Outline

- Empirical Rademacher complexity and Lipschitz classes
- Empirical Rademacher complexity and Kernels

Recap

Given class \mathcal{F} and samples $\{X^{(i)}\}$, the *empirical Rademacher complexity* $\hat{R}_n(\mathcal{F})$ is defined as:

$$\hat{R}_n(\mathcal{F}) = \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f \left(X^{(i)} \right) \right| \right]$$

$\hat{R}_n(\mathcal{F})$ comes in the proof of ULLN (Glivenko-Cantelli). Last time observed that:

$$\hat{R}_n(\mathcal{F}) \leq \sqrt{\frac{2}{n} \log \left[s(\mathcal{F}, \{X^{(i)}\}) \right]} \quad (19.1)$$

where $s(\mathcal{F}, \{X^{(i)}\})$ is the empirical shatter coefficient for set $\{X^{(i)}\}$ and function class \mathcal{F}. $s(\mathcal{F}, \{X^{(i)}\})$ is a random quantity which is always \leq worst-case shatter coefficient $\max_{\{X^{(i)}\}} s(\mathcal{F}, \{X^{(i)}\})$. In general, bound (19.1) is sharper than the worst-case one, which is defined by the VC dimension of the function class \mathcal{F}.

Useful result for finite classes is the following lemma.

Lemma 19.1. For a finite set $A \subseteq \mathbb{R}^n$ with $\frac{1}{n} \sum_i a_i^2 \leq B$, $\forall a \in A$.

$$\mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} a_i \right| \right] \leq B \sqrt{\frac{2}{n} \log |A|}.$$

Proof. left as an exercise. Hint: consider the worst-case scenario for a vector (a_i) with bounded norm, and use a bound for sub-Gaussian RVs from previous homework. \hfill \Box

19.1 Behavior with respect to Lipschitz functions

Normally, we work with loss function \mathcal{L}, which in turn induces a loss function class: $\mathcal{F} \rightarrow \mathcal{L}(\mathcal{F})$.

Lemma 19.2. (Ledoux-Talagrand contraction inequality) Let $\phi_i : \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz functions with parameter L, $\forall i = 1, \ldots, n$, i.e. $|\phi_i(a) - \phi_i(b)| \leq L |a - b|$, $\forall a, b \in \mathbb{R}$. Then,

$$\hat{R}_n(\phi \circ \mathcal{F}) = \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} \phi_i \left(f \left(X^{(i)} \right) \right) \right| \right] \leq L \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f \left(X^{(i)} \right) \right| \right] = L \hat{R}_n(\mathcal{F}),$$

where $\phi \circ \mathcal{F} = \{ \phi \circ f : f \in \mathcal{F} \}$ is the loss function class $\mathcal{L}(\mathcal{F})$.

19-1
19.1.1 Consequences for classification

Let \(\phi \) be one of the surrogate convex losses (illustration shown in Figure 19.1):

1. hinge loss, used in SVM: \(\phi(t) = \max(0, 1 - t) \) - loss function class is Lipschitz with \(L = 1 \);
2. logistic loss used in, for example, in logistic regression: \(\phi(t) = \log(1 + e^{-t}) \) - loss function class is Lipschitz with \(L = \sup_t \left| \frac{e^{-t}}{1 + e^{-t}} \right| = 1 \);
3. exponential loss used in boosting: \(\phi(t) = e^{-t} \) - corresponding loss function class is not globally Lipschitz. Usually, one has \(\forall f \in \mathcal{F} \) that \(\|f\|_{\infty} \leq B \), for some \(B > 0 \), i.e. \(\mathcal{F} \) is uniformly bounded class; in boosting, margin \(|t| = |Yf(X)| \leq 1 = B \). Hence, the exponential loss class is locally Lipschitz \(L = e^B \), \(|t| \leq B \).

