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 Why are Users of Interval Arithmetic
 so Often Disappointed?

 

AA nndd  WW hhyy   SShhoouull dd  WW ee  CCaarr ee??

 

Scientists,  Engineers  and their  Programmers  should care because
Interval Arithmetic  and weaker cheaper versions of it 

like  Significance Arithmetic,  UNUMs,   

 

…

 

  
are often advocated as easy answers to questions like   

 

…

 

  

How accurate are my program’s results?

Why are they less accurate than I had expected or hoped?

Is inaccuracy due to an error  (BUG)  in my program,
or is its algorithm  Numerically Unstable,

or is my data badly  Ill-Conditioned?

These questions may lack easy answers.
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 Why are Users of Interval Arithmetic so Often Disappointed?

 

The short answer is 

 

Grotesque  Over-Estimates  of  Errors 

 

when  Interval Arithmetic  is used 

 

naively

 

.  It can happen when all a program’s 
Floating-Point  (

 

Real

 

)  variables are merely re-declared to be  

 

Intervals

 

.
Here is how:

 

I:

 

  Ignored Anti-Correlations  among variables.

 

II:

 

  The Rush to Judgement.

 

III:

 

  The  Curse of Big Dimensions.

 

IV:

 

  Unavoidable Intentional Approximations

 

V:

 

  Uncertain Data

 

What can be done instead  

 

Sometimes ?
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I:

 

 

 

 Ignored Anti-Correlations  among variables.

 

In ordinary  Floating-Point  arithmetic,  if all a polynomial’s zeros are known,  a 
product of factors is a good and often more accurate way to compute it.  

 

Eg

 

:

 

 

Π

 

(

 

x

 

)

 

 := 

 

α

 

·(x – z

 

1

 

)·(x – z

 

2

 

)·

 

(

 

 (x – x

 

3

 

)

 

2

 

 + y

 

3
2

 

)

 

·(x – z

 

4

 

) .
Not necessarily so for  Interval Arithmetic;  

 

eg

 

:

      

 

Π

 

(

 

x

 

)

 

 := (x – 1)·(x + 1) ;     P

 

(

 

x

 

)

 

 := x

 

2

 

 – 1 ;      

 

X

 

 

 

∈

 

  

 

[

 

–

 

δ

 

,  

 

δ

 

]  for  0 < 

 

δ

 

 << 1 .

      

 

Π

 

(

 

X

 

)

 

 

 

∈

 

  

 

[

 

–1 – 

 

δ

 

2

 

 – 2

 

δ

 

,    –1 – 

 

δ

 

2

 

 + 2

 

δ

 

] ;        P

 

(

 

X

 

)

 

 

 

∈

 

  

 

[

 

–1,    –1 + 

 

δ

 

2

 

] .

Now  arccos

 

(

 

Π

 

(

 

X

 

))

 

  malfunctions though  arccos

 

(

 

P

 

(

 

X

 

))

 

  is unexceptional.

I.A.  treats each appearance of    “ x ”  as if it were independent of the others.

Similar misbehavior exaggerates errors in matrix computations associated with 
elastic structures and discretized boundary-value problems where data items are 
far fewer than the matrix elements computed from them. 
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II:

 

 

 

 The Rush to Judgement.

 

Programs that  

 

iterate

 

  upon data look like this:

Suppose an intermediate result marked by  

 

*

 

  differs utterly from what would 
have been computed had no rounding errors been committed.  Does that imply

 

Result

 

  must be 

 

Wrong

 

 ? 

 

It depends upon the algorithm.  For some,  

 

Result

 

  would be wrong.  For other 
algorithms in widespread daily use,  

 

Result

 

  would be quite satisfactory,  almost 
as accurate as if no roundng error had occurred.  

 

See

 

  

 

IntvlQR.pdf

 

 .  However,

 

Interval Arithmetic  can deliver undeservedly wide intervals 
implying that the  Result  is grossly inaccurate although 

ordinary arithmetic would have been satisfactory.

I.A.  does not know about a correlation at point  *   where high-dimensional data 
can very nearly conserve a low-dimensional relationship despite roundoff.

