825 -0.098 0.003 0.005
 0.908 -0.078 -0.002 -0.079 0.8461150279850096 -33e-16 36e-16 -33e-16 0.903 -0.077 0.003 0.005
 0.962 -0.056 -0.001 -0.056 0.9152685078254560 -39e-16 40e-16 -39e-16 0.959 -0.055 -0.052 0.003
 0.993 -0.031 -0.000 -0.032 0.9649935940457747 -40e-16 42e-16 -40e-16 0.992 -0.032 -0.031 0.001
 5.724 -4.732 -3.016 -4.732 0.9932996529571477 -41e-16 44e-16 -41e-16 1.151 -0.159 -0.159 -0.005

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 30/63

Redirected Rounding’s Implementation Challenges
At first sight, Redirected Roundings appear to be implementable via a pre-processor that
rewrites a chosen part of the text of the program being debugged and then recompiles it.

It’s not always that easy.

Redirected Rounding is outlawed by JAVA and some other programming languages.

The most widespread computers redirect rounding, when they can, from a Control
Register treated by most languages and compilers as a global variable, alas. Some other
computers redirect roundings from op-code bits that must be reloaded to change. In
consequence, the debugger must manage precompiled modules like DLLs appropriately.

Many optimizing compilers achieve concurrency by keeping pipelines filled; to do so they
interleave instructions from otherwise disjoint blocks of source-code, and “Inline” the
Math. Library’s functions. Then the compiler must mark inlined operations so that the
debugger can be told whether to redirect their roundings.

For more see §14 of <www.eecs.berkeley.edu/~wkahan/Mindless.pdf> .

Redirected Rounding’s goal may be easier to reach with a different software tool:

Recomputation with Higher Precision
It doesn’t have to be much higher.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 31/63

A Tool for (Slower) Recomputation with Higher Precision
This tool would ease the task of running two programs F(x) and FF(x) in lock-step. Here
FF is derived from F by promoting all Floating-Point variables and some (probably not
all) constants to a higher precision. Both programs could start with the same data x .

The programs are NOT intended to be run forward in lock-step until they first diverge.
That would be pointless because so many numerical processes are forward-unstable but backward-
stable; this means that small perturbations like roundoff can deflect the path of a computation utterly
without changing its destination significantly. For instance, the path of Gaussian Elimination with
row-exchanges (“Pivoting”) can be deflected by an otherwise inconsequential rounding error if two
candidates for pivots in the same column are almost equal. Deflection occurs often in eigensystem
calculations; roundoff can change the order in which eigenvalues are revealed without much change
to computed eigenvalues.

DiagonalsAll the symmetric
matrices in a sheet
have the same
eigenvalues.

Adjacent
sheets differ
by practically
negligible
roundoff.

Paths followed during a program’s
computation of eigenvalues with …

… no rounding errors

… the usual rounding errors

… and altered rounding errors

•

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 32/63

Instead of running F and FF in lock-step from their beginnings, the user of this tool will
choose places in program F that I shall call “stages”. He will run F(x) up to a chosen
stage and then copy the values of all the variables alive at that stage exactly to their
counterparts in FF ; then run FF to its end to see how much its result disagrees with F(x) .
If they disagree too much, a later stage will be chosen; if they agree closely, an earlier
stage will be chosen. With luck two adjacent stages will straddle a short section of F that
causes F(x) and FF(x) to disagree too much. This section attracts focussed suspicion.

Keep in mind that suspicion is not yet conviction, which requires an error-analysis.

x F(x)A B C D E

x FF(x)AA BB CC DD EE

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 33/63

How Well does Recomputation with Higher Precision Work?
It almost always works, even if no short segment between stages of F can be blamed for
a substantial disagreement between F(x) and FF(x) , as is the case for Muller’s Example.
If all of program F has to be replaced by a better scheme, this fact is well worth knowing.

Copying to FF all the values of variables in F alive at a stage can be extremely tedious
without help from a software tool. And help is needed to keep track of all the technical
decisions that cannot be taken out of the tool-user’s hands. For instance …

• Which functions in F from its Math Library (log, cos, …) should not be replaced in
 FF by their higher precision counterparts ?

