14.1 More on shattering and VC dimension

Given a class \mathcal{A} of subsets, its shattering coefficients are given by

$$s(\mathcal{A}, n) = \max \text{ card } \{ A \cap \{ z_1, \ldots, z_n \} | A \in \mathcal{A} \}$$

and its VC dimension by $V_{\mathcal{A}} = \sup \{ n | s(\mathcal{A}, n) = 2^n \}$.

Example: The class of one dimensional half spaces $\mathcal{A}_1 = \{(-\infty, a] | a \in \mathbb{R} \}$ has $s(\mathcal{A}_1, n) = n + 1$ and so $V_{\mathcal{A}_1} = 1$. The class of half open intervals $\mathcal{A}_2 = \{(b, a] | b < a \in \mathbb{R} \}$ has $s(\mathcal{A}_1, n) = \frac{n(n+1)}{2} + 1$ and so $V_{\mathcal{A}_2} = 2$.

Recall from previous lectures:

Theorem 14.1 (GC). Given any class of sets \mathcal{A}

$$\mathbb{P} \left(\sup_{A \in \mathcal{A}} | \hat{P}_n(A) - \mathbb{P}(A) | > \epsilon \right) \leq 8 s(\mathcal{A}, n) \exp \left\{ -\frac{n\epsilon^2}{32} \right\}$$

where $\hat{P}_n(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(z^{(i)} \in A)$ for iid samples $Z^{(i)}$ for $i = 1, \ldots, n$.

VC dimension and shatter coefficients are closely connected:

1. If $V_{\mathcal{A}} = \infty$ then $s(\mathcal{A}, n) = 2^n$ for all n,

2. If $V_{\mathcal{A}} < \infty$ then $s(\mathcal{A}, n) \leq (n + 1)^{V_{\mathcal{A}}}$ for all n.

The first is by definition, the second as a corollary of the following lemma.

Lemma 14.2 (Sauer). If \mathcal{A} be a class with finite VC dimension $V_{\mathcal{A}}$, then

$$s(\mathcal{A}, n) \leq \sum_{i=0}^{V_{\mathcal{A}}} \binom{n}{i}.$$
Given this, we can derive the (weak) upper bound

\[s(A, n) \leq \sum_{i=0}^{V_A} \frac{n!}{i!(n-i)!} \]

\[\leq \sum_{i=0}^{V_A} n^i \frac{1}{i!} \]

\[\leq \sum_{i=0}^{V_A} n^i \binom{V_A}{i} \]

\[= (n + 1)^{V_A} \]

So far we’ve computed the VC dimension of classes case-by-case. We want systematic ways to upper bound the VC dimension. The following proposition is the first.

Proposition 14.3. Let \(\mathcal{G} \) be a finite-dimensional vector space of functions on \(\mathbb{R}^d \). Then the class of sets

\[\mathcal{A}_\mathcal{G} = \left\{ \{x \mid g(x) \geq 0\} \mid g \in \mathcal{G} \right\} \]

has VC dimension at most \(\dim \mathcal{G} \).

Proof: We will show that no subset of \(\mathbb{R}^d \) of size \(n = \dim \mathcal{G} + 1 \) can be shattered by \(\mathcal{A}_\mathcal{G} \). Fix \(n \) points \(x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d \). Consider the map \(L : \mathcal{G} \to \mathbb{R}^n \) defined by

\[L(g) = (g(x^{(1)}), \ldots, g(x^{(n)})) \]

This map is linear, and so its range is a linear subspace of \(\mathbb{R}^n \) of dimension at most \(\dim \mathcal{G} \). Since \(n > \dim \mathcal{G} \) there must exist a nonzero vector \(\gamma \in \mathbb{R}^n \) orthogonal to this subspace, i.e. such that

\[\sum_{i=1}^{n} \gamma_i g(x^{(i)}) = 0 \quad (14.1) \]

for all \(g \in \mathcal{G} \). Without loss of generality suppose \(\gamma_i < 0 \) for some \(i \), and observe that equation (14.1) is equivalent to

\[\sum_{\{i \mid \gamma_i \geq 0\}} \gamma_i g(x^{(i)}) = \sum_{\{i \mid \gamma_i < 0\}} -\gamma_i g(x^{(i)}) \quad (14.2) \]

for all \(g \in \mathcal{G} \).

Now proceed via proof by contradiction: suppose that \(x^{(1)}, \ldots, x^{(n)} \) can be shattered by \(\mathcal{A} \). Then there must exist \(g \in \mathcal{G} \) such that

\[\{x \mid g(x) \geq 0\} = \{i \mid \gamma_i \geq 0\} \]

But with this choice of \(g \) the LHS of equation 14.2 must be nonnegative, whilst the RHS must be negative (since \(\gamma_i < 0 \) for some \(i \)), which is a contradiction. So we conclude that no subset of size \(n \) of \(\mathbb{R}^d \) can be shattered. \(\square \)
Example: Consider the set of half spaces

\[\mathcal{A} = \left\{ \{ x \in \mathbb{R}^d \mid a^T x \geq b \} \mid \text{for some } a \in \mathbb{R}^d \text{ and } b \in \mathbb{R} \right\}. \]

This class is of the form required for proposition 14.3, we need only compute the dimension of the underlying vector space of functions. This is seen to be \(d + 1 \) by the following basis:

\[
g_0(x) = 1 \\
g_i(x) = x_i \quad \text{for } i = 1, \ldots, d
\]

So \(V_A \leq d + 1 \).

