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Problem 2.1

True or false: either provide a proof (when true) or an explicit counterexample (when false).

(a) If K1 and K2 are both positive semidefinite (PSD) kernel functions on X × X , then
λ1K1 + λ2K2 is a PSD kernel function for all λi ≥ 0.

(b) Any symmetric function K is that is elementwise non-negative (i.e., K(x, y) ≥ 0 for all
x, y) is a PSD kernel function.

(c) If K1 and K2 are both PSD kernel functions on X ×X , then K(x, y) := K1(x, y)K2(x, y)
is also a PSD kernel function.

(d) Given a probability space with events E and probability law P, the function K : E × E → R

defined by K(A,B) := P(A,B) − P(A)P(B) is a PSD kernel function.

(e) Given a finite set E , let P(E) denote the set of all subsets of E . If K : E × E → R is a
PSD kernel function, then

K̄(A,B) :=
∑

x∈A,y∈B

K(x, y)

is a PSD kernel function on P(E) × P(E).

Problem 2.2

On the course website, you will find the data set regression.dat in ASCII format, which
defines a regression problem in R

10. (The first 10 columns correspond to (x1, . . . , x10) and
the final column corresponds to y ∈ R.)

(a) Fit a linear regression to these data and report the sum of squared errors on the test
set regression.test.

(b) Use ordinary PCA and reduce the dimensionality of the covariate space to two dimen-
sions. Fit a linear regression and report the sum of squared errors on the test set
regression.test.

(c) Use kernel PCA with a Gaussian kernel K(x, y) = exp(−‖x−y‖2

2σ2 ), and reduce the dimen-
sionality of the covariate space to two dimensions. (Propose and implement a method
for choosing the bandwidth parameter σ). Fit a linear regression and report the sum of
squared errors on the test set regression.test.
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Problem 2.3

For each of the following kernels, compute the eigenfunctions and eigenvalues of the operator
TK : L2(E) → L2(E) defined by

TK(f)(x) =

∫

E
K(x, y)f(y)dy.

(a) For E = [0, 2π], the kernel K(x, y) =
∑∞

ℓ=0 wℓ cos(ℓ(x− y)) for some sequence of weights
wℓ ≥ 0 such that

∑∞
ℓ=0 wℓ < ∞.

(b) For E = [0, 1], the polynomial kernel K(x, y) = (1 + xy)2.

Problem 2.4

Consider a RKHS with feature map Φ and kernel K, such that K(x, y) = 〈Φ(x), Φ(y)〉H for
all x, y ∈ E . Given a data set {x(1), . . . , x(n)}, consider some element f in the linear span of
{Φ(x(i)), i = 1, 2, . . . , n}—that is, f =

∑n
i=1 αiΦ(x(i)) for some fixed coefficients α ∈ R

n. The
projection of a new element Φ(x) onto f is given by

〈f, Φ(x)〉H
‖f‖2

H

f.

Show how to compute the sample variance of this projection, for a fixed Φ(x), using only the
kernel K.

Problem 2.5

Given a data set {x(1), . . . , x(n)} ⊆ R
d, a novelty detection algorithm can be constructed

by finding the smallest sphere that contains the data points. (When a new x is observed,
it is flagged as “novel” if it lies outside this sphere.) Of course, this idea can also be
implemented in a feature space, using some feature map Φ associated with a RKHS (i.e.,
K(x, y) = 〈Φ(x), Φ(y)〉H for all x, y ∈ R

d).

(a) Give a precise formulation of the optimization problem to be solved in order to learn a
novelty detector. Using Lagrangian methods, compute the dual, and show how solution
requires only computing the kernel matrix K with entries Kij = K(x(i), x(j)).

(b) Extend your algorithm to allow some fraction ν > 0 of the data to allow outside the
sphere in feature space. (Hint: Use slack variables, as in the extension of a hard margin
SVM to a soft margin SVM.)

Problem 2.6

Concentration bounds play an important role in the analysis of statistical estimators; in this
problem, we explore some elementary aspects of concentration.

(a) Prove that if Z is a non-negative random variable with expectation E[Z], then for all
t > 0, we have P[Z ≥ t] ≤ E[Z]/t.

(b) A zero-mean random variable is said to be sub-Gaussian with parameter σ > 0 if

E[exp(sX)] ≤ exp(σ2t2

2 ) for all s ∈ R. Show that X ∼ N(0, σ2) is sub-Gaussian.
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(c) Suppose that X is Bernoulli with P[X = +1] = P[X = −1] = 1/2. Show that X is
sub-Gaussian. (Can you generalize your argument to any bounded random variable?)

(d) Show that any sub-Gaussian random variable X satisfies the two-sided tail bound

P[|X| > t] ≤ 2 exp
(−t2

2σ2

)

for all t ∈ R.

(e) Let X1, . . . ,Xn be n i.i.d. samples of a sub-Gaussian variable with parameter σ. Show
that for any δ > 0, we have

P
[

max
i=1,...,n

Xi >
√

(2 + δ)σ2 log n
]

→ 0 as n → +∞.
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