• Which literal constants in F should not be replaced in FF by their higher precision
counterparts ? Which tolerances for terminating iterations should be replaced?

• Which conditional branches in F should FF follow regardless of the condition?

• What is to be done for FF about software modules in F obtained from vendors pre-
compiled without source-code ?

A tool to help recompute with higher precision is more interesting than first appears.

And after it works well it invites an error-analysis; learn how from N. Higham’s book [2002].

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 34/63

What about other schemes like …
• Interval Arithmetic
• Significance Arithmetic (used by Mathematica among others)
• Repeated runs with Random Rounding (cf. Vignes’ CESTAC, CADNA)
• Searches for Singularities by Theorem Provers & Computerized Algebra
• … ?

So far, all such schemes lack at least one of these three requirements …

<1>: Almost certainly issues a warning when a computation is too inaccurate.
Otherwise the scheme is too dangerously deceptive to use routinely.

<2>: Issues undeserved warnings rarely enough to be tolerable.
Recall The Little Boy who cried “Wolf ! ” and was subsequently ignored.

<3>: Runs at most several times slower than the original program requiring diagnosis.
What runs too slowly will not get run.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 35/63

Summary of the Story So Far:
I claim that scientists and engineers are almost all unaware …

• … of how high is the incidence of misleadingly inaccurate computed results.

• … of how necessary is the investigation of every suspicious computed result as a
 potential harbinger of substantially worse to come.

• … of the potential availability of software tools that would reduce those investigations’
 costs in expertise and time by orders of magnitude.

• … that these tools will remain unavailable unless producers of software development
 systems (languages, compilers, debuggers) know these tools are in demand.

• What software tools would reduce those investigations’ costs, in expertise and time,
by Orders of Magnitude ? How do I know?

 On a few ancient computers I implemented and enjoy most of the tools I describe.

• If almost nobody (but me) asks for such tools,
the demand for them will be presumed inadequate to pay for their development.

Computer scientists and programmers already have lots of other fish to fry.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 36/63

 USS Yorktown (CG-48) Aegis Guided Missile Cruiser, 1984 — 2004

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 37/63

And now for something entirely different …

Floating-Point Exception-Handling

Conflicting Terminology:
Some programming languages, like Java, use “exception” for the policy, object or
action, like a trap, that is generated by a perhaps unusual but usually anticipated event like
a Time-Out, Division-by-Zero, End-of-File, or an attempt to Dereference a Null Pointer.

Here I follow IEEE 754’s slightly ambiguous use of “Floating-Point Exception”
for a class of events or one of them. There are five classes:

INVALID OPERATION like √–5.0 in a REAL arithmetic context
DIVISION-BY-ZERO actually creation of ±∞ from finite operand(s)
OVERFLOW an operation’s finite result is too big
UNDERFLOW an operations nonzero result is too close to 0
INEXACT an operation’s result has to be rounded or altered

Each exception generates, by Default (unless the program demands otherwise),
a value Presubstituted for the exceptional operation’s result, continues the
program’s execution and, as a side-effect, signals the event by raising a ƒlag
which the program can sense later, or (as happens most often) ignore.

When put forth in 1977, Presubstitution departed radically from previous practice.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 38/63

Floating-Point Exceptions turn into Errors
ONLY when they are Handled Badly.

Tradition has tended to conflate “Exception” with “Error” and handle both via disruptions
of control, either aborting execution or jumping/trapping to a prescribed handler. …

FORTRAN: Abort, showing an Error-Number and, perhaps, a traceback.
Since 1990, FORTRAN has offered a little support for IEEE 754’s defaults and flags.

BASIC: ON ERROR GOTO … ; ON ERROR GOSUB … … to a handler.

C : setjmp/longjmp … to a handler; ERRNO; abort.
C99 has let compiler writers choose whether to support IEEE 754’s defaults and flags.

ADA: Arithmetic Error Falls Through to a handler or the caller, or aborts.

