Note: These lecture notes are still rough, and have only have been mildly proofread.

Outline

- Consistency in classification
- Bounded difference inequality

Recap

Last time we proved that

$$
\Pr[|R(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f)| > \epsilon] \leq 8s(\mathcal{F}, n) \exp\left(-n\epsilon^2 \frac{1}{128}\right),
$$

where $R(\hat{f}_n)$ is the population risk of empirically optimal $\hat{f}_n \in \mathcal{F}$, and $s(\mathcal{F}, n)$ is the nth shatter coefficient of the class \mathcal{F}.

We now state a consequence for the expected value:

Corollary 15.1. Under the same conditions, we have

$$
0 \leq \mathbb{E}[R(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f)] \leq 16\sqrt{\frac{\log(8s(\mathcal{F}, n))}{2n}} = \mathcal{O}\left(\sqrt{\frac{V_{\mathcal{F}} \log(n)}{n}}\right),
$$

where $V_{\mathcal{F}}$ is the VC dimension of the class.

Proof: This corollary is a consequence of the bound (15.1) and the following lemma.

Lemma 15.2. If a non-negative random variable satisfies $\Pr[Z > t] \leq ce^{-2nt^2}$ for some constant $c < \infty$, then

$$
\mathbb{E}[Z] \leq \sqrt{\frac{\log(c\epsilon)}{2n}}.
$$

(15.2)
Proof: We begin by noting that since the variance of a random variable is non-negative, we have $\mathbb{E}[Z]^2 \leq \mathbb{E}[Z^2]$. Therefore, we have

$$
\mathbb{E}[Z^2] = \int_0^\infty \mathbb{P}(Z^2 > t)dt
= \int_0^u \mathbb{P}(Z^2 > s)ds + \int_u^\infty \mathbb{P}(Z^2 > s)ds
\leq u + \int_u^\infty c \exp(-2ns)ds
= u + \frac{c}{2n} e^{-2nu}.
$$

Optimizing over $u > 0$ concludes the proof. \(\square\)

15.1 Bounded difference inequality (McDiarmid, 1989)

It is often the case that we are given an i.i.d. sequence X_1, X_2, \ldots of random variables, and some function $f : X^n \to \mathbb{R}$, and we would like to control the difference

$$
V := f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)]
$$

of $f(X_1, \ldots, X_n)$ from its expectation. Let us say that a function f satisfies the bounded difference condition with parameters (c_1, \ldots, c_n) if for each $j = 1, \ldots, n$, we have

$$
\sup_{x_j, y_j \in X} |f(x_1, \ldots, x_{j-1}, y_j, x_{j+1}, \ldots, x_n) - f(x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_n)| \leq c_j. \quad (15.3)
$$

This condition means that by changing the jth co-ordinate of the function, we can change the function value by at most c_j.

15.1.1 Statement of result and some examples

We now state a useful concentration result for i.i.d. RVs and functions that satisfy a bounded difference property.

Theorem 15.3. Suppose that a function f satisfies the bounded difference property with parameters (c_1, \ldots, c_n). Then for an i.i.d. sequence X_1, X_2, \ldots, X_n and for all $\epsilon > 0$, we have:

$$
\mathbb{P}(|f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)]| > \epsilon) \leq 2 \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right). \quad (15.4)
$$

Let us consider some examples to illustrate:

Examples:

(a) Suppose that

$$
f(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i,
$$

corresponding to the set-up for the usual law of large numbers. If the \(X_i \) are bounded RVs (i.e., \(|X_i| \leq M/2 \) for all \(i \)), then the bounded difference property holds with \(c_i = \frac{M}{n} \) for all \(i \) and hence

\[
\mathbb{P}[\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right| > \epsilon] \leq 2 \exp\left(\frac{-n\epsilon^2}{M^2}\right).
\]

Thus, we recover the Hoeffding bound for i.i.d. variables as a special case.

(b) Now suppose that \(f \) is differentiable with \(\sup_{x \in \mathbb{R}^n} |\frac{\partial f(x)}{\partial x}| = L_j < \infty \), corresponding to imposing a Lipschitz condition on each partial derivative of \(f \). This condition means that \(f \) does not change very fast in any particular direction. If \(|X_j| \leq \frac{M}{2} \) then the bounded difference condition holds with \(c_j = L_j M \). Example (a) is a special case of this more general condition.

