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Tests  for the  Accuracy  of 
 Polynomial Zero-Finders

 

Abstract

 

It is imprudent to trust a numerical zero-finder without first testing it.  Some software used 
to compute zeros of polynomials has been found surprisingly inaccurate for polynomials 
even of low degree.  Test data provided here takes the form of families of polynomials of 
degrees  2  to  6  with integer coefficients computable exactly in floating-point,  and with 
zeros whose accuracies challenge numerical methods increasingly as a parameter  n  is 
increased.  Provided too are formulas to compute the polynomials’ zeros extra-accurately 
without extra-precise arithmetic,  so they can be compared with a zero-finder’s results to 
test their accuracy.   If these polynomials differ too much from the ones you care about,  
how do you test your zero-finder on your data?  Two easily computed error-bounds,  one 
of them classical,  are offered here and compared to help you decide which is better suited 
to your needs.  

Details are posted at

 

 <www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf> 
 <www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf> 
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Ideally,  Polynomials  to  Test Zero-Finders’ Accuracies  should have …

 

•>

 

  Coefficients computable  

 

E

 

XACTLY

 

  in  floating-point arithmetic
because rounding off coefficients alters zeros,  sometimes a lot.

Our test-polynomials’ coefficients come from  Fibonacci  numbers  E

 

XACTLY

 

.

 

•>

 

  Zeros computable  

 

EXTRA-ACCURATELY

 

,  and without extra-precise arithmetic,
so that differences from a zero-finder’s results are truly their errors,  and

computable by the arithmetics of almost all programming languages.

Our test-polynomial’s zeros require no more than  IEEE-745 (1985 or 2008).

 

•>

 

  Ideally,  a wide range of challenges for numerical zero-finders;  but …

Our polynomials test only accuracies of clustered zeros,  only degrees  2 - 6 .

(  Other polynomials are needed to test high degrees,  zeros of widely divagated 
    magnitudes,  resistance to premature over/underflow,  ease of use,  complex 
    coefficients,  speed,  preservation of symmetries,  

 

∞

 

  and  

 

NaN

 

 inputs,  … .)
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Ideally,  Polynomials  to  Test Zero-Finders’ Accuracies  should  

 

Avoid

 

 …

 

•>

 

  Small Integers,  either as coefficients or as zeros.

WHY ?
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Ideally,  Polynomials  to  Test Zero-Finders’ Accuracies  should  

 

Avoid

 

 …

 

•>

 

  Small Integers,  either as coefficients or as zeros.

Why ?

 

 ROUNDOFF  is  ACCIDENTAL,  RAGGED  but  NOT RANDOM.

 

That is why a realistic assessment of roundoff’s impact upon a program can require that
accuracy be sampled at vastly many numerical inputs 

to expose both typical and worst-case behavior.

Small integers are best avoided because
they often incur  

 

ATYPICAL ROUNDINGS

 

 .

 

Floating-point Example:

 

                                                                

 

(Not for over-optimizing compilers)

 

 

 q := k

 

/

 

d ;     p := q·d ;     L := (

 

 

 

p = k

 

 

 

) ;            ... Is  L   

 

True

 

 ,  or  

 

False

 

  ?

If these assignments are rounded according to  IEEE 754 (1985) Binary,  and if  k  and  d  
are independent random floating-point numbers,  L  is  

 

False

 

  for about  11%  of them.

But for all small integers  |k| 

 

≤

 

 8000000 ,  say,  and for every integer  |d|  drawn from 
{ 1, 2, 3, 4, 5, 6,  8, 9, 10, 12, 16, 17, 18, 20, …} ,  L  is always  

 

True

 

.        

 

cf

 

. the stopped clock
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Ideally,  Polynomials  to  Test Zero-Finders’ Accuracies  should  

 

Avoid

 

 …

 

•>

 

  Small Integers,  either as coefficients or as zeros.

When  

 

all

 

  the coefficients  a

 

j

 

  of a test-polynomial  

 

Σ

 

j 

 

a

 

j

 

·x

 

m–j

 

  are small integers,

they should be   

 

S T

 

 

 

R E T C H E D

 

   by a pseudo-random multiplication.

