

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 1/34

Tests for the Accuracy of
 Polynomial Zero-Finders

Prepared for Prof. Ming Gu’s

Numerical Linear Algebra Seminar

380 Soda Hall, Noon - 1 pm., Wed. 28 Oct. 2015

by
W. Kahan, Professor Emeritus (

i.e

. retired)
Math. Dept. & Computer Sci. Dept.

Univ. of Calif. @ Berkeley

This is posted at

<www.eecs.berkeley.edu/~wkahan/28Oct15.pdf>

Details are posted at

 <www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf>
 <www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf>

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 2/34

Tests for the Accuracy of
 Polynomial Zero-Finders

Abstract

It is imprudent to trust a numerical zero-finder without first testing it. Some software used
to compute zeros of polynomials has been found surprisingly inaccurate for polynomials
even of low degree. Test data provided here takes the form of families of polynomials of
degrees 2 to 6 with integer coefficients computable exactly in floating-point, and with
zeros whose accuracies challenge numerical methods increasingly as a parameter n is
increased. Provided too are formulas to compute the polynomials’ zeros extra-accurately
without extra-precise arithmetic, so they can be compared with a zero-finder’s results to
test their accuracy. If these polynomials differ too much from the ones you care about,
how do you test your zero-finder on your data? Two easily computed error-bounds, one
of them classical, are offered here and compared to help you decide which is better suited
to your needs.

Details are posted at

 <www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf>
 <www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf>

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 3/34

Ideally, Polynomials to Test Zero-Finders’ Accuracies should have …

•>

 Coefficients computable

E

XACTLY

 in floating-point arithmetic
because rounding off coefficients alters zeros, sometimes a lot.

Our test-polynomials’ coefficients come from Fibonacci numbers E

XACTLY

.

•>

 Zeros computable

EXTRA-ACCURATELY

, and without extra-precise arithmetic,
so that differences from a zero-finder’s results are truly their errors, and

computable by the arithmetics of almost all programming languages.

Our test-polynomial’s zeros require no more than IEEE-745 (1985 or 2008).

•>

 Ideally, a wide range of challenges for numerical zero-finders; but …

Our polynomials test only accuracies of clustered zeros, only degrees 2 - 6 .

(Other polynomials are needed to test high degrees, zeros of widely divagated
 magnitudes, resistance to premature over/underflow, ease of use, complex
 coefficients, speed, preservation of symmetries,

∞

 and

NaN

 inputs, … .)

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 4/34

Ideally, Polynomials to Test Zero-Finders’ Accuracies should

Avoid

 …

•>

 Small Integers, either as coefficients or as zeros.

WHY ?

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 5/34

Ideally, Polynomials to Test Zero-Finders’ Accuracies should

Avoid

 …

•>

 Small Integers, either as coefficients or as zeros.

Why ?

 ROUNDOFF is ACCIDENTAL, RAGGED but NOT RANDOM.

That is why a realistic assessment of roundoff’s impact upon a program can require that
accuracy be sampled at vastly many numerical inputs

to expose both typical and worst-case behavior.

Small integers are best avoided because
they often incur

ATYPICAL ROUNDINGS

 .

Floating-point Example:

(Not for over-optimizing compilers)

 q := k

/

d ; p := q·d ; L := (

p = k

) ; ... Is L

True

 , or

False

 ?

If these assignments are rounded according to IEEE 754 (1985) Binary, and if k and d
are independent random floating-point numbers, L is

False

 for about 11% of them.

But for all small integers |k|

≤

 8000000 , say, and for every integer |d| drawn from
{ 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, …} , L is always

True

.

cf

. the stopped clock

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 6/34

Ideally, Polynomials to Test Zero-Finders’ Accuracies should

Avoid

 …

•>

 Small Integers, either as coefficients or as zeros.

When

all

 the coefficients a

j

 of a test-polynomial

Σ

j

a

j

·x

m–j

 are small integers,

they should be

S T

R E T C H E D

 by a pseudo-random multiplication.

S

TRETCHING

: For binary floating-point with p sig.bits,

Generate a pseudo-random integer R between 2

p–1

 and 2

p

– 1 ;
Obtain a multiplier M := floor

(

 R

/

max

j

|a

j

|

)

 ;

 If M > 0

, replace each a

j

 by M·a

j

 ; …

NO ROUNDOFF OCCURS

Then run the test to compute zeros;
M may change their roundoff, but not the polynomial’s true zeros.

(If M = 0

, the coefficients a

j

 cannot

all

 be small integers.)

