

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 1/14

 Why are Users of Interval Arithmetic
 so Often Disappointed?

Prepared for a UC Berkeley
Bebop Meeting

Wed. Mar. 4, 2020

 This document will be posted at people.eecs.berkeley.edu/~wkahan/4Bebop/4Mar20.pdf

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 2/14

 Why are Users of Interval Arithmetic
 so Often Disappointed?

AA nndd WW hhyy SShhoouull dd WW ee CCaarr ee??

Scientists, Engineers and their Programmers should care because
Interval Arithmetic and weaker cheaper versions of it

like Significance Arithmetic, UNUMs,

…

are often advocated as easy answers to questions like

…

How accurate are my program’s results?

Why are they less accurate than I had expected or hoped?

Is inaccuracy due to an error (BUG) in my program,
or is its algorithm Numerically Unstable,

or is my data badly Ill-Conditioned?

These questions may lack easy answers.

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 3/14

 Why are Users of Interval Arithmetic so Often Disappointed?

The short answer is

Grotesque Over-Estimates of Errors

when Interval Arithmetic is used

naively

. It can happen when all a program’s
Floating-Point (

Real

) variables are merely re-declared to be

Intervals

.
Here is how:

I:

 Ignored Anti-Correlations among variables.

II:

 The Rush to Judgement.

III:

 The Curse of Big Dimensions.

IV:

 Unavoidable Intentional Approximations

V:

 Uncertain Data

What can be done instead

Sometimes ?

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 4/14

I:

 Ignored Anti-Correlations among variables.

In ordinary Floating-Point arithmetic, if all a polynomial’s zeros are known, a
product of factors is a good and often more accurate way to compute it.

Eg

:

Π

(

x

)

 :=

α

·(x – z

1

)·(x – z

2

)·

(

 (x – x

3

)

2

 + y

3
2

)

·(x – z

4

) .
Not necessarily so for Interval Arithmetic;

eg

:

Π

(

x

)

 := (x – 1)·(x + 1) ; P

(

x

)

 := x

2

 – 1 ;

X

∈

[

–

δ

,

δ

] for 0 <

δ

 << 1 .

Π

(

X

)

∈

[

–1 –

δ

2

 – 2

δ

, –1 –

δ

2

 + 2

δ

] ; P

(

X

)

∈

[

–1, –1 +

δ

2

] .

Now arccos

(

Π

(

X

))

 malfunctions though arccos

(

P

(

X

))

 is unexceptional.

I.A. treats each appearance of “ x ” as if it were independent of the others.

Similar misbehavior exaggerates errors in matrix computations associated with
elastic structures and discretized boundary-value problems where data items are
far fewer than the matrix elements computed from them.

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 5/14

II:

 The Rush to Judgement.

Programs that

iterate

 upon data look like this:

Suppose an intermediate result marked by

*

 differs utterly from what would
have been computed had no rounding errors been committed. Does that imply

Result

 must be

Wrong

 ?

It depends upon the algorithm. For some,

Result

 would be wrong. For other
algorithms in widespread daily use,

Result

 would be quite satisfactory, almost
as accurate as if no roundng error had occurred.

See

IntvlQR.pdf

 . However,

Interval Arithmetic can deliver undeservedly wide intervals
implying that the Result is grossly inaccurate although

ordinary arithmetic would have been satisfactory.

I.A. does not know about a correlation at point * where high-dimensional data
can very nearly conserve a low-dimensional relationship despite roundoff.

It’n#1 It’n#2 It’n#3⇒Data ⇒ ⇒ ⇒ It’n#7 It’n#8 It’n#9⇒ ⇒ ⇒ ⇒• • Result ?*

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 6/14

Example: QR-Iteration on Symmetric Tridiagonal Matrices
The elements of N-byN symmetric tridiagonals fill a 2N–1-dimensional space.
Each matrix has N eigenvalues; any choice of those puts elements on an N–1-
dimensional manifold (like a surface), maybe wrinkled if eigenvalues repeat.

Each QR-iteration-step moves the data on that manifold towards one of N!
points where diagonal matrices exhibit the sought eigenvalues, except for
roundoff. It has been proved to do little damage beyond altering the order in
which eigenvalues are exhibited on a different diagonal.

Interval Arithmetic’s intervals are at least as wide as the differences between
paths with and without roundoff, thus deeming accurate results inaccurate.

DiagonalsAll symmetric tridiagonal
matrices in a sheet
have the same
eigenvalues.

Adjacent
sheets differ
by practically
negligible
roundoff.

Paths followed during a program’s
computation of eigenvalues with …

… no rounding errors

… the usual rounding errors

… and more severe rounding errors

•

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 7/14

III: The Curse of Big Dimensions.
Vectors of intervals can represent only Coffins.

Computations in N dimensions can encounter growth by √N ; see H.txt .
And that is without additional interval expansion by rounding errors. Repeated
compute-and-wrap-by-a-coffin can incur exponentially excessive growth.

In the late 1960s F. Krückeberg advocated using general parallelepipeds instead
of coffins. (A parallelepiped P := L·C for some invertible linear map L .)

But when rounding errors are included, parallelepipeds can also incur growth
that is exponentially excessive, though not so fast, and at much higher cost.
 • • •

⇒ ⇒

Computation Wrapping

Wrapping the result
of a computation
that merely rotates
can cause a coffin C
to grow by √2 .in 2 dimensions by a coffin

C

CP L·=

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 8/14

At first sight, New P #2 would be preferred to New P #1 . But if subsequent
computation flattens New P further the way P has been flattened, that choice
will be regretted. And there is a tendency for prolonged computation to flatten.