S

 

TRETCHING

 

:  For binary floating-point with  p  sig.bits,

Generate a pseudo-random integer  R  between  2

 

p–1

 

  and  2

 

p

 

 

 

– 1 ;
Obtain a multiplier  M := floor

 

(

 

 R

 

/

 

max

 

j 

 

|a

 

j

 

| 

 

)

 

 ;

    If  M > 0

 

 

 

,  replace each  a

 

j

 

  by  M·a

 

j

 

 ;      … 

 

NO ROUNDOFF OCCURS

 

  

Then run the test to compute zeros;
M  may change their roundoff,  but not the polynomial’s true zeros.

( If  M = 0

 

 

 

,  the coefficients  a

 

j

 

  cannot  

 

all

 

  be small integers.)

All our test-polynomials’ coefficients are derived from  Fibonacci  numbers  F

 

(

 

n

 

)

 

 .
They are small integers for small values of  n ,  and should be stretched before use.
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How well does  one set of zeros  approximate  another ?

 

Suppose the  True Zeros  are  Z

 

1

 

, Z

 

2

 

, Z

 

3

 

, …, Z

 

J

 

, …, Z

 

m

 

 ,   and

   the  Computed Zeros  are   z

 

1

 

,  z

 

2

 

,  z

 

3

 

, …,  z

 

j

 

, …,  z

 

m

 

 .  

           Which differences are the  Errors  Z

 

J

 

 – z

 

j

 

  ?

If every zero  Z

 

J

 

  and  z

 

j

 

  is  Real,  sort them separately first to minimize  max

 

J

 

 

 

|

 

Z

 

J

 

 – z

 

J

 

|

 

  .

But if some zeros are  Complex  (not real),  though they come in complex conjugate pairs, 
the ordering that  minimizes  max

 

J

 

 

 

|

 

Z

 

J

 

 – z

 

J|  can be unobvious.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

••
•

•

•

•

+ +

+

+

+

+

Which  +  goes with which  •  ?

+ = z

• = Z
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How well does  one set of zeros  approximate  another ?

Suppose the  True Zeros  are  Z1, Z2, Z3, …, ZJ, …, Zm ,   and

   the  Computed Zeros  are   z1,  z2,  z3, …,  zj, …,  zm .  

           Which differences are the  Errors  ZJ – zj  ?

If every zero  ZJ  and  zj  is  Real,  sort them separately first to minimize  maxJ |ZJ – zJ|  .

But if some zeros are  Complex  (not real),  though they come in complex conjugate pairs, 
the ordering that  minimizes  maxJ |ZJ – zJ|  can be unobvious.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Let  π  range over  Permutations  of  { 1, 2, 3, …, m } .  The gauge of difference we seek is

  MinMaxError :=  minπ maxJ |ZJ – zπ(J)| ,

The minimizing permutation  π  need not be unique.
Must all  m!  of them be examined?  
Our  m! ≤ 6! = 720 ;  it’s tolerable.

I wish I had a better idea.
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Two ambiguous examples,  one with  m = 4,   one with   m = 5  :

•

•

•
•

•

+ +++

+ {zπ(j)} := {16, 24, 23, 17} 

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı} •

•

•
•

•

+ +++

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı}

+ {zπ(j)} := {24, 16, 23, 17}

•

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++ •

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++

+ {zπ(j)} := {20+3ı, 19, 25, 21, 20–3ı} + {zπ(j)} := {20+3ı, 19, 21, 25, 20–3ı}
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Extra-Accurate  presentations  of  true zeros  Z  

Why?

True zero  Z ;    computed zero  z ;    error  z – Z .

Rounding  Z  before the subtraction  z – Z  may obscure how accurately 
 z  has been computed when it has been computed very accurately.

Instead of rounding off the true zero  Z ,  our formulas present it in three pieces:

    E.g.,    “ Z = 13/8 + x + ξ ”    with   13/8 = 1.625  >>  |x|  >>  |ξ|      (when  n  is big).

Then the error  z – Z  is actually computed as

  Error  :=  ( ( z – 13/8 ) – x ) – ξ .