All our test-polynomials’ coefficients are derived from Fibonacci numbers F

(

n

)

 .
They are small integers for small values of n , and should be stretched before use.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 7/34

How well does one set of zeros approximate another ?

Suppose the True Zeros are Z

1

, Z

2

, Z

3

, …, Z

J

, …, Z

m

 , and

 the Computed Zeros are z

1

, z

2

, z

3

, …, z

j

, …, z

m

 .

 Which differences are the Errors Z

J

 – z

j

 ?

If every zero Z

J

 and z

j

 is Real, sort them separately first to minimize max

J

|

Z

J

 – z

J

|

 .

But if some zeros are Complex (not real), though they come in complex conjugate pairs,
the ordering that minimizes max

J

|

Z

J

 – z

J| can be unobvious.

 -

••
•

•

•

•

+ +

+

+

+

+

Which + goes with which • ?

+ = z

• = Z

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 8/34

How well does one set of zeros approximate another ?

Suppose the True Zeros are Z1, Z2, Z3, …, ZJ, …, Zm , and

 the Computed Zeros are z1, z2, z3, …, zj, …, zm .

 Which differences are the Errors ZJ – zj ?

If every zero ZJ and zj is Real, sort them separately first to minimize maxJ |ZJ – zJ| .

But if some zeros are Complex (not real), though they come in complex conjugate pairs,
the ordering that minimizes maxJ |ZJ – zJ| can be unobvious.

 -

Let π range over Permutations of { 1, 2, 3, …, m } . The gauge of difference we seek is

 MinMaxError := minπ maxJ |ZJ – zπ(J)| ,

The minimizing permutation π need not be unique.
Must all m! of them be examined?
Our m! ≤ 6! = 720 ; it’s tolerable.

I wish I had a better idea.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 9/34

Two ambiguous examples, one with m = 4, one with m = 5 :

•

•

•
•

•

+ +++

+ {zπ(j)} := {16, 24, 23, 17}

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı} •

•

•
•

•

+ +++

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı}

+ {zπ(j)} := {24, 16, 23, 17}

•

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++ •

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++

+ {zπ(j)} := {20+3ı, 19, 25, 21, 20–3ı} + {zπ(j)} := {20+3ı, 19, 21, 25, 20–3ı}

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 10/34

Extra-Accurate presentations of true zeros Z

Why?

True zero Z ; computed zero z ; error z – Z .

Rounding Z before the subtraction z – Z may obscure how accurately
 z has been computed when it has been computed very accurately.

Instead of rounding off the true zero Z , our formulas present it in three pieces:

 E.g., “ Z = 13/8 + x + ξ ” with 13/8 = 1.625 >> |x| >> |ξ| (when n is big).

Then the error z – Z is actually computed as

 Error := ((z – 13/8) – x) – ξ .

Unless z is terribly inaccurate, the subtraction z – 13/8 cancels exactly (no rounding)
and subsequent subtractions produce z – Z as if computed with one extra sig.dec.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 11/34

Three Flavors of Equations

Equations serve diverse purposes. Some serve in a program’s assignments. E.g.:

 F(0) := 0 ; F(±1) := ±1 ; F(n+1) := F(n) + F(n – 1) ;
 F2(n) := F(n – 1) + F(n+1) ;

These include a Recurrence to compute an array of Fibonacci numbers F(n) ,
 and then another assignment to compute an array of related numbers F2(n) .

Some equations should be checked for correctness by a computerized algebra system like

 MATHEMATICA ®, MAPLE®, DERIVE®, … .

 E.g.: F(2n) = F2(n)·F(n) ; F(2n ± 1) = F2(n ± 1)·F(n) + (–1)n .
But the algebra systems cannot confirm these equations for all (i.e., symbolic) n because
they turn the Recurrence for F(n) into Recursion. A third flavor of equation is needed:

 τ ≡ (1 + √5)/2 ; F(n) ≡ (τ2n – (–1)n)/(τn·√5) ;
If these definitions precede the previous equations they all become easy to confirm, as are

 (1 – √5)/2 = –1/τ ; ((1 ± √5)/2)n = (F2(n) ± F(n)·√5)/2 ;

 F(3n) = (5F(n)2 + 3·(–1)n)·F(n) ; F(3n ± 1) = ±(±F(3n ± 3) – F(3n)) ;
regardless of whether τ is ever computed in floating-point.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 12/34

Three Flavors of Equations

•> “ A = B ” ;
Expressions A and B take the same values, provided this equation is confirmed. It

 may help to shorten the computation or confirmation of other equations.