Pictures in low dimensions can be misleading. Parallelepipeds of extremely high
dimensions resemble sea-urchins, with some vertices sticking out like spikes far
from the main body despite that all parallelepipeds are convex.

Consequently the substitution of parallelepipeds for coffins cannot by itself avoid
exponentially excessive growths of error-bounds in lengthy computations of very
high dimensions.

Ellipsoids can do much better than parallelepipeds, but that is a story for another day

•

•
•

•
•

•
•

•
•

•
•

•
⇒ or ?

P + roundoff
New P #1 New P #2

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 9/14

IV: Unavoidable Intentional Approximations
I suspect that Interval Arithmetic arose in the late 1950s to assess the accuracy
of Inter-Continental Ballistic Missiles. They obey a Differential Equation:
 dy/dτ = f(τ, y) … vector y includes position coordinates and velocities.
 0 ≤ τ ≤ T Typically τ is time. Typically T is given or inferred.

Solution y(τ) is approximated by Y(τ) computed from iterations of a formula:

 Y(τ+∆τ) := Y(τ) + ∆τ·F(τ, Y(τ), ∆τ) … F is a chosen Numerical Method:
 F(τ, Y(τ), ∆τ) is a computed average of samples of f intended to approximate

 .

The Numerical Method’s Local Error can be estimated from a power series:

 y(τ+∆τ) = y(τ) + ∆τ·F(τ, y(τ), ∆τ) + Ω(τ, y(τ), ∆τ)·∆τœ+1 + … ‡
derived as if y(τ) and its derivatives were known from its differential equation.

The Method’s Order œ ≥ 1 ; a smaller ∆τ shrinks the error in Y(T) like ∆τœ
at the cost of T/∆τ iterations. Some Methods estimate Ω as a byproduct to
allow the local error-estimate to be controlled; see MATLAB ’s ODE Suite.

f t y t(),() tdτ
τ ∆τ+∫ ∆τ⁄

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 10/14

Differential Equation: dy/dτ = f(τ, y) over 0 ≤ τ ≤ T .

Numerical Method: Y(τ+∆τ) := Y(τ) + ∆τ·F(τ, Y(τ), ∆τ) iterated on 0 ≤ τ ≤ T.

Local Error: Ω(τ, y(τ), ∆τ)·∆τœ+1 Estimated from a Power Series:

 y(τ+∆τ) = y(τ) + ∆τ·F(τ, y(τ), ∆τ) + Ω(τ, y(τ), ∆τ)·∆τœ+1 + … ‡

Naive Interval Arithmetic substitutes intervals Y, F and ΩΩΩΩ into equation ‡ :

 Y(τ+∆τ) := Y(τ) + ∆τ·F(τ, Y(τ), ∆τ) + ΩΩΩΩ(τ, Y(τ), ∆τ)·∆τœ+1
and iterates it. If accuracy is inadequate, the computation is redone with a larger

number of smaller steps ∆τ hoping the error-bound will shrink like ∆τœ .

But it doesn’t.
Not for Celestial Mechanics (Satellites)

Not for Exterior Ballistics (ICBMs)

Why not? Because Coffins suffer from the Curse of Big Dimensions, and grow
exponentially until the orbit’s curvature causes Coffins to explode. How?

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 11/14

Why Interval Arithmetic’s Coffins are Exploded by the Curvature of an
 Orbits’ Trajectories

Solutions of the Differential Equation move faster on inside orbits than outside,
which performs a Shear on a Coffin as well as rotating it a little. The Local
Errror doesn’t add much after a while, but circumscribing the Sheared and
slightly Swollen Coffin produces a new Coffin that has grown much bigger.

Ellipsoids last a lot longer though cost a lot more; but that is a long story for another day.

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 12/14

V: Uncertain Data

Computation CC carries Data D to a result R := CC (D) .
 What if D is uncertain, say DD ? Then RR := CC (DD) :

Possibilities:

The shape of CC (DD) can be very nearly arbitrary for all we know at the start.

Starting a naive Interval Arithmetic computation CC (DD) from interval data DD
tends to over-estimate CC (DD) for any of the reasons I - IV cited previously.

Mathematical and Probabilistic estimates for particular computations CC (DD)
appear at conferences whose titles include “Uncertainty Quantification”.

DD()CC =
RR DD()CC = RR

DD()CC =
RR

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 13/14

What can be done instead Sometimes ?
For a rigorously guaranteed error-bound:

◊ Refereed & published Error-Analysis, if you can find one that fits.
◊ “Self-Validating Computation” mostly in the European Literature,

requires that your computation be recast as the Fixed-Point of a
Sufficiently Strongly Contractive Map. Not always possible.

◊ Arbitrarilu high variable precision Interval Arithmetic
if roundoff is the only source of error.

These are almost prohibitively expensive.
too much for daily answers to our questions:

How accurate are my program’s results?

Why are they less accurate than I had expected or hoped?

Is inaccuracy due to an error (BUG) in my program,
or is its algorithm Numerically Unstable,

or is my data badly Ill-Conditioned?

File: 4Mar20 Disappointing Interval Arithmetic Version dated March 3, 2020 5:37 pm

Prof. W. Kahan Page 14/14

Software tools that cost much less to use have been developed in the distant past,
but their use today would require modifications to

operating systems, compilers, debuggers and Math. libraries.

See people.eecs.berkeley.edu/~wkahan/Boulder.pdf .

The Computing Industry has not sensed a widespread demand for such tools,
perhaps because the beneficiaries of such tools are

unaware that they could exist if
they were demanded and paid for.