Unless  z  is terribly inaccurate,  the subtraction  z – 13/8  cancels exactly  (no rounding)  
and subsequent subtractions produce  z – Z  as if computed with one extra  sig.dec.
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Three Flavors  of  Equations

Equations serve diverse purposes.  Some serve in a program’s assignments.  E.g.:

 F(0) := 0 ;    F(±1) := ±1 ;    F(n+1) := F(n) + F(n – 1) ;  
 F2(n) := F(n – 1) + F(n+1) ;

These include a  Recurrence  to compute an array of  Fibonacci  numbers  F(n) ,
   and then another assignment to compute an array of related numbers  F2(n) .

Some equations should be checked for correctness by a computerized algebra system like

  MATHEMATICA ®,  MAPLE®,  DERIVE®,  … . 

 E.g.:       F(2n) = F2(n)·F(n) ;     F(2n ± 1) = F2(n ± 1)·F(n) + (–1)n .
But the algebra systems cannot confirm these equations for  all  (i.e., symbolic)  n  because 
they turn the  Recurrence  for  F(n)  into  Recursion.  A third flavor of equation is needed:

 τ ≡ (1 + √5)/2 ;    F(n) ≡ ( τ2n – (–1)n )/(τn·√5) ;
If these definitions precede the previous equations they all become easy to confirm,  as are

  (1 – √5)/2 = –1/τ ;      ((1 ± √5)/2)n = ( F2(n) ± F(n)·√5 )/2 ;

    F(3n) = ( 5F(n)2 + 3·(–1)n )·F(n) ;     F(3n ± 1) = ±( ±F(3n ± 3) – F(3n) ) ;
regardless of whether  τ  is ever computed in floating-point.
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Three Flavors  of  Equations

•>         “ A = B ” ;
Expressions  A  and  B  take the same values,  provided this equation is confirmed.  It

 may help to shorten the computation or confirmation of other equations.

•>        “ A := C ” ;
Expression  C  is a good way to compute variable  A ,  provided the equation is confirmed.

•>       “ A ≡ E ” ;
Symbolic expression  E  defines  A  for later use by an automated algebra system,  and 
  may be used to compute  A  in the absence of   “ A ≡ E := C ” .

More Examples  of  Equations:

   X(n) ≡ F(n+1)/F(n) := 13/8 – F(n – 6)/(8F(n))  ;          (recall the presentation of zeros  Z ) 

   b ≡ 3√τ ,  the positive cube root ;    p ≡ 1/b ;                    (will be needed for cubics’ zeros) 

   Q(n, x) ≡ F(n)·x2 – 2F(n+1)·x + F(n+2)   has two zeros   { X(n) ± ın/F(n) } .        (tested) 
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Examples of  Polynomials  and their  Zeros 

Cubic:    C(n, x) ≡  F(n)·x3 – 3F(n+1)·x2 + 3F(n+2)·x – F(n+3) 

 has  three zeros    { X(n) + Φ(n)/F(n) ,       X(n) – ( Φ(n) ± ı·ƒ(n)·√3 )/(2F(n)) }  

  wherein   Φ(n) ≡ pn + (–b)n ;        ƒ(n) ≡ bn – (–p)n .

Sixth degree:   V6(n, x) ≡  F(6n)·x6
 – 6F(6n+1)·x5

 + 15F(6n+2)·x4
 – 20F(6n+3)·x3

 + 

   + 15F(6n+4)·x2
 – 6F(6n+5)·x + F(6n+6) 

  has two real zeros,  namely  { X(n) ,    X2(n) },

  and four complex,  namely  { X2(2n)  +  ( ±(1 – 2X2(2n)) + ı·√15 )/(2F2(2n) ± 2) } 
  and their complex conjugates, 

   wherein  X2(n) ≡ F2(n+1)/F2(n) :=  13/8 – F2(n – 6)/(8F2(n)) .

As  n  increases,  zeros cluster closer,  thus becoming more vulnerable to roundoff.

Like these above,  formulas for other polynomials’ zeros,  some far more complicated,
have all been confirmed  (laboriously)  by an automated algebra system  (DERIVE).
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Are  Polynomials’  Floating-Point  Coefficients  Exactly Right ?