•> “ A := C ” ;
Expression C is a good way to compute variable A , provided the equation is confirmed.

•> “ A ≡ E ” ;
Symbolic expression E defines A for later use by an automated algebra system, and
 may be used to compute A in the absence of “ A ≡ E := C ” .

More Examples of Equations:

 X(n) ≡ F(n+1)/F(n) := 13/8 – F(n – 6)/(8F(n)) ; (recall the presentation of zeros Z)

 b ≡ 3√τ , the positive cube root ; p ≡ 1/b ; (will be needed for cubics’ zeros)

 Q(n, x) ≡ F(n)·x2 – 2F(n+1)·x + F(n+2) has two zeros { X(n) ± ın/F(n) } . (tested)

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 13/34

Examples of Polynomials and their Zeros

Cubic: C(n, x) ≡ F(n)·x3 – 3F(n+1)·x2 + 3F(n+2)·x – F(n+3)

 has three zeros { X(n) + Φ(n)/F(n) , X(n) – (Φ(n) ± ı·ƒ(n)·√3)/(2F(n)) }

 wherein Φ(n) ≡ pn + (–b)n ; ƒ(n) ≡ bn – (–p)n .

Sixth degree: V6(n, x) ≡ F(6n)·x6
 – 6F(6n+1)·x5

 + 15F(6n+2)·x4
 – 20F(6n+3)·x3

 +

 + 15F(6n+4)·x2
 – 6F(6n+5)·x + F(6n+6)

 has two real zeros, namely { X(n) , X2(n) },

 and four complex, namely { X2(2n) + (±(1 – 2X2(2n)) + ı·√15)/(2F2(2n) ± 2) }
 and their complex conjugates,

 wherein X2(n) ≡ F2(n+1)/F2(n) := 13/8 – F2(n – 6)/(8F2(n)) .

As n increases, zeros cluster closer, thus becoming more vulnerable to roundoff.

Like these above, formulas for other polynomials’ zeros, some far more complicated,
have all been confirmed (laboriously) by an automated algebra system (DERIVE).

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 14/34

Are Polynomials’ Floating-Point Coefficients Exactly Right ?

Ideally, corruption by roundoff should be revealed by IEEE 754’s INEXACT Flag thus:

Lower INEXACT Flag ;
Compute all of a polynomial’s coefficients in floating-point ;
If INEXACT Flag is now Raised, coefficients are corrupted by roundoff.

But most programming languages, like MATLAB , deny access to the INEXACT Flag
though it exists in all hardware conforming fully to IEEE 754.

Without that flag, programmers must turn to …

Tedious Tricks:

E.g., F(n+1) := F(n) + F(n – 1) in floating-point ;
If (F(n+1) – F(n)) – F(n – 1) ≠ 0 then F(n+1) has been corrupted;
Else n < { 36 for 24 sig.bits, 73 for 15 sig.dec., 78 for 53 sig.bits, …}.

E.g., c3 := 15·f in Binary floating-point ;
If (c3 – 16·f) + f ≠ 0 then c3 has been corrupted.

In Decimal floating-point, most tricks are too much trickier to exhibit here.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 15/34

Samples of Numerical Results

… from tests of MATLAB ’s polynomial zero-finder roots (Coeffs) .

Its zeros are computed as the Eigenvalues of the polynomial’s Companion Matrix.

The first column shows True zeros; the second shows Errors in roots .
Red Italicized Digits are the digits obscured by computational errors.

Example: Results from a test of roots on a 6th degree polynomial V(8, x) .
 MinMaxErr ≈ 0.00593756

TrueZ__rootsErr =
 1 . 61904761904762 -0 . 0059
 1 . 61854034451496 + 0 . 00087782940757 i -0 . 0030 - 0 . 0051 i
 1 . 61854034451496 - 0 . 00087782940757 i -0 . 0030 + 0 . 0051 i
 1 . 61752717391304 + 0 . 00087703427224 i 0 . 0030 - 0 . 0051 i
 1 . 61752717391304 - 0 . 00087703427224 i 0 . 0030 + 0 . 0051 i
 1 . 61702127659574 0 . 0059

Over 12 of roughly 15 sig.dec. carried by MATLAB ’s arithmetic have been lost, thus
obscuring differences in the third dec., as an experienced Error-Analyst would expect.

Would you have expected that loss? Would you have noticed it?