It’n#1 It’n#2 It’n#3⇒Data ⇒ ⇒ ⇒ It’n#7 It’n#8 It’n#9⇒ ⇒ ⇒ ⇒• • Result ?*
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Example:  QR-Iteration on Symmetric Tridiagonal Matrices
The elements of  N-byN  symmetric tridiagonals fill a  2N–1-dimensional space.
Each matrix has  N  eigenvalues;  any choice of those puts elements on an  N–1-
dimensional manifold  (like a surface),  maybe wrinkled if eigenvalues repeat.

Each  QR-iteration-step  moves the data on that manifold towards one of  N!  
points where diagonal matrices exhibit the sought eigenvalues,  except for 
roundoff.  It has been proved to do little damage beyond altering the order in 
which eigenvalues are exhibited on a different diagonal.
 

Interval Arithmetic’s  intervals are at least as wide as the differences between 
paths with and without roundoff,  thus deeming accurate results inaccurate.

DiagonalsAll symmetric tridiagonal
matrices in a sheet
have the same
eigenvalues.

Adjacent 
sheets differ
by practically
negligible 
roundoff.

Paths followed during a program’s
computation of eigenvalues with …

… no rounding errors

… the usual rounding errors

… and more severe rounding errors

•
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III:  The  Curse of Big Dimensions.
Vectors of intervals can represent only  Coffins.

Computations in  N  dimensions can encounter growth by  √N ;  see  H.txt .
And that is without additional interval expansion by rounding errors.  Repeated 
compute-and-wrap-by-a-coffin  can incur exponentially excessive growth.

In the late  1960s  F. Krückeberg  advocated using general parallelepipeds instead 
of coffins.  (A parallelepiped  P := L·C  for some invertible linear map  L .)  

But when rounding errors are included,  parallelepipeds can also incur growth 
that is exponentially excessive,  though not so fast,  and at much higher cost.
                                                   • • •

⇒ ⇒

Computation Wrapping

Wrapping the result
of a computation  
that merely rotates
can cause a coffin  C
to grow by  √2 .in  2  dimensions by a coffin

C

CP L·=
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At first sight,  New P #2   would be preferred to  New P #1 .  But if subsequent 
computation flattens  New P  further the way  P  has been flattened,  that choice 
will be regretted.  And there is a tendency for prolonged computation to flatten.

Pictures in low dimensions can be misleading.  Parallelepipeds of extremely high 
dimensions resemble sea-urchins,  with some vertices sticking out like spikes far 
from the main body despite that all parallelepipeds are convex. 

Consequently the substitution of parallelepipeds for coffins cannot by itself avoid 
exponentially excessive growths of error-bounds in lengthy computations of very 
high dimensions.

Ellipsoids can do much better than parallelepipeds,  but that is a story for another day

•

•
•

•
•

•
•

•
•

•
•

•
⇒ or ?

P + roundoff
New  P  #1 New  P  #2
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IV:   Unavoidable Intentional Approximations
I suspect that  Interval Arithmetic  arose in the late  1950s  to assess the accuracy 
of  Inter-Continental Ballistic Missiles.  They obey a  Differential Equation:
          dy/dτ = f(τ, y)     …   vector  y  includes position coordinates and velocities.
           0  ≤  τ  ≤  T             Typically  τ  is  time.  Typically  T  is given or inferred.

Solution  y(τ)  is approximated by  Y(τ)  computed from  iterations of a formula:

      Y(τ+∆τ) := Y(τ) + ∆τ·F(τ, Y(τ), ∆τ)    …   F  is a chosen Numerical Method:
    F(τ, Y(τ), ∆τ)   is a computed average of samples of  f  intended to approximate 

 .

The  Numerical Method’s   Local Error  can be estimated from a power series:

         y(τ+∆τ)  =  y(τ) + ∆τ·F(τ, y(τ), ∆τ)  +  Ω(τ, y(τ), ∆τ)·∆τœ+1  +  …         ‡ 
derived as if  y(τ)  and its derivatives were known from its differential equation.