How can the Ledoux-Talagrand contraction inequality be used in practice? If a surrogate loss \(\phi \) is \(L \)-Lipschitz, then the following bound holds with high probability \(\geq 1 - \delta \), \(\delta > 0 \):

\[
E_{\text{test}} \left[\phi \left(Y\hat{f}_n(X) \right) \right] \leq \hat{E} \left[\phi \left(Y\hat{f}_n(X) \right) \right] + 2\hat{R}_n(\phi \circ \mathcal{F}) + c\sqrt{\log \frac{1}{\delta}} n,
\]

where \(c \) is constant, usually between 1 and 2; \(E_{\text{test}} \left[\phi \left(Y\hat{f}_n(X) \right) \right] \) is the population risk of the classifier \(\hat{f}_n \); \(\hat{E} \left[\phi \left(Y\hat{f}_n(X) \right) \right] \) is the training data risk of \(\hat{f}_n \) computed easily. Thus, by the contraction inequality,

Proof. Quite technical; skipped. \(\square \)
Proof. a) Using properties of RKHS,

\[\hat{R}_n(\phi \circ \mathcal{F}) \leq L \hat{R}_n(\mathcal{F}) \]

with \(L \) being the corresponding Lipschitz constant of the loss function class. Note that the population risk of \(\hat{f}_n \) using surrogate loss function \(\phi \) is an upper bound for the population risk under the 0–1 loss because of the convexity of \(\phi \).

19.2 Link to kernels

So far in this course, we have considered a broad class of “kernelized” methods (SVM, boosting, logistic) that choose \(f_n \) that minimize the penalized empirical risk over “nice” function classes \(\mathcal{F} \) whose elements \(f \) live in a Reproducible Kernel Hilbert Spaces (RKHS) endowed with a norm \(\| f \|_\mathcal{H} \):

\[
\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \phi \left(Y^{(i)} f \left(X^{(i)} \right) \right) + \lambda_n \| f \|_\mathcal{H}^2.
\]

(19.2)

By Lagrangian duality, minimization of the objective (19.2) is equivalent to

\[
\min_{\| f \|_\mathcal{H} \leq B_n} \frac{1}{n} \sum_{i=1}^{n} \phi \left(Y^{(i)} f \left(X^{(i)} \right) \right),
\]

where \(B_n \) depends on \(\lambda_n \). Define, the effective class \(\mathcal{F}_{B,\mathcal{H}} = \{ f \in \mathcal{H} : \| f \|_\mathcal{H}^2 \leq B \} \) which is a B-ball in the Hilbert space \(\mathcal{H} \). Let’s try to understand \(\hat{R}_n(\mathcal{F}_{B,\mathcal{H}}) \). Since \(\mathcal{H} \) is a RKHS there exist a PSD kernel \(\mathbb{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \).

Theorem 19.3. [The empirical Rademacher complexity of a B-ball in RKHS \(\mathcal{H} \), \(\hat{R}_n(\mathcal{F}_{B,\mathcal{H}}) \), has the following properties:

a) \(\hat{R}_n(\mathcal{F}_{B,\mathcal{H}}) \leq \frac{B}{\lambda_n} \sqrt{\text{tr}(\mathbb{K})} = \frac{B}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \mathbb{K}(X^{(i)},X^{(i)})} \), where \(\mathbb{K} \in \mathbb{R}^{n \times n} \) and \(K_{ij} = \mathbb{K}(X^{(i)},X^{(j)}) \);

b) Define kernel operator \(T_{\mathbb{K}} : (T_{\mathbb{K}}f)(\cdot) = \int f(\cdot) \mathbb{K}(\cdot,t)dP(t) \), \(X \sim P \). If \(T_{\mathbb{K}} \) satisfies the conditions of Mercer’s theorem then \(\mathbb{E}_X \left[\hat{R}_n(\mathcal{F}_{B,\mathcal{H}}) \right] \leq \frac{B}{\lambda_n} \sqrt{\sum_{i=1}^{\infty} \mu_i} \), where \(\mu_1 \geq \mu_2 \geq \ldots \) are the eigenvalues of \(T_{\mathbb{K}} \).