JAVA : try/throw/catch/finally; abort showing error-message and traceback.
JAVA has incorporated IEEE 754’s defaults but outlawed its flags; this is dangerous !

These disruptions of control are appropriate when a programmer is debugging his own code
into which no other provision to handle the exception has been introduced yet. Then the
occurence of the exception may well be an error; an eventuality may have been overlooked.

Otherwise IEEE Standard 754 disallows these disruptions unless a program(mer) asks for
one explicitly. They must not be the default for any Floating-Point Exception-class.

Why not ?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 39/63

Why must a Floating-Point Exception’s default not disrupt control?

As we shall see, …

• Disruptions of control are Error-Prone when they may have more than one cause.

• Disruptions of control hinder techniques for formal validations of programs.

• IEEE 754’s presubstitutions and flags seem easier (although not easy) ways
to cope with Floating-point Exceptions, especially by programmers who
incorporate other programmers’ subprograms into their own programs.

• Disruptions of control can be perilous; but so can continued execution after some
exceptions. The mitigation of this dilemma requires Retrospective Diagnostics.

Error-Prone?
Prof. Westley Weimer’s PhD. thesis, composed at U.C. Berkeley, exposed hundreds of
erroneous uses of try/throw/catch/finally in a few million lines of non-numerical code.
Mistakes were likeliest in scopes where two or more kinds of exceptions may be thrown.

See <www.cs.virginia.edu/~weimer> .

Floating-Point is probably more prone to error because every operation is
susceptible, unless proved otherwise, to more than one kind of Exception.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 40/63

Every Floating-Point operation is susceptible, unless proved otherwise, to more than one
kind of exception. A program with many operations could enter a handler from any one of
them, and for any of a few kinds of exception, and quite possibly unanticipatedly.

A program that handles Floating-point Exceptions by disruptions of
control resembles a game …

 … with an important difference …

 Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 41/63

 … with an important difference, for Floating-point Exceptions, …

None or else too many of the origins of jumps into an Exception handler
are visible in the program’s source-text. This hinders its formal validation.

 Invisible Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 42/63

Among programming languages, the predominant policy for handling exceptions,
including Floating-Point exceptions, either disrupts control or else ignores them.

UNDERFLOW, INEXACT are almost always ignored.

INVALID OPERATION, DIVIDE-BY-ZERO, OVERFLOW would usually disrupt control.

A policy that predisposes every unanticipated Exception
to disrupt control can have very bad consequences. e.g. …

• Numerical searches for roots or extrema abandoned prematurely

• The missile-cruiser USS Yorktown paralyzed for 2 hrs. in 1997

• The Ariane 5 rocket blown up in 1996

• Air France #447 crashed in 2009

Let’s look into two examples …

The others are discussed in <…/Boul der.pdf> .

3
4

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 43/63

A policy that aborts execution as soon as a severe Exception occurs can also

Prematurely Abort a Search :
Suppose a program seaches for an object Z that satisfies some condition upon ƒ(Z) .
e.g.,

• Locate a Zero Z of ƒ(x) , where ƒ(Z) = 0 , or
• Locate a Maximum Z of ƒ(x) , where ƒ(Z) = maxx ƒ(x) .

How can the search’s trial-arguments x be restricted to the domain of ƒ if its boundary is
unknown? Is this boundary easier to find than whatever Z about ƒ is to be sought?

Example:
 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3) except shoe(0) := +∞ .

We seek a root Z > 0 of the equation shoe(Z) = 0 if such a root exists. (We don’t know.)
We know x = 0.5 lies in shoe’s domain, but (pretend) we don’t know its boundary.

Does your rootfinder find Z ? Or does it persuade you that Z probably does not exist ?

Try, say, each of 19 initial guesses x = 0.05, 0.1, 0.15, 0.2, …, 0.5, …, 0.9, 0.95 .

 fzero in MATLAB 6.5 on a PC said it cannot find a root near any one of them.
 root in MathCAD 3.11 on an old Mac diverged, or converged to a huge complex no.

