Problem 1.1
For each item below, please list what (if any) courses that you have taken, books used, and grade received:
(a) probability (b) statistics
(c) linear algebra (d) machine learning
(e) optimization

Problem 1.2
Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Which of the following statements are equivalent to “A is invertible”? Either give a proof of the equivalence, or a counterexample.
(i) The columns of A span \mathbb{R}^n.
(ii) The rows of A are linearly independent.
(iii) $\text{trace}(A) \neq 0$.
(iv) $\|Ax\|_2^2 > 0$ for all $x \neq 0$.
(v) $\det(A) \neq 0$

Problem 1.3
Consider a sequence of random variables X_0, X_1, X_2, \ldots generated according to the following procedure. First we choose $X_0 \sim N(0, 1)$, and then for some number $|a| < 1$ we set $X_{t+1} = aX_t + W_t$ for $t = 0, 1, 2, \ldots$, where $W_t \sim N(0, \sigma^2)$, W_t is uncorrelated with X_t, and $\{X_0, W_0, W_1, W_2, \ldots\}$ are mutually independent.
(a) Compute the joint distribution of (X_0, X_1, X_2).
(b) Compute the distribution of X_t, as a function of t, a and σ^2.

1
(c) Are W_t and X_t independent? Are W_t and X_{t+10} uncorrelated?

(d) What happens to $\text{var}(X_t)$ as $t \to +\infty$?

Problem 1.4

Each cereal box contains an action figure, chosen uniformly from a set of four different action figures. The price of any given cereal box (in dollars) is an exponentially distributed random variable with parameter λ, and the prices of different cereal boxes are independent. For $i = 1, \ldots, 4$, let T_i be a random variable corresponding to the number of boxes that you purchase in order to have i different action figures. To be precise, after purchasing T_2 boxes (and not before), you have at least one copy of exactly 2 different action figures; and after purchasing T_4 boxes (and not before), you have at least one copy of all four action figures.

(a) What is the PMF, expected value, and variance of T_1?

(b) What is the PMF and expected value of T_2?

(c) Compute $E[T_4]$ and $\text{var}(T_4)$.

(d) Compute the moment generating function of T_4.

(e) You keep buying boxes until you have collected all four action figures. Letting Z be a random variable representing the total amount of money (in dollars) that you spend, compute $E[Z]$ and $\text{var}[Z]$.

Problem 1.5

True or false: For each of the following statements, either give a counterexample to show that it is false, or provide an argument to justify that it is true. (Note: You will receive no points for just guessing the correct answer; full points will be awarded only when an answer is justified with an example or argument.)

(a) For any two events A and B, if $P[A \mid B] > 1/2$, then $P[B \mid A] < 1/2$.

(b) If the moment generating function of X_n is given by $M_{X_n}(t) = \exp(\frac{t^2}{2\sqrt{n}})$, then the sequence $\{X_n\}$ converges in probability to some real number.

(c) If $X \sim N(0, 1)$ and $Y \sim N(0, 1)$, then the Bayes' least squares estimator of X given Y is equal to the linear least squares estimator.
(d)) If the Bayes’ least squares estimator of X given Y is equal to $\mathbb{E}[X]$, then X and Y are independent.

Problem 1.6

Suppose that a pair of random variables X and Y has a joint PDF that is uniform over the shaded region shown in the figure below:

![Figure 1: Joint PDF of random variables X and Y.](image)

(a) Compute the Bayes’ least squares estimator (BLSE) of X based on Y. (*Note:* You should evaluate the required integrals; however, your answer can be left in terms of quantities like $1/e$ or $\sqrt{2}$).

(b) Compute the linear least squares estimator (LLSE) of X based on Y, as well as the associated error variance of this estimator. Is the LLSE the same as the BLSE in this case? Why or why not? (*Note:* You should evaluate the required integrals; however, your answer can be left in terms of quantities like $1/e$ or $\sqrt{2}$).

(c) Now suppose that in addition to observing some value $Y = y$, we also know that $X \leq 1/e$. Compute the BLSE and LLSE estimators of X based on both pieces of information. Are the estimators the same or different? Explain why in either case.