Ideally,  corruption by roundoff should be revealed by  IEEE 754’s  INEXACT Flag  thus:

Lower  INEXACT Flag ;
Compute all of a polynomial’s coefficients in floating-point ;
If  INEXACT Flag  is now Raised,  coefficients are corrupted by roundoff.

But most programming languages,  like  MATLAB ,  deny access to the  INEXACT Flag 
though it exists in all hardware conforming fully to  IEEE 754.

Without that flag,  programmers must turn to …

Tedious Tricks:

E.g., F(n+1) := F(n) + F(n – 1)  in floating-point ;
If  ( F(n+1) – F(n) ) – F(n – 1)  ≠ 0  then  F(n+1)  has been corrupted;
Else  n < { 36 for 24 sig.bits,   73 for 15 sig.dec.,   78 for 53 sig.bits, …}.

E.g., c3 := 15·f  in  Binary  floating-point ;
If  ( c3 – 16·f ) + f  ≠ 0  then  c3  has been corrupted.

In  Decimal  floating-point,  most tricks are too much trickier to exhibit here.
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Samples  of  Numerical Results

…  from tests of  MATLAB ’s  polynomial zero-finder  roots ( Coeffs )  .

Its zeros are computed as the  Eigenvalues  of the polynomial’s  Companion Matrix.

The first column shows  True  zeros;  the second shows  Errors  in  roots  .
Red Italicized Digits  are the digits obscured by computational errors.

Example:  Results from a test of  roots   on a  6th degree polynomial  V(8, x) .
  MinMaxErr ≈ 0.00593756 

TrueZ__rootsErr =
 1 . 61904761904762                            -0 . 0059
 1 . 61854034451496  + 0 . 00087782940757 i        -0 . 0030 - 0 . 0051 i
 1 . 61854034451496  - 0 . 00087782940757 i        -0 . 0030 + 0 . 0051 i
 1 . 61752717391304  + 0 . 00087703427224 i         0 . 0030 - 0 . 0051 i
 1 . 61752717391304  - 0 . 00087703427224 i         0 . 0030 + 0 . 0051 i
 1 . 61702127659574                             0 . 0059

Over  12  of roughly  15  sig.dec.  carried by  MATLAB ’s  arithmetic have been lost,  thus 
obscuring differences in the third dec.,   as an experienced  Error-Analyst  would expect.  

Would you have expected that loss?    Would you have noticed it?
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Example:  Results from a test of  roots   on a  cubic polynomial  (x + 1)·Q(68, x) .
  MinMaxErr ≈ 0.000000027 

TrueZ__rootsErr =
  1 . 6180339 8874991 -0 . 000000027
  1 . 6180339 8874988  0 . 000000027
 -1 . 00000000000000  0

A very nearly double zero can be expected to lose about half of the  15 sig.dec.  carried by  
MATLAB ’s  arithmetic,  as happens here.  My own real cubic solver does better:

Results from a test of my cubic solver on a  cubic polynomial  (x + 1)·Q(68, x) .
  MinMaxErr ≈ 0.00000000034 

TrueZ___qbc3_Err =
  1 . 618033988 74991 -0 . 00000000034
  1 . 618033988 74988  0 . 00000000034
 -1 . 00000000000000  0

My real cubic solver  qbc3.exe  runs under  DOS 6.22  or  pre-2012  
Windows  on  32-bit  Intel x86  architectures and many  AMD clones.
It retains about  9 sig.dec.  instead of about  7  at near-double zeros.
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Example:  Results from a test of  roots   on a  cubic polynomial  C(42, x) .
  MinMaxErr ≈ 0.00001 

TrueZ__rootsErr =
  1 . 6180 3713527852                         -0 . 00001
  1 . 61803 241548559  + 0.00000 272496605 i      0 . 0000052 - 0.000009 i  
  1 . 61803 241548559  - 0.00000 272496605 i      0 . 0000052 + 0.000009 i  

A very nearly triple zero can be expected to lose about  10  of the  15 sig.dec.  carried by  
MATLAB ’s  arithmetic,  as happens here.  My own real cubic solver does much better:

Results from a test of my cubic solver on a  cubic polynomial  C(42, x) .
  MinMaxErr ≈ 0.00000000000000003 

TrueZ___qbc3_Err =
  1 . 61803713527852                         0 . 0000… 
  1 . 61803241548559 + 0.00000272496605 i      0 . 0000… + 0.0000… i  
  1 . 61803241548559 - 0.00000272496605 i      0 . 0000… - 0.0000… i  

My real cubic solver  qbc3.exe  always finds nearly triple zeros fairly  
accurately because it evaluates cubics using a recurrence different 

from  Horner’s  and no slower.  A story for another day.
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When Do Zeros’ Accuracies Matter?   A  Didactic  Example

Given a positive value of   θ < 1 ,  but very near  1 ,
we seek a value of   β   that  Minimizes the Maximum  of the magnitudes

of the zeros  Z  of the  quartic polynomial in  x ,  …

 H(x, θ, β) := x4 – (β+1)(θ2+θ)·x3 + (θ3·(β+1)2+2β)·x2 – (θ2+θ)(β2+β)·x + β2 .

A  MATLAB   program computed the coefficients of  H  and fed them to  roots  .
  The largest  |X|  of the computed zeros  X  was plotted against   β 

to find  β  where that  Max|X|  is minimized.

 Also plotted are  Max|X|  computed by a modified version  ro0ts   of  roots  ,   
 and  Max|Z|  for the true zeros  Z .

      Green roots ’ Max|X|          Blue ro0ts ’ Max|X|               Red True Max|Z|  

 To obtain readable numbers at tick-marks on the axes,
  we actually plot  max|X| – 1  against  β – 1 .



File Nzme  28Oct15                                                                                                                                                                   Version dated October 29, 2015 6:53 pm

Prof. W. Kahan                                                                                                                                                                                                                                     Page 19/34

                                         θ = 1 – 1/224 = 0.99999994039536  
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                                        θ = 1 – 1/225 = 0.99999997019768  
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Computed zeros for    θ = 1 – 1/225 = 0.99999997019768    and
 MiniMaxing  β =  0.99951183793383 

 True zeros  Z(É)                Errors in  roots(É)    Errors in  ro0ts(É)  
 0.99975588917187                      0.00012230                 0.00014906   
 0.99975588917187                     -0.00012232                -0.00014909 
 0.99975585937682 + 0.00024408102581i  0.00000001 - 0.00002893i   0.00000002 - 0.00004192i 
 0.99975585937682 - 0.00024408102581i  0.00000001 + 0.00002893i   0.00000002 + 0.00004192i 

 MATLAB ’s  arithmetic carries  53 sig.bits  (over  15 sig.dec.),  
 but  roots   and  ro0ts   lose all but the leading three 

( though the computed zeros differ in their fourth digits )
 thus determining  β  to at most  three sig.dec.

  But  β  is determined sharply by  θ :

 the minimizing  β = θ2/( 1 + √((1-θ)(1+θ)) )2 ,

Computed values of closely clustered zeros often appear less closely clustered,
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Now that we see the numerical results,  we see a need for a change of variables:

Replace variables    x  by  y := 1–x ,    θ  by  t := 1–θ    and    β  by  b := 1–β  to get

    H(1–y, 1–t, 1–b)  =  y4 + (2(t–3)t – (t–1)(t–2)b)·y3 – 

  – (b2·(t–1)3 – (4t2 – 9t + 3)bt + (4t2 – 6t – 6)t)·y2 + 

 + ((3b + (8–5b)t + 2(b–2)t2)(b–2)t)·y + (2–t)(b–2)2·t2 .

Solve  “ H = 0 ”  for relatively unclustered zeros  Y  to get accurate zeros  X := 1 – Y .

Note that the change of variables has been carried out
EXTRA-PRECISELY

(actually infinitely precisely)
 using an automated algebra system.
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Conclusions Inferred  from  Test Results

Inaccuracies exposed by tests reinforce the demands of  Prudence:  

That our numerical root-finder’s accuracy be tested before we rely upon it.