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 16/34

Example: Results from a test of roots on a cubic polynomial (x + 1)·Q(68, x) .
 MinMaxErr ≈ 0.000000027

TrueZ__rootsErr =
 1 . 6180339 8874991 -0 . 000000027
 1 . 6180339 8874988 0 . 000000027
 -1 . 00000000000000 0

A very nearly double zero can be expected to lose about half of the 15 sig.dec. carried by
MATLAB ’s arithmetic, as happens here. My own real cubic solver does better:

Results from a test of my cubic solver on a cubic polynomial (x + 1)·Q(68, x) .
 MinMaxErr ≈ 0.00000000034

TrueZ___qbc3_Err =
 1 . 618033988 74991 -0 . 00000000034
 1 . 618033988 74988 0 . 00000000034
 -1 . 00000000000000 0

My real cubic solver qbc3.exe runs under DOS 6.22 or pre-2012
Windows on 32-bit Intel x86 architectures and many AMD clones.
It retains about 9 sig.dec. instead of about 7 at near-double zeros.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 17/34

Example: Results from a test of roots on a cubic polynomial C(42, x) .
 MinMaxErr ≈ 0.00001

TrueZ__rootsErr =
 1 . 6180 3713527852 -0 . 00001
 1 . 61803 241548559 + 0.00000 272496605 i 0 . 0000052 - 0.000009 i
 1 . 61803 241548559 - 0.00000 272496605 i 0 . 0000052 + 0.000009 i

A very nearly triple zero can be expected to lose about 10 of the 15 sig.dec. carried by
MATLAB ’s arithmetic, as happens here. My own real cubic solver does much better:

Results from a test of my cubic solver on a cubic polynomial C(42, x) .
 MinMaxErr ≈ 0.00000000000000003

TrueZ___qbc3_Err =
 1 . 61803713527852 0 . 0000…
 1 . 61803241548559 + 0.00000272496605 i 0 . 0000… + 0.0000… i
 1 . 61803241548559 - 0.00000272496605 i 0 . 0000… - 0.0000… i

My real cubic solver qbc3.exe always finds nearly triple zeros fairly
accurately because it evaluates cubics using a recurrence different

from Horner’s and no slower. A story for another day.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 18/34

When Do Zeros’ Accuracies Matter? A Didactic Example

Given a positive value of θ < 1 , but very near 1 ,
we seek a value of β that Minimizes the Maximum of the magnitudes

of the zeros Z of the quartic polynomial in x , …

 H(x, θ, β) := x4 – (β+1)(θ2+θ)·x3 + (θ3·(β+1)2+2β)·x2 – (θ2+θ)(β2+β)·x + β2 .

A MATLAB program computed the coefficients of H and fed them to roots .
 The largest |X| of the computed zeros X was plotted against β

to find β where that Max|X| is minimized.

 Also plotted are Max|X| computed by a modified version ro0ts of roots ,
 and Max|Z| for the true zeros Z .

 Green roots ’ Max|X| Blue ro0ts ’ Max|X| Red True Max|Z|

 To obtain readable numbers at tick-marks on the axes,
 we actually plot max|X| – 1 against β – 1 .

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 19/34

 θ = 1 – 1/224 = 0.99999994039536

-11 -10 -9 -8 -7 -6 -5 -4 -3

x 10
-4

-4

-3.5

-3

-2.5

-2

-1.5

-1
x 10

-4

 ß – 1

 m
ax

 |
X

|
–

 1

 THETA = 1 – 1/224

max|roots|
max|ro0ts|
max|X|

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 20/34

 θ = 1 – 1/225 = 0.99999997019768

-8 -7 -6 -5 -4 -3 -2

x 10
-4

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-4

 ß – 1

 m
ax

 |
X

|
–

 1

 THETA = 1 – 1/225

max|roots|
max|ro0ts|
max|X|

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 21/34

Computed zeros for θ = 1 – 1/225 = 0.99999997019768 and
 MiniMaxing β = 0.99951183793383

 True zeros Z(É) Errors in roots(É) Errors in ro0ts(É)
 0.99975588917187 0.00012230 0.00014906
 0.99975588917187 -0.00012232 -0.00014909
 0.99975585937682 + 0.00024408102581i 0.00000001 - 0.00002893i 0.00000002 - 0.00004192i
 0.99975585937682 - 0.00024408102581i 0.00000001 + 0.00002893i 0.00000002 + 0.00004192i

 MATLAB ’s arithmetic carries 53 sig.bits (over 15 sig.dec.),
 but roots and ro0ts lose all but the leading three

(though the computed zeros differ in their fourth digits)
 thus determining β to at most three sig.dec.

