## UC Berkeley

# Department of Electrical Engineering and Computer Science Department of Statistics

# EECS 281B / STAT 241B ADVANCED TOPICS IN STATISTICAL LEARNING THEORY

# Problem Set 2

Spring 2009

Issued: Monday, February 9, 2009 Due: Monday, February 23, 2009

#### Problem 2.1

True or false: either provide a proof (when true) or an explicit counterexample (when false).

- (a) If  $\mathbb{K}_1$  and  $\mathbb{K}_2$  are both positive semidefinite (PSD) kernel functions on  $\mathcal{X} \times \mathcal{X}$ , then  $\lambda_1 \mathbb{K}_1 + \lambda_2 \mathbb{K}_2$  is a PSD kernel function for all  $\lambda_i \geq 0$ .
- (b) Any symmetric function  $\mathbb{K}$  is that is elementwise non-negative (i.e.,  $\mathbb{K}(x,y) \geq 0$  for all x,y) is a PSD kernel function.
- (c) If  $\mathbb{K}_1$  and  $\mathbb{K}_2$  are both PSD kernel functions on  $\mathcal{X} \times \mathcal{X}$ , then  $\mathbb{K}(x,y) := \mathbb{K}_1(x,y)\mathbb{K}_2(x,y)$  is also a PSD kernel function.
- (d) Given a probability space with events  $\mathcal{E}$  and probability law  $\mathbb{P}$ , the function  $\mathbb{K}: \mathcal{E} \times \mathcal{E} \to \mathbb{R}$  defined by  $\mathbb{K}(A, B) := \mathbb{P}(A, B) \mathbb{P}(A)\mathbb{P}(B)$  is a PSD kernel function.
- (e) Given a finite set  $\mathcal{E}$ , let  $\mathcal{P}(\mathcal{E})$  denote the set of all subsets of  $\mathcal{E}$ . If  $\mathbb{K}: \mathcal{E} \times \mathcal{E} \to \mathbb{R}$  is a PSD kernel function, then

$$\bar{\mathbb{K}}(A,B) := \sum_{x \in A, y \in B} \mathbb{K}(x,y)$$

is a PSD kernel function on  $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\mathcal{E})$ .

## Problem 2.2

On the course website, you will find the data set regression.dat in ASCII format, which defines a regression problem in  $\mathbb{R}^{10}$ . (The first 10 columns correspond to  $(x_1, \ldots, x_{10})$  and the final column corresponds to  $y \in \mathbb{R}$ .)

- (a) Fit a linear regression to these data and report the sum of squared errors on the test set regression.test.
- (b) Use ordinary PCA and reduce the dimensionality of the covariate space to two dimensions. Fit a linear regression and report the sum of squared errors on the test set regression.test.
- (c) Use kernel PCA with a Gaussian kernel  $K(x,y) = \exp(\frac{-\|x-y\|^2}{2\sigma^2})$ , and reduce the dimensionality of the covariate space to two dimensions. (Propose and implement a method for choosing the bandwidth parameter  $\sigma$ ). Fit a linear regression and report the sum of squared errors on the test set regression.test.

### Problem 2.3

For each of the following kernels, compute the eigenfunctions and eigenvalues of the operator  $T_{\mathbb{K}}: L^2(\mathcal{E}) \to L^2(\mathcal{E})$  defined by

$$T_{\mathbb{K}}(f)(x) = \int_{\mathcal{E}} \mathbb{K}(x, y) f(y) dy.$$

- (a) For  $\mathcal{E} = [0, 2\pi]$ , the kernel  $\mathbb{K}(x, y) = \sum_{\ell=0}^{\infty} w_{\ell} \cos(\ell(x y))$  for some sequence of weights  $w_{\ell} \geq 0$  such that  $\sum_{\ell=0}^{\infty} w_{\ell} < \infty$ .
- (b) For  $\mathcal{E} = [0, 1]$ , the polynomial kernel  $K(x, y) = (1 + xy)^2$ .

#### Problem 2.4

Consider a RKHS with feature map  $\Phi$  and kernel  $\mathbb{K}$ , such that  $\mathbb{K}(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$  for all  $x,y \in \mathcal{E}$ . Given a data set  $\{x^{(1)},\ldots,x^{(n)}\}$ , consider some element f in the linear span of  $\{\Phi(x^{(i)}), i=1,2,\ldots,n\}$ —that is,  $f=\sum_{i=1}^n \alpha_i \Phi(x^{(i)})$  for some fixed coefficients  $\alpha \in \mathbb{R}^n$ . The projection of a new element  $\Phi(x)$  onto f is given by

$$\frac{\langle f, \Phi(x) \rangle_{\mathcal{H}}}{\|f\|_{\mathcal{H}}^2} f.$$

Show how to compute the sample variance of this projection, for a fixed  $\Phi(x)$ , using only the kernel  $\mathbb{K}$ .

#### Problem 2.5

Given a data set  $\{x^{(1)}, \ldots, x^{(n)}\}\subseteq \mathbb{R}^d$ , a novelty detection algorithm can be constructed by finding the smallest sphere that contains the data points. (When a new x is observed, it is flagged as "novel" if it lies outside this sphere.) Of course, this idea can also be implemented in a feature space, using some feature map  $\Phi$  associated with a RKHS (i.e.,  $\mathbb{K}(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$  for all  $x, y \in \mathbb{R}^d$ ).

- (a) Give a precise formulation of the optimization problem to be solved in order to learn a novelty detector. Using Lagrangian methods, compute the dual, and show how solution requires only computing the kernel matrix K with entries  $K_{ij} = \mathbb{K}(x^{(i)}, x^{(j)})$ .
- (b) Extend your algorithm to allow some fraction  $\nu > 0$  of the data to allow outside the sphere in feature space. (*Hint:* Use slack variables, as in the extension of a hard margin SVM to a soft margin SVM.)

## Problem 2.6

Concentration bounds play an important role in the analysis of statistical estimators; in this problem, we explore some elementary aspects of concentration.

- (a) Prove that if Z is a non-negative random variable with expectation  $\mathbb{E}[Z]$ , then for all t > 0, we have  $\mathbb{P}[Z \ge t] \le \mathbb{E}[Z]/t$ .
- (b) A zero-mean random variable is said to be sub-Gaussian with parameter  $\sigma > 0$  if  $\mathbb{E}[\exp(sX)] \leq \exp(\frac{\sigma^2t^2}{2})$  for all  $s \in \mathbb{R}$ . Show that  $X \sim N(0, \sigma^2)$  is sub-Gaussian.

- (c) Suppose that X is Bernoulli with  $\mathbb{P}[X=+1]=\mathbb{P}[X=-1]=1/2$ . Show that X is sub-Gaussian. (Can you generalize your argument to any bounded random variable?)
- (d) Show that any sub-Gaussian random variable X satisfies the two-sided tail bound

$$\mathbb{P}[|X| > t] \leq 2 \exp\left(\frac{-t^2}{2\sigma^2}\right) \quad \text{for all } t \in \mathbb{R}.$$

(e) Let  $X_1, \ldots, X_n$  be n i.i.d. samples of a sub-Gaussian variable with parameter  $\sigma$ . Show that for any  $\delta > 0$ , we have

$$\mathbb{P}\big[\max_{i=1,\dots,n} X_i > \sqrt{(2+\delta)\sigma^2 \log n}\big] \quad \to \quad 0 \quad \text{as } n \to +\infty.$$