  If then we desire numerically computed zeros more nearly faithful than 
  roots(…)   to a polynomial’s coefficients stored in a computer’s memory,

   we shall have to employ extra-precise arithmetic. 

    The preparation of coefficients may entail extra-precise arithmetic too.

    How shall we discover whether extra-precise arithmetic is necessary
      to cope with polynomials that differ greatly from the ones tested ? 
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    How shall we discover whether extra-precise arithmetic is necessary
      to cope with polynomials that differ greatly from the ones tested ? 

 Compute error-bounds for computed zeros.
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Error-Bounds  for an  Approximate Zero

Given are the  n+1  numerical coefficients of a polynomial  P  of degree  n .

We wish to compute one of the zeros  z  of  P .     It may be complex.

We have computed an approximation  x  to  z ,   and

values of   P(x)  and its derivatives  P'(x)  and  P" (x)  are available.

How close is  x  to  z  ?    Which zero  z  ?
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Error-Bounds  for an  Approximate Zero

Given are the  n+1  numerical coefficients of a polynomial  P  of degree  n .

We wish to compute one of the zeros  z  of  P .     It may be complex.

We have computed an approximation  x  to  z ,   and

values of   P(x)  and its derivatives  P'(x)  and  P" (x)  are available.

How close is  x  to  z  ?    Which zero  z  ?

A zero  z  of  P  nearest  x  satisfies these inequalities:

•> Laguerre’s: |x – z|  ≤  n·|P(x)/P'(x)|    [£] 

•> Kahan’s: |x – z|  ≤  n·|P(x)|/√( |P'(x)|2 + | (n – 1)·P'(x)2 – n·P(x)·P" (x) | )        [K]

[K] ≤ [£]  always,  usually not by much,  sometimes by a lot.

But  [K]  costs more than  [£] .  Which should be used when?
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Error-Bounds  for an  Approximate Zero

Proved in   <www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf>

A zero  z  of  P  nearest  x  satisfies these inequalities:

•> Laguerre’s: |x – z|  ≤  n·|P(x)/P'(x)|    [£] 

•> Kahan’s: |x – z|  ≤  n·|P(x)|/√( |P'(x)|2 + | (n – 1)·P'(x)2 – n·P(x)·P" (x) | )        [K]

[K] ≤ [£]  always,  usually not by much,  sometimes by a lot.

But  [K]  costs more than  [£] .  Which should be used when?

[£] = ∞   @  zeros of  P'   not of  P ;  usually there are  n – 1  of them.
[K] = ∞  @  Double  zeros of  P'  ;    usually there are none of them,  at most  (n – 1)/2 . 

When is    [K]/|x – z| << [£]/|x – z|    for  x  near a zero of  P  ?  

It happens when  x  has fallen amidst a  cluster  of zeros of  P .

Alas,  a  cluster  of zeros can be as unobvious as an unmarked minefield.



File Nzme  28Oct15                                                                                                                                                                   Version dated October 29, 2015 6:53 pm

Prof. W. Kahan                                                                                                                                                                                                                                     Page 28/34

Example 1:   e(x) := x12 – 78x11 + 2717x10 – … – 1486442880x + 479001600 

  Error-Bounds/|Error|  for  Polynomial  e(x) := ∏1≤k≤12 (x – k) 
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 e(x) := x12  – 78·x11
 + 2717·x10

 – 55770·x9 + 749463·x8 – 6926634·x7 + 44990231·x6 –

 –  206070150·x5 + 657206836·x4 – 1414014888·x3 + 1931559552x·2
 – 

 – 1486442880·x + 479001600 

 has zeros  z = 1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11  and  12 .

They don’t look clustered,  but some actually are clustered by the following criterion:

A polynomial has a cluster of zeros if some can be made to coalesce 
 by a relatively small perturbation of the polynomial’s coefficients.

A nearby polynomial    ê(x) := e(x) – e(–x)·5.600278/1010    has coefficients differing 
from those of  e(x)  in the tenth sig.dec.,  and yet this relatively tiny perturbation moves 
zeros  8  and  9  of  e  to a double zero of  ê  near  8.4835138 .  Thus,  though adjacent zeros 
are separated by gaps of  1 ,  some must be considered  clustered  (or  ill-conditioned ).