 But β is determined sharply by θ :

 the minimizing β = θ2/(1 + √((1-θ)(1+θ)))2 ,

Computed values of closely clustered zeros often appear less closely clustered,

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 22/34

Now that we see the numerical results, we see a need for a change of variables:

Replace variables x by y := 1–x , θ by t := 1–θ and β by b := 1–β to get

 H(1–y, 1–t, 1–b) = y4 + (2(t–3)t – (t–1)(t–2)b)·y3 –

 – (b2·(t–1)3 – (4t2 – 9t + 3)bt + (4t2 – 6t – 6)t)·y2 +

 + ((3b + (8–5b)t + 2(b–2)t2)(b–2)t)·y + (2–t)(b–2)2·t2 .

Solve “ H = 0 ” for relatively unclustered zeros Y to get accurate zeros X := 1 – Y .

Note that the change of variables has been carried out
EXTRA-PRECISELY

(actually infinitely precisely)
 using an automated algebra system.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 23/34

Conclusions Inferred from Test Results

Inaccuracies exposed by tests reinforce the demands of Prudence:

That our numerical root-finder’s accuracy be tested before we rely upon it.

 If then we desire numerically computed zeros more nearly faithful than
 roots(…) to a polynomial’s coefficients stored in a computer’s memory,

 we shall have to employ extra-precise arithmetic.

 The preparation of coefficients may entail extra-precise arithmetic too.

 How shall we discover whether extra-precise arithmetic is necessary
 to cope with polynomials that differ greatly from the ones tested ?

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 24/34

 How shall we discover whether extra-precise arithmetic is necessary
 to cope with polynomials that differ greatly from the ones tested ?

 Compute error-bounds for computed zeros.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 25/34

Error-Bounds for an Approximate Zero

Given are the n+1 numerical coefficients of a polynomial P of degree n .

We wish to compute one of the zeros z of P . It may be complex.

We have computed an approximation x to z , and

values of P(x) and its derivatives P'(x) and P" (x) are available.

How close is x to z ? Which zero z ?

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 26/34

Error-Bounds for an Approximate Zero

Given are the n+1 numerical coefficients of a polynomial P of degree n .

We wish to compute one of the zeros z of P . It may be complex.

We have computed an approximation x to z , and

values of P(x) and its derivatives P'(x) and P" (x) are available.

How close is x to z ? Which zero z ?

A zero z of P nearest x satisfies these inequalities:

•> Laguerre’s: |x – z| ≤ n·|P(x)/P'(x)| [£]

•> Kahan’s: |x – z| ≤ n·|P(x)|/√(|P'(x)|2 + | (n – 1)·P'(x)2 – n·P(x)·P" (x) |) [K]

[K] ≤ [£] always, usually not by much, sometimes by a lot.

But [K] costs more than [£] . Which should be used when?

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 27/34

Error-Bounds for an Approximate Zero

Proved in <www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf>

A zero z of P nearest x satisfies these inequalities:

•> Laguerre’s: |x – z| ≤ n·|P(x)/P'(x)| [£]

•> Kahan’s: |x – z| ≤ n·|P(x)|/√(|P'(x)|2 + | (n – 1)·P'(x)2 – n·P(x)·P" (x) |) [K]

[K] ≤ [£] always, usually not by much, sometimes by a lot.

But [K] costs more than [£] . Which should be used when?

[£] = ∞ @ zeros of P' not of P ; usually there are n – 1 of them.
[K] = ∞ @ Double zeros of P' ; usually there are none of them, at most (n – 1)/2 .

When is [K]/|x – z| << [£]/|x – z| for x near a zero of P ?

It happens when x has fallen amidst a cluster of zeros of P .

Alas, a cluster of zeros can be as unobvious as an unmarked minefield.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 28/34

Example 1: e(x) := x12 – 78x11 + 2717x10 – … – 1486442880x + 479001600

 Error-Bounds/|Error| for Polynomial e(x) := ∏1≤k≤12 (x – k)

0 2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

 X

 E
RR

-B
O

UN
D

/ E
RR

 Error-Bounds / Error for h = 1

Laguerre's [£]
 [K]

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 29/34

 e(x) := x12 – 78·x11
 + 2717·x10

 – 55770·x9 + 749463·x8 – 6926634·x7 + 44990231·x6 –

 – 206070150·x5 + 657206836·x4 – 1414014888·x3 + 1931559552x·2
 –

 – 1486442880·x + 479001600

 has zeros z = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 .