Why did [SOLV] on HP-18C, 19C and 28C handheld calculators find what they didn’t ?

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 44/63

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

If no positive Z in shoe(x) ’s domain satisfied shoe(Z) = 0 ,
then the SHOE would leak at its toe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

X

 s
ho

e(
 X

)

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 45/63

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

The HP-28C found the root Z = 0.999906012413 from each of those 19 first guesses.

What did the calculator know/do that the computers didn’t ? … Defer Judgment .

See P.J. McClellan [1987] I think some Casio calculators too may know how to do it.

0.9995 0.9996 0.9997 0.9998 0.9999 1 1.0001
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

X

 s
ho

e(
 X

)

Notice the 1000-fold
change in the scale
of the x - axis.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 46/63

Air France #447 (Airbus 330) lost 1 June 2009
Modern commercial and military jet aircraft achieve their efficiencies only because they fly
under control of computers that manage control surfaces (ailerons, elevators, rudder) and
throttle. Only auto-pilot computers have the stamina to stay “on the razor’s edge” of
optimal altitude, speed, and an angle of attack barely short of an Abrupt Stall. cf. p.14

35000 ft. over the Atlantic about 1000 mi. NE of Rio de Janeiro, AF#447 flew through a mild
thunderstorm into one so violent that its super-cooled moisture condensed on and blocked all
three Pitot Tubes. They could no longer sense airspeed. Bereft of consistent airspeed data, the
computers relinquished command of throttles and control surfaces to the pilots with a notice that
did not explain why. The three pilots struggled for perhaps ten seconds too long to understand
why the computers had disengaged, so the aircraft stalled at too steep an angle of attack before
they could institute the standard recovery procedure. Three minutes later, AF#447 pancaked
into the ocean killing all 228 aboard. The computers had abandoned AF#447 too soon.
See <www.bea.aero/fr/enquetes/vol.a.point.enquete.af447.27mai2011.en.pdf>, NOVA6207 from PBS, and
<www.aviationweek.com/aw/jsp_includes/articlePrint.jsp?headLine=High-Altitude%20Upset%20Recovery&storyID=news/bca0711p2.xml>

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 47/63

A Board of Inquiry has blamed the crash posthumously upon the younger co-pilot.
The contribution of the autopilot’s software to the crash has been overlooked.

When the auto-pilot disengaged, its error-message to the co-pilots said “Invalid Data”.
It should have said “Airspeed Inconsistent with Maintenance of Altitude”, but didn’t.

With this crucial information, the co-pilots would have deduced what to do immediately.

Instead, they didn’t know which instruments to (dis)trust. Flying in pitch-black rough air,
they could see no external references, could not feel whether the aircraft was falling. They
could not know whether to trust repeated loud STALL! warnings. Unable to trust the
altimeters, the younger co-pilot thought trying to climb was better than allowing descent.

He was mistaken. Raising the aircraft’s nose caused the stall.

After about a minute, as AF #447 fell through 20000 ft., the ice melted and the pitot
tubes delivered correct airspeeds. But the disengaged autopilot’s software was no longer
monitoring the diverse sensors of airspeed, altitude, attitude, etc., so the co-pilots were
not notified that the “Invalid Data” condition had lapsed. Had they been so notified, they
would have regained trust in their instruments, heeded the STALL! warning, and saved
the aircraft. Instead, just as they were emerging from the thrall of confusion, they crashed.

Can you deduce what conventions programming languages should
impose to reduce the risk of calamities like AF #447’s crash?

 <…/Boul der.pdf> offers some suggestions.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 48/63

Naval embarrassment (Yorktown).

Half a billion dollars lost (Ariane V).

228 lives lost (AF #447).
What more will it take to persuade the computing industry

and particularly the arbiters of taste and fashion in programming languages

to reconsider whether an abortion policy inherited from the 1960s
era of Batch Computing should be the only default response to

unanticipated exceptions ?

Though a policy of continued execution after them may well pose
a difficult question for the programmer,

 especially where Embedded Systems are concerned,

who else is better equipped to incur the obligation to answer it?