The  Method’s  Order  œ ≥ 1 ;  a smaller  ∆τ  shrinks the error in  Y(T)  like  ∆τœ  
at the cost of  T/∆τ  iterations.  Some  Methods  estimate  Ω  as a byproduct to 
allow the local error-estimate to be controlled;  see  MATLAB ’s  ODE Suite.

f t y t( ),( ) tdτ
τ ∆τ+∫ ∆τ⁄
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Differential Equation:   dy/dτ = f(τ, y)   over   0  ≤  τ  ≤  T .

Numerical Method:  Y(τ+∆τ) := Y(τ) + ∆τ·F(τ, Y(τ), ∆τ)  iterated on  0 ≤ τ ≤ T.

Local Error:   Ω(τ, y(τ), ∆τ)·∆τœ+1  Estimated from a Power Series:

         y(τ+∆τ)  =  y(τ) + ∆τ·F(τ, y(τ), ∆τ)  +  Ω(τ, y(τ), ∆τ)·∆τœ+1  +  …         ‡ 

Naive Interval Arithmetic  substitutes intervals  Y,  F  and  ΩΩΩΩ  into equation  ‡ :

        Y(τ+∆τ)  :=  Y(τ) + ∆τ·F(τ, Y(τ), ∆τ)  +  ΩΩΩΩ(τ, Y(τ), ∆τ)·∆τœ+1                
and iterates it.  If accuracy is inadequate,  the computation is redone with a larger 

number of smaller steps  ∆τ  hoping the error-bound will shrink like  ∆τœ .

But it doesn’t.
Not for  Celestial Mechanics  (Satellites)

Not for  Exterior Ballistics  (ICBMs)

Why not?  Because  Coffins  suffer from the  Curse of Big Dimensions,  and grow 
exponentially until the orbit’s curvature causes  Coffins  to explode.   How?
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Why  Interval Arithmetic’s Coffins  are  Exploded  by the  Curvature  of an 
  Orbits’  Trajectories

Solutions of the  Differential Equation  move faster on inside orbits than outside,  
which performs a  Shear  on a  Coffin as well as rotating it a little.  The  Local 
Errror  doesn’t add much after a while,  but circumscribing the  Sheared and 
slightly Swollen  Coffin  produces a new  Coffin  that has grown much bigger.

Ellipsoids last a lot longer though cost a lot more;  but that is a long story for another day.
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V:  Uncertain Data 

Computation  CC   carries  Data  D  to a result  R := CC (D) .  
                 What if  D  is uncertain,  say  DD ?    Then   RR := CC (DD) : 

Possibilities:

The shape of  CC (DD)  can be very nearly arbitrary for all we know at the start.

Starting a naive  Interval Arithmetic  computation  CC (DD)  from interval data  DD  
tends to over-estimate  CC (DD)  for any of the reasons  I  - IV   cited previously. 

Mathematical  and  Probabilistic  estimates for particular computations  CC (DD)  
appear at conferences whose titles include  “Uncertainty Quantification”.

DD( )CC =
RR DD( )CC = RR

DD( )CC =
RR
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What can be done instead  Sometimes ?
For a rigorously guaranteed error-bound:

◊ Refereed & published  Error-Analysis,  if you can find one that fits. 
◊ “Self-Validating Computation”   mostly in the  European Literature, 

requires that your computation be recast as the  Fixed-Point  of a
Sufficiently Strongly  Contractive Map.  Not always possible.

◊ Arbitrarilu high variable precision Interval Arithmetic 
if roundoff is the only source of error.

These are almost prohibitively expensive.  
too much for daily answers to our questions: 

How accurate are my program’s results?

Why are they less accurate than I had expected or hoped?

Is inaccuracy due to an error  (BUG)  in my program,
or is its algorithm  Numerically Unstable,

or is my data badly  Ill-Conditioned?
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Software tools that cost much less to use have been developed in the distant past,
but their use today would require modifications to 

operating systems,  compilers,  debuggers and  Math. libraries.

See  people.eecs.berkeley.edu/~wkahan/Boulder.pdf .

The  Computing Industry  has not sensed a widespread demand for such tools,
perhaps because the beneficiaries of such tools are 

unaware that they could exist  if  
they were demanded and paid for.