They don’t look clustered, but some actually are clustered by the following criterion:

A polynomial has a cluster of zeros if some can be made to coalesce
 by a relatively small perturbation of the polynomial’s coefficients.

A nearby polynomial ê(x) := e(x) – e(–x)·5.600278/1010 has coefficients differing
from those of e(x) in the tenth sig.dec., and yet this relatively tiny perturbation moves
zeros 8 and 9 of e to a double zero of ê near 8.4835138 . Thus, though adjacent zeros
are separated by gaps of 1 , some must be considered clustered (or ill-conditioned).

On the other hand, adjacent zeros of b(x) := x12
 – 1 are separated by only 0.517638

and yet none are clustered. And this shows up in the behaviors of [£] and [K] . …

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 30/34

 Error-Bounds/|Error| for Polynomial b(x) := x12 – 1

[£]/|x – z| ≈ 12 > [K]/|x – z| ≈ √12 ≈ 3.4641 when x is near a zero z of b .

Both [£]/|x – z| and [K]/|x – z| spike to ∞ as x approaches a multiple zero of b' .
When both spike up to ∞ , [£]’s spike is generally much wider than [K]’s .

0 0.5 1 1.5
10

0

10
1

10
2

10
3

 X

 E
RR

-B
OU

ND
 / E

RR

 Error-Bounds / Error for h = 1

Laguerre's [£]
 [K]

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 31/34

Example 3:

 Error-Bounds/|Error| for g(x) := (x2
 – h2)(x4

 + (h2
 – 3)(x2

 + h2) + 3 @ h = 9/8

Zeros of g : z = ±1.125 and z ≈ ±(0.939246 + 0.122459·ı and its complex conjugate) .
Derivative g' has a simple zero ζ = 0 , and two double zeros ζ = ±1 where

 both [£] and [K] spike up to ∞ . Again, [£]’s spike is far wider than [K]’s .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

0

10
1

10
2

10
3

 X

 E
RR

-B
OU

ND
 /

ER
R

 Error-Bounds / Error for h = 1.125

Laguerre's [£]
 [K]

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 32/34

Summary of Asymptotic Behaviors for Polynomials P of Degree n :

First let z be an n-tuple zero of P ; then [£] = [K] = |x – z| . (Unlikely.)

Next let z be a zero of P of positive multiplicity m < n . As x → z ,

 [£]/|x – z| → n/m > [K]/|x – z| → √n/m .

Next let ζ be a simple zero of P' , but not a zero of P . As x → ζ ,

 [£] ≈ n·|P(ζ)/P" (ζ)|/|x – ζ| → ∞ >> [K] → √n·|P(ζ)/P" (ζ)| .

Finally let ζ be a zero of P' of multiplicity m ≥ 2 , but not a zero of P . As x → ζ ,

[£] ≈ n·m!·|P(ζ)/P[m+1](ζ)|/|x – ζ|m >> [K] ≈ √(n·(m – 1)!·|P(ζ)/P[m+1](ζ)| /|x – ζ|m – 1) .

As both [£] and [K] spike up to ∞ , |x – ζ|·[£]/[K]2 → m in the spike.

This is why [K]’s spike is so much narrower than [£]’s ,
 if [K] has a spike; and then x is unlikely to fall onto it.

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 33/34

Resolution of Ambiguity

Given two estimates x1 and x2 of zeros of P ,

do x1 and x2 approximate different zeros, or the same one ?

This question has to be answered by error-bounds:

Compute error-bounds [£]1 for x1 and [£]2 for x2 .

If [£]1 + [£]2 < |x1 – x2| then x1 and x2 approximate different zeros of P .

 Otherwise compute smaller error-bounds [K]1 and [K]2 .

If [K]1 + [K]2 < |x1 – x2| then x1 and x2 are unambiguous.

Otherwise the two approximations are still ambiguous.

If the computed values of P" , P' and especially P are accurate enough, they can be
used to improve the estimates x1 and x2 using, say, Laguerre’s iteration formula.

Occasionally, however, attempts to improve clustered estimates actually worsen them.

•••• •
Ambiguous: Unambiguous:
overlapping
error-bounds

disjoint
error-bounds

File Nzme 28Oct15 Version dated October 29, 2015 6:53 pm

Prof. W. Kahan Page 34/34

Conclusion:
Compute [£] first.

Then, if [£] seems too big,
compute [K] .