15.1.2 Proof of Theorem 15.3

We begin by noting that \(V = f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)] \) can be decomposed as the sum \(V = \sum_{i=1}^{n} Z_i \), where \(Z_1 = \mathbb{E}[V | X_1] - \mathbb{E}[V] \), and

\[
Z_{i+1} = \mathbb{E}[V | X_1, \ldots, X_{i+1}] - \mathbb{E}[V | X_1, \ldots, X_i] \quad \text{for} \quad i = 1, \ldots, n - 1. \tag{15.5}
\]

(Note that \(\mathbb{E}[V | X_1, \ldots, X_n] = V \) since \(V \) is a function of the \(\{X_i\} \).) Moreover, note that \(\mathbb{E}[Z_1] = 0 \) and \(\mathbb{E}[Z_i | X_1, \ldots, X_{i-1}] = 0 \), which implies that \(\{Z_i\} \) is a martingale difference sequence with respect to \(\{X_i\} \). With this decomposition, our strategy is to show that \(Z_i \in [A_i, B_i] \) for suitable random variables that are functions of \((X_1, \ldots, X_{i-1}) \). We will then show that \(B_i - A_i \) is bounded almost surely by some constant \(c \). Under this condition, the conditioned random variable \((Z_i | X_1, \ldots, X_{i-1}) \) is a bounded random variable, so that we upper bound the moment-generating function \(\mathbb{E}[\exp(tZ_i) | X_1, \ldots, X_{i-1}] \) by \(\exp(t^2c^2/2) \), and then proceed as in the proof of the Azuma-Hoeffding inequality.

It remains to show that \(Z_i \in [A_i, B_i] \) for suitable random variables that are functions of \((X_1, \ldots, X_{i-1}) \). Define the function \(H_i(x_1, \ldots, x_i) = \mathbb{E}[f(X_1, \ldots, X_n) | X_1 = x_1, \ldots, X_i = x_i] \), and let us write

\[
Z_i = H_i(X_1, \ldots, X_i) - \int H_i(X_1, \ldots, X_{i-1}, t) dF_i(t)
\]

where \(F_i \) is the distribution function of \(X_i \). Next define the random variables

\[
B_i := \sup_{u \leq X_i} [H_i(X_1, \ldots, X_{i-1}, u) - \int H_i(X_1, \ldots, X_{i-1}, t) dF_i(t)], \quad \text{and} \quad \tag{15.6a}
\]

\[
A_i := \inf_{v \leq X_i} [H_i(X_1, \ldots, X_{i-1}, v) - \int H_i(X_1, \ldots, X_{i-1}, t) dF_i(t)]. \tag{15.6b}
\]

By construction, we have the inclusion \(Z_i \in [A_i, B_i] \).

Finally, let us show that \(B_i - A_i \) is bounded. We have

\[
B_i - A_i = \sup_{u \leq X_i} H_i(X_1, \ldots, X_{i-1}, u) - \inf_{v \leq X_i} H_i(X_1, \ldots, X_{i-1}, v)
\]

\[
\leq \sup_{u, v} [H_i(X_1, \ldots, X_{i-1}, u) - H_i(X_1, \ldots, X_{i-1}, v)]
\]

15-3
But since f satisfies the bounded difference property with coefficients (c_1, \ldots, c_n), and using the definition of H_i, we have

$$\sup_{u,v}[H_i(X_1, \cdots, X_{i-1}, u) - H_i(X_1, \cdots, X_{i-1}, v)] \leq c_i,$$

so that we have shown that $0 \leq B_i - A_i \leq c_i$, which completes the proof.

15.2 Covering and Packing (Metric Entropy)

Metric entropy is another way to measure the richness of classes of functions/sets; it is a concept that dates back to the seminal paper of Kolmogorov & Tikhomirov (1961). Intuitively, the covering number measures the volume of a class in terms of the number of balls of radius ε required to cover it. In particular, let us define

$$B_{\varepsilon}(y) := \{x \mid \rho(x, y) \leq \varepsilon\}$$

to be the ball of radius ε centered at y measured in some metric ρ. With this notation, we have:

Definition: Given a set S and a metric $\rho : S \times S \to \mathbb{R}^+$, the ε-covering number of S with respect to ρ is the smallest integer $N = N(\varepsilon; S, \rho)$ such that

$$S \subseteq \bigcup_{i=1}^{N} B_{\varepsilon}(x^i). \quad (15.7)$$

The collection of points $\{x^1, \ldots, x^N\}$ is called an ε-cover of S. Finally, the quantity $H(\varepsilon; S, \rho) = \log N(\varepsilon; S, \rho)$ is called the metric entropy of the set S in the ρ-metric.

Next time we consider some examples of metric entropy for different classes of functions. Clearly, the metric entropy grows as $\varepsilon \to 0$, and we will see that for statistical problems, the growth rate of this entropy affects the rates (in terms of sample size n) at which we can perform classification or regression over that class of sets/functions.