On the other hand,  adjacent zeros of    b(x) := x12
 – 1    are separated by only  0.517638  

and yet none are clustered.  And this shows up in the behaviors of  [£]  and  [K] .  … 
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 Error-Bounds/|Error|  for  Polynomial  b(x) := x12 – 1 

[£]/|x – z| ≈ 12  > [K]/|x – z| ≈ √12 ≈ 3.4641  when  x  is near a zero  z  of  b .

Both  [£]/|x – z|  and  [K]/|x – z|  spike to  ∞  as  x  approaches a multiple zero of  b'  .
When both spike up to  ∞ ,  [£]’s  spike is generally much wider than  [K]’s .

0 0.5 1 1.5
10

0

10
1

10
2

10
3

 X 

 E
RR

-B
OU

ND
 / E

RR
 

 Error-Bounds / Error   for  h = 1

Laguerre's  [£]
 [K]



File Nzme  28Oct15                                                                                                                                                                   Version dated October 29, 2015 6:53 pm

Prof. W. Kahan                                                                                                                                                                                                                                     Page 31/34

Example 3:

 Error-Bounds/|Error|  for    g(x) := (x2
 – h2)(x4

 + (h2
 – 3)(x2

 + h2) + 3   @  h = 9/8 

Zeros of  g :    z = ±1.125  and  z ≈ ±( 0.939246 + 0.122459·ı  and its complex conjugate) .
Derivative  g'   has a simple zero  ζ = 0 ,  and two double zeros  ζ = ±1  where

 both  [£]  and  [K]  spike up to  ∞ .  Again,  [£]’s  spike is far wider than  [K]’s .
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Summary  of  Asymptotic Behaviors  for  Polynomials  P  of  Degree  n :

First let  z  be an  n-tuple zero of  P ;   then   [£] = [K] = |x – z| .        (Unlikely.)

Next let  z  be a zero of  P  of positive multiplicity  m < n .   As  x → z , 

  [£]/|x – z| → n/m            >                  [K]/|x – z| → √n/m  .

Next let  ζ  be a  simple  zero of  P'  ,   but not a zero of  P .   As  x → ζ , 

  [£] ≈ n·|P(ζ)/P" (ζ)|/|x – ζ| → ∞    >>    [K] → √n·|P(ζ)/P" (ζ)|  .

Finally let  ζ  be a zero of  P'   of multiplicity  m ≥ 2 ,  but not a zero of  P .   As  x → ζ ,

[£] ≈ n·m!·|P(ζ)/P[m+1](ζ)|/|x – ζ|m   >>   [K] ≈ √( n·(m – 1)!·|P(ζ)/P[m+1](ζ)| /|x – ζ|m – 1 ) .

As both  [£]  and  [K]  spike up to  ∞ ,    |x – ζ|·[£]/[K]2 → m  in the spike.

This is why  [K]’s  spike is so much narrower than  [£]’s ,
 if  [K]  has a spike;  and then  x  is unlikely to fall onto it.
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Resolution  of  Ambiguity

Given two estimates  x1  and  x2  of zeros of  P ,

do  x1  and  x2  approximate different zeros,  or the same one ?

This question has to be answered by error-bounds:

Compute error-bounds  [£]1  for  x1  and  [£]2  for  x2 .

If   [£]1 + [£]2 < |x1 – x2|   then  x1  and  x2  approximate different zeros of  P .

 Otherwise compute smaller error-bounds  [K]1  and  [K]2 .

If   [K]1 + [K]2 < |x1 – x2|   then  x1  and  x2  are unambiguous.

Otherwise the two approximations are still ambiguous.

If the computed values of  P"  ,  P'   and especially  P  are accurate enough,  they can be 
used to improve the estimates  x1  and  x2  using,  say,  Laguerre’s  iteration formula.   

Occasionally, however,  attempts to improve clustered estimates actually worsen them.

•••• •
Ambiguous: Unambiguous:
overlapping
error-bounds

disjoint
error-bounds
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Conclusion:
Compute  [£]  first.

Then,  if  [£]  seems too big,
compute  [K] .