No program should be declared complete until it specifies what it will return to its caller by
default if an unanticipated event deemed an ERROR causes the program’s termination.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 49/63

Damned if you do and damned if you don’t

Defer Judgment
Choosing a default policy for handling an Exception-class runs into a …

Dangerous Dilemma:
• Disrupting the path of a program’s control can be dangerous.
• Continuing execution to a perhaps misleading result can be dangerous.

Computer systems need 3 things to mitigate the dilemma :
1• An Algebraically Completed number system for Default Presubstitutions.

2• Sticky ƒlags to Memorialize Leading Exceptions in each Exception-class.

3• Retrospective Diagnostics to help the program’s User debug it.
The program’s User may be another program composed by maybe a different programmer.

These, explained in <…/Boul der.pdf> , are intended for Floating-Point computations.

How well they suit other kinds of computations too is for someone else to decide.
Mathematicians do not need these 3 things for their symbolic and algebraic manipulations on paper.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 50/63

Three Proper Algebraic Completions of the Real Numbers

Proper Algebraic Completion maintains Algebraic Integrity while providing a result for every operation.

•• ••-∞ +∞
±0

IEEE 754’s:
NaNs

•

•

••

∞

0

+1-1 NaNs

NaNsNaNs

Projective Closure: Unsigned

Unsigned

•
0

(Stereographic
 Projection,
 like the
 Riemann
 Sphere of the
 Complex Plane)

(A NaN is
 Not a Number)

For more about NaNs
see p. 56 of <…/NeeDebug>

… is Topologically Closed.

… is Topologically Closed.

… The Real numbers are Topologically Open.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 51/63

Algebraic Integrity: Non-Exceptional evaluations of algebraically equivalent
 expressions over the Real Numbers produce the same values.

To conserve Algebraic Integrity as much as possible, every Proper Algebraic Completion
must ensure that, if Exceptions cause evaluations of algebraically equivalent expressions
over the Algebraically Completed Real Numbers to produce more than one value, they
can produce at most two, and if these are not +∞ and –∞ then at least one is NaN .

 Among a few others, the Completion chosen by IEEE Standard 754 does this.

Other Completions, like APL’s 0/0 := 1 and MathCAD’s 0/0 := 0 , destroy Algebraic Integrity.

For example, compare evaluations of three algebraically equivalent expressions:

Unlike Real, Floating-Point evaluations usually conserve Algebraic Integrity
at best approximately after the occurrence of roundoff and over/underflow, so

some algebraically equivalent expressions evaluate more accurately than others.
For more about Algebraic Completion and Algebraic Integrity see pp. 51 - 53 of <…/NeeDebug> .

x 2/(1 + 1/x) 2·x/(1 + x) 2 + (2/x)/(–1 – 1/x)

–1 +∞ ! −∞ ! −∞ !
0 0 ! 0 NaN !

±∞ 2 NaN ! 2

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 52/63

1• Presubstitution …
… provides, within its scope, each Exception-class with a short process that supplies

 a value for any Floating-Point Exception that occurs, instead of aborting execution.

IEEE Standard 754 provides five presubstitutions by default for …
INVALID OPERATION defaults to NaN Not-a-Number
OVERFLOW defaults to ±∞
DIVIDE-BY-ZERO (∞ from finite operands) defaults to ±∞
INEXACT RESULT defaults to a rounded value
UNDERFLOW is GRADUAL and ultimately glides down to zero by default.

These presubstitutions descend partly from the chosen Algebraic Completion of the Reals,
partly from greater risks other presubstitutions may pose if their Exceptions are ignored.

Untrapped Exceptions are too likely to be overlooked and/or ignored.
• From past experience, INEXACT RESULT and UNDERFLOW are almost always ignored regardless of

their presubstitutions if these are at all plausible. Ignored underflow is deemed least risky if GRADUAL.

• DIVIDE-BY-ZERO might as well be ignored because ∞ either goes away quietly (finite/∞ = 0) or else
almost always turns into NaN during an INVALID OPERATION , which raises its flag.