14.2 Application to binary classification

Suppose we are learning binary classifiers \(f : \mathbb{R}^d \to \{-1, +1\} \) of the form

\[\mathcal{F} = \left\{ f = \text{sgn}(g) \mid g(x) = a_0 + \sum_{i=1}^{d} a_i x_i, \ a_i \in \mathbb{R} \right\}. \]

From the previous example we have \(V_F \leq d + 1 \). Define the optimal linear risk to be

\[R^*_F = \inf_{f \in \mathcal{F}} R(f) = \inf_{f \in \mathcal{F}} \mathbb{P}(Y \neq f(X)). \]

Suppose \(\hat{f}_n \) is selected to minimize the empirical risk given iid samples \((x^{(i)}, y^{(i)})\) for \(i = 1, \ldots, n \):

\[
\hat{f}_n \in \arg\min_{f} \hat{R}_n(f) = \arg\min_{f} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y^{(i)} \neq f(x^{(i)})).
\]

Corollary 14.4. For all \(n \in \mathbb{N}, \epsilon > 0 \) with \(ne^2 > 2 \), the error probability of the empirically optimal classifier \(\hat{f}_n \) satisfies

\[
\mathbb{P} \left[\left| R(\hat{f}_n) - R^*_F \right| > \epsilon \right] \leq 8(n + 1)^{d+1} \exp \left\{ \frac{-n \epsilon^2}{128} \right\}.
\]

Note that \(\hat{f}_n \) is a random classifier: it depends on the particular \(n \) iid samples used to train it. The mild condition \(ne^2 > 2 \) is required for the GC theorem that we use in proving this corollary (see Step 1 [symmetrization] in proof of GC theorem). This is no real restriction since we care about the behaviour of this bound as \(n \) tends to infinity for fixed \(\epsilon \).

Proof: Observe we can decompose the error into two terms

\[
R(\hat{f}_n) - R^*_F = R(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f) \\
= [R(\hat{f}_n) - \hat{R}_n(\hat{f}_n)] + [\hat{R}_n(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f)]
\]
The first term is easily bounded
\[
R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sup_{f \in \mathcal{F}} \left| R(f) - \hat{R}_n(f) \right|
\]

For the second, observe that for any \(f \in \mathcal{F} \) we can uniformly bound
\[
\hat{R}_n(\hat{f}_n) - R(f) \leq \hat{R}_n(\hat{f}_n) - R(f) \leq \sup_{f \in \mathcal{F}} \left| \hat{R}_n(f) - R(f) \right|
\]

This bounds the second term
\[
\hat{R}_n(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f) = \sup_{f \in \mathcal{F}} \hat{R}_n(\hat{f}_n) - R(f) \leq \sup_{f \in \mathcal{F}} \left| \hat{R}_n(f) - R(f) \right|
\]

Combining the above with theorem 14.1, lemma 14.2, and the bound on the VC dimension of \(\mathcal{F} \) we have
\[
\mathbb{P} \left[\left| R(\hat{f}_n) - R^*_F \right| > \epsilon \right] \leq \mathbb{P} \left[\sup_{f \in \mathcal{F}} \left| \hat{R}_n(f) - R(f) \right| > \epsilon/2 \right]
\]
\[
\leq 8s(A, n) \exp \left\{ -\frac{n \epsilon^2}{128} \right\}
\]
\[
\leq 8(n + 1)^{V_F} \exp \left\{ -\frac{n \epsilon^2}{128} \right\}
\]
\[
\leq 8(n + 1)^{d+1} \exp \left\{ -\frac{n \epsilon^2}{128} \right\}
\]

The above result can equivalently stated in terms of bounds on expectations:

Corollary 14.5. Under the same conditions as corollary 14.4
\[
\mathbb{E} \left[R(\hat{f}_n) - R^*_F \right] \leq 16 \sqrt{\frac{\log 8 s(\mathcal{F}, n)}{2n}}
\]
\[
= O \left(\sqrt{\frac{\log s(\mathcal{F}, n)}{n}} \right)
\]

If the \(V_F < +\infty \) then
\[
\mathbb{E} \left[R(\hat{f}_n) - R^*_F \right] = O \left(\sqrt{\frac{V_F \log n}{n}} \right).
\]

This corollary follows by a careful integration of the tail bound, as we will discuss in the next lecture.