Before we prove theorem 19.3, let’s note that \(\lambda_n \) (and thus \(B_n = B_n(\lambda_n) \)) controls the trade-off between the empirical risk and the richness of \(\mathcal{F}_{B,\mathcal{H}} \); as the empirical risk goes down when \(n \to \infty \), the norm penalty will go up. Hence, choosing \(\lambda_n \) sufficiently small will ensure proper balance between risk and penalty; consequently, \(\lambda_n \to 0 \), as \(n \to \infty \). Moreover, from previous lectures we know that the spectrum of the kernel operator \(T_{\mathbb{K}} \) determines the complexity of the kernel; when \(T_{\mathbb{K}} \) has finite number of eigenvalues, the functional class \(\mathcal{F}_{B,\mathcal{H}} \) is not very rich.

Proof. a) Using properties of RKHS,

\[
\sup_{f \in \mathcal{F}_{B,\mathcal{H}}} \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} f \left(X^{(i)} \right) = \]

(by representer theorem) \[
= \sup_{f \in \mathcal{F}_{B,\mathcal{H}}} \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} \left(f, \mathbb{K} \left(\cdot, X^{(i)} \right) \right)
\]

(by inner product linearity) \[
= \sup_{f \in \mathcal{F}_{B,\mathcal{H}}} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} \mathbb{K} \left(\cdot, X^{(i)} \right), f \right)
\]

\[
= B \left\| \frac{1}{n} \sum_{i=1}^{n} \sigma^{(i)} \mathbb{K} \left(\cdot, X^{(i)} \right) \right\|_{\mathcal{H}}.
\]

19-3
where last inequality follows from the observation that \(\max_{x: \|x\|_\mathcal{H} \leq B} \langle x, a \rangle = \max_{x: \|x\|_\mathcal{H} = B} \langle x, a \rangle = B \|a\|_\mathcal{H} \) using Cauchy-Schwartz inequality. Hence,

\[
\hat{R}_n(\mathcal{F}, \mathcal{H}) = B \mathbb{E}_\sigma \left[\frac{1}{n} \sum_{i=1}^n \sigma(i) \mathbb{E}_{X} \left[\langle X(i), X \rangle \right] \right]
\]

by Jensen’s inequality) \[\leq B \left[\frac{1}{n^2} \sum_{i,j=1}^n \mathbb{E}_\sigma \left[\sigma(i) \sigma(j) \mathbb{E}_{X} \left[\langle X(i), X(j) \rangle \right] \right] \right] \]

\[
= \frac{B}{\sqrt{n}} \left[\frac{1}{n} \sum_{i=1}^n \mathbb{E}_{X} \left[\langle X(i), X(i) \rangle \right] \right],
\]

since \(\mathbb{E}_\sigma \left[\sigma(i) \sigma(j) \right] = \mathbb{I} (i = j) \).

b) Moreover,

\[
\mathbb{E}_X \left[\hat{R}_n(\mathcal{F}, \mathcal{H}) \right] \leq \frac{B}{\sqrt{n}} \left[\frac{1}{n} \sum_{i=1}^n \mathbb{E}_X \left[\mathbb{K}(X(i), X(i)) \right] \right] \leq \frac{B}{\sqrt{n}} \sqrt{\mathbb{E}_X \left[\mathbb{K}(X, X) \right]}.
\]

By Mercer’s theorem:

\[
\mathbb{K}(x, y) = \sum_{i=1}^\infty \mu_i \psi_i(x) \psi_i(y),
\]

where \(\psi_i(x) \) are the eigenfunctions of \(T_\mathbb{K} \), which are orthonormal: \(\int \psi_i(x) \psi_j(x) dP(X) = \mathbb{I} (i = j) \). Hence,

\[
\mathbb{E}_X \left[\mathbb{K}(X, X) \right] = \sum_{i=1}^\infty \mu_i \mathbb{E}_X \left[\psi_i^2(x) \right] = \sum_{i=1}^\infty \mu_i.
\]