• INVALID OPERATION should not but will be ignored inadvertently. Its NaN is harder to ignore.

Consequently, each default presubstitution has a side-effect;– it raises a ƒlag. (See later.)

Ideally, a program should be allowed to choose different presubstitutions of its own.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 53/63

Ideally, (on some computers today this ideal may be beyond reach)
 a program should be allowed to choose different presubstitutions of its own.

INEXACT RESULT’s default presubstitution is Round-to-Nearest .
• IEEE 754 offers three non-default Directed Roundings (Up, Down, to Zero) that

a program can invoke to replace or over-ride (only) the default rounding.
… useful for debugging as discussed previously, and for Interval Arithmetic.

UNDERFLOW’s default presubstitution is Gradual Underflow, deemed most likely ignorable.
• IEEE 754 (2008) allows a kind of Flush-to Zero (almost), but not as the default.

 … useful for some few iterative schemes that converge to zero very quickly, and on some
hardware whose builders did not know how to make Gradual Underflow go fast.
 See <www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf> for details.

OVERFLOW’s and DIVIDE-BY-ZERO’s default presubstitution is ±∞ .
• Sometimes Saturation to ±(Biggest finite Floating-point number) works better.

INVALID OPERATIONs’ default presubstitutions are all NaN .
• Better presubstitutions must distinguish among 0/0 , ∞/∞ , 0·∞ , ∞ – ∞ , …

• The scope of a presubstitution, like that of any variable, respects block structure.
• Hardware implementation is easiest with Lightweight Traps, each at a cost very like

the cost of a rare conditional invocation of a function from the Math. library.

For examples of non-default presubstitutions see <www.cs.berkeley.edu/~wkahan/Grail.pdf> ,
its pp. 1-8 explain the urgent need to implement them, and how to do it in pp. 8-10.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 54/63

2• Flags
IEEE Standard 754 mandates a Sticky ƒlag for each Exception-class to memorialize its
every Exception that has occurred since its ƒlag was last clear. Programs may raise,
clear, sense, save and restore each ƒlag, but not too often lest the program be slowed.

The ƒlag of an Exception-class may be raised as a by-product of arithmetic.

The ƒlag is a function, a flag a variable of data-type FLAG in memory like other variables.

The ƒlag is not a bit in hardware’s Status Register. Such a bit serves to update its ƒlag
when the program senses or saves it, perhaps after waiting for the bit to stabilize.

Any flag’s data-type gets coerced to LOGICAL in conditional and LOGICAL expressions.

Any flag may also serve Retrospective Diagnostics by pointing to where it was raised.

An Exception that raises its ƒlag need not overwrite it if it’s already raised; … faster !

Three frequent operations upon flags are …
• Swap a saved flag with the current one to restore the old and sense the new.
• Merge a saved flag into the current ƒlag (like a logical OR) to propagate one.
• Save, clear and restore all (IEEE 754’s five) ƒlags at once.

Reference to the ƒlag is a Floating-Point operation the optimizing compiler must not
swap with a prior or subsequent Floating-Point operation lest the ƒlag be corrupted.
This constraint upon code movement is another reason to reference ƒlags sparingly.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 55/63

Flags’ Scopes
Variables of data-type FLAG are scoped like other variables, in so far as they respect block
structure, except for the five Exception-classes’ five ƒlags which, if supported at all,

have usually been treated as GLOBAL variables. Why?

By mistake; they have been conflated with bits in a status register.

The Exception-classes’ five ƒlags can implicitly be inherited and exported
by every Floating-point operation or subprogram (or Java “method”)
unless it can specify otherwise in a language-supplied initial Signature.

The least annoying scheme I know for managing ƒlags’ inheritance and export is APL’s
for System Variables []CT (Comparison tolerance) and []IO (Index Origin):

An APL function always inherits system variables and, if it changes one, exports the
change unless this variable has been Localized by redeclaration at the function’s start. If
augmented by a command to merge a changed flag with the ƒlag, this scheme works well.

Still, because they are side-effects, …

ƒlags are Nuisances !

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 56/63

ƒlags are Nuisances.
Why bother with them?

Because every known alternative can be worse :

Execution continued oblivious to Exceptions can be dangerous,
and is reckless.

Java forbids ƒlags, forcing a conscientious programmer to test for
an Exceptional result after every liable operation.

So many tests-and-branches are tedious and error-prone.
 Recall pp. 23-4 of <www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf> . Similarly for …

C’s single flag ERRNO must be sensed immediately lest another Exception overwrite it.

What can ƒlags do that try/throw/catch/finally cannot ?
If a throw is hidden in a subprogram invoked more than once in the try clause, the
catch clause can’t know the state of variables perhaps altered between those invocations.

 Recall W. Weimer’s discovery that try/throw/catch/finally is error-prone .

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 57/63

A Floating-Point Exception ƒlag costs relatively little unless the program references it.
• Apt Presubstitutions render most (not all) Exceptions and their ƒlags ignorable.
• Apt non-default presubstitutions render more Exceptions and ƒlags ignorable.

We should try not to burn out conscientious programmers prematurely.
Their task is difficult enough with presubstitutions and ƒlags; too difficult without.

And ƒlags let overlooked Exceptions be caught by Retrospective Diagnostics . …

3• Retrospective Diagnostics

We are not gods.
Sometimes some of us overlook something.

At any point in a program’s execution, usually when it ends, its
Unrequited Exceptions are those overlooked or ignored so far.

Evidence of one’s existence is its ƒlag still standing raised.

Retrospective Diagnostics help a program’s user debug Unrequited Exceptions
by facilitating interrogation of NaNs and raised ƒlags now interpreted as pointers
(indirectly, and perhaps only approximately) to relevant sites in the program.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 58/63

Earliest Retrospective Diagnostics See my web page’s …/7094II.pdf
In the early 1960s, programs on the IBM 7090/7094 were run in batches. Each program
was swept from the computer either after delivering its output, be it lines of print or card
images or compile-time error-messages, or upon using up its allotment of computer time.

Often the only output was a cryptic run-time error-message and a 5-digit octal address.

I put a LOGICAL FUNCTION KICKED(…) into FORTRAN’s Math. library, and altered
the accounting system’s summary of time used etc. appended to each job’s output. Then …

 IF (KICKED(OFF)) ... executable statement ...
in a FORTRAN program would do nothing but record its location when executed. If later
the program’s execution was aborted, a few extra seconds were allotted to execute the
executable statement (GO TO …, PRINT …, CALL …, or REWIND …) after the
last executed invocation of KICKED . Any subsequent abortion was final.

. .

IBM’s presubstitution for UNDERFLOW was 0.0 , and its other presubstitutions for …
• DIVISION-BY-ZERO a quotient of 0.0 , or 0 for integers,
• OVERFLOW ±(biggest floating-point number),

… were defaults a programmer could override only by a demand for abortion instead.

I added options for Gradual Underflow, and for Division-by-Zero to produce a hugest
number, and for an extended exponent upon Over/Underflow. I added sticky ƒlags for a
program to test etc. any time after the Exceptions, and added Retrospective Diagnostics.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 59/63

Earliest Retrospective Diagnostics continued

Each raised ƒlag held the nonzero 5-digit octal address of the 7090/7094 program’s site
that first raised the ƒlag after it had last been clear. I added tests for raised ƒlag to the
accounting system’s summary of time used etc. appended to each job’s output; and for each
ƒlag still raised at the job’s end I appended a message to the job’s output saying …

 “You have an unrequited … name of Exception … at … octal address … ”

This is the only change to IBM’s system on the 7094 for which I was ever thanked.
… by a mathematician whose results invalidated by a DIVIDE-BY-ZERO

 would have embarrassed him had he announced them to the world.

My other alterations to IBM’s system were taken for granted as if IBM had granted them.

Attempts over the period 1964-7 to insinuate similar facilities, all endorsed by a SHARE
committee, into IBM’s subsequent systems were thwarted by …

 … that’s a long story for another occasion.

 END OF REMINISCENCES.
. .

Note how NaNs, ƒlags and Retrospective Diagnostics differ from a system’s event-log:
• The system’s event-log records events chronologically, by time of occurrence.
• NaNs and ƒlags point (indirectly) to (earliest) sites (hashed) in the program.

If Exceptions were logged chronologically, they could slow the program badly,
overflow the disk, and exhaust our patience even if we attempt data-mining.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 60/63

Retrospective Diagnostics’ Annunciator and Interrogator
How shall a program’s Unrequited Exceptions be brought to the attention of its user?

• If the program’s user is another program denied access to the former’s ƒlags by the
operating system, retrospective diagnostics are thwarted.

• If the program’s user is another program with access to the former’s ƒlags, the latter
program determines their use or may pass them through to the next user.

• If the program’s user is human, the program can annotate its output in a way that
makes the user … • Aware that Unrequited Exceptions exist, and then

• Able to investigate them if so inclined.

“Aware” :
• Don’t do it this way:

On my MS-Windows machines, some error-messages display for fractions of a second.

• Do do it this way:
On my Macs, an icon can blink or jiggle to attract my attention until I click on it.

The Math. library needs a subprogram that creates an Annunciator, an icon that attracts
a user’s attention by blinks or jiggles, which a program can invoke to annotate its output.

Clicking on an Annunciator should open an Interrogator, dropping a menu that lists
unrequited Exceptions and allows displayed NaNs to be clicked-and-dragged into the list.
Clicking on an item in the list should reveal (roughly) whence in the program it came.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 61/63

Retrospective Diagnostics can Annoy …
They can annoy the programmer with an implicit obligation to annotate output upon whose
validity doubt may be cast deservedly by Unrequited Exceptions. This obligation is one of

 Due Diligence .
Is programming a Profession ? If so, one of its obligations is Due Diligence .

Retrospective Diagnostics can annoy a program’s user if the Annunciator resembles

The little boy who cried “Wolf ! ”
by calling the user’s attention to Unrequited Exceptions that seem never to matter. This
may happen because the programmer decided to “Play it Safe”, actually too safe.

My IBM 7094’s retrospective diagnostics were usually torn off the end of a program’s output and discarded.

To warn or not to warn. The dilemma is intrinsic in approximate computation by one
person to serve an unknown other. They share the risk. And the Law of Torts assigns to
each a share of blame in proportion to his expertise, should occasion for blame arise.

. .

Retrospective Diagnostics may function better on some platforms than on others, and not
at all on yet others. Debugging may be easier on some platforms than on others. Numerical
software may be developed and/or run more reliably on some platforms than on others.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 62/63

What Constellation of Competencies must be Collected
to develop the Diagnostic Tools described herein?

Languages must be altered to support Quad by Default unless a program refuses it, and
to enforce ERROR-exit to the caller unless a program specifies a different destination.

Languages must be altered to support …
• Scopes for (re)directed roundings, and
• Scopes for non-default Presubstitutions, and for ƒlags.

Compilers must be altered to augment Symbol Tables and other information attached
to object modules to help debuggers (and the loaders on some architectures)
implement rerunning with redirected roundings or with higher precision.

Operating Systems must be altered to support Lightweight Traps for handling
non-default Presubstitutions, and ƒlags’ and NaNs’ Retrospective Diagnostics.

Debuggers must be augmented to support users of the foregoing capabilities.

Retrospective Diagnostics may function better on some platforms than on others, and not
at all on yet others. Debugging may be easier on some platforms than on others. Numerical
software may be developed and/or run more reliably on some platforms than on others.

File: B0u1der Desperately Needed Remedies … Version dated August 2, 2014 7:22 pm

Prof. W. Kahan Subject to Revision Page 63/63

“This … paper, by its very length, defends itself against the risk of being read.”
… attributed to Winston S. Churchill

If there be better ideas about it,
and if the reader is kind enough to pass some on to me,

this is not the subject’s
Last Word.

