Graphical models and message-passing
Part II: Marginals and likelihoods

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS

Tutorial materials (slides, monograph, lecture notes) available at:
www.eecs.berkeley.edu/~wainwrig/kyoto12

September 3, 2012
clique C is a fully connected subset of vertices

compatibility function ψ_C defined on variables $x_C = \{x_s, s \in C\}$

factorization over all cliques

$$p(x_1, \ldots, x_N) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C).$$
Core computational challenges

Given an undirected graphical model (Markov random field):

\[p(x_1, x_2, \ldots, x_N) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C) \]

How to efficiently compute?

- most probable configuration (MAP estimate):

\[
\hat{x} = \arg \max_{x \in \mathcal{X}^N} p(x_1, \ldots, x_N) = \arg \max_{x \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \psi_C(x_C).
\]

- the data likelihood or normalization constant

\[
Z = \sum_{x \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \psi_C(x_C)
\]

- marginal distributions at single sites, or subsets:

\[
p(X_s = x_s) = \frac{1}{Z} \sum_{x_t, t \neq s} \prod_{C \in \mathcal{C}} \psi_C(x_C)
\]
§1. Sum-product message-passing on trees

Goal: Compute marginal distribution at node u on a tree:

$$\hat{x} = \arg \max_{x \in \mathcal{X}^N} \left\{ \prod_{s \in V} \exp(\theta_s(x_s)) \prod_{(s,t) \in E} \exp(\theta_{st}(x_s, x_t)) \right\}.$$
Putting together the pieces

Sum-product is an exact algorithm for any tree.

Update: \(M_{ts}(x_s) \leftarrow \sum_{x'_t \in \mathcal{X}_t} \{ \exp \left[\theta_{st}(x_s, x'_t) + \theta_t(x'_t) \right] \prod_{v \in \mathcal{N}(t) \setminus s} M_{vt}(x_t) \} \)

Sum-marginals: \(p_s(x_s; \theta) \propto \exp\{\theta_s(x_s)\} \prod_{t \in \mathcal{N}(s)} M_{ts}(x_s). \)
Summary: sum-product on trees

- converges in at most graph diameter \# of iterations
- updating a single message is an $O(m^2)$ operation
- overall algorithm requires $O(Nm^2)$ operations

- upon convergence, yields the exact node and edge marginals:

$$p_s(x_s) \propto e^{\theta_s(x_s)} \prod_{u \in \mathcal{N}(s)} M_{us}(x_s)$$

$$p_{st}(x_s, x_t) \propto e^{\theta_s(x_s) + \theta_t(x_t) + \theta_{st}(x_s, x_t)} \prod_{u \in \mathcal{N}(s)} M_{us}(x_s) \prod_{u \in \mathcal{N}(t)} M_{ut}(x_t)$$

- messages can also be used to compute the partition function

$$Z = \sum_{x_1, \ldots, x_N} \prod_{s \in V} e^{\theta_s(x_s)} \prod_{(s,t) \in E} e^{\theta_{st}(x_s, x_t)}.$$
2. Sum-product on graph with cycles

as with max-product, a widely used heuristic with a long history:

- error-control coding: Gallager, 1963
- artificial intelligence: Pearl, 1988
- turbo decoding: Berroux et al., 1993
- etc..
§2. Sum-product on graph with cycles

- as with max-product, a widely used heuristic with a long history:
 - error-control coding: Gallager, 1963
 - artificial intelligence: Pearl, 1988
 - turbo decoding: Berroux et al., 1993
 - etc..

- some concerns with sum-product with cycles:
 - no convergence guarantees
 - can have multiple fixed points
 - final estimate of Z is not a lower/upper bound
2. Sum-product on graph with cycles

- as with max-product, a widely used heuristic with a long history:
 - error-control coding: Gallager, 1963
 - artificial intelligence: Pearl, 1988
 - turbo decoding: Berroux et al., 1993
 - etc..

- some concerns with sum-product with cycles:
 - no convergence guarantees
 - can have multiple fixed points
 - final estimate of Z is not a lower/upper bound

- as before, can consider a broader class of reweighted sum-product algorithms
Tree-reweighted sum-product algorithms

Message update from node t to node s:

$$M_{ts}(x_s) \leftarrow \kappa \sum_{x'_t \in X_t} \left\{ \exp \left[\frac{\theta_{st}(x_s, x'_t)}{\rho_{st}} \right] + \theta_t(x'_t) \right\} \frac{\prod_{v \in N(t) \setminus s} \left[M_{vt}(x_t) \right]^{\rho_{vt}}}{\left[M_{st}(x_t) \right]^{(1-\rho_{ts})}}.$$

Properties:
1. Modified updates remain *distributed* and *purely local* over the graph.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.
2. Key differences:
 - Potential on edge (s, t) is rescaled by $\rho_{st} \in [0, 1]$.
 - Update involves the reverse direction edge.
3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.
Bethe entropy approximation

- define local marginal distributions (e.g., for \(m = 3 \) states):
 \[
 \mu_s(x_s) = \begin{bmatrix}
 \mu_s(0) \\
 \mu_s(1) \\
 \mu_s(2)
 \end{bmatrix}
 \]
 \[
 \mu_{st}(x_s, x_t) = \begin{bmatrix}
 \mu_{st}(0,0) & \mu_{st}(0,1) & \mu_{st}(0,2) \\
 \mu_{st}(1,0) & \mu_{st}(1,1) & \mu_{st}(1,2) \\
 \mu_{st}(2,0) & \mu_{st}(2,1) & \mu_{st}(2,2)
 \end{bmatrix}
 \]

- define node-based entropy and edge-based mutual information:

 Node-based entropy:
 \[
 H_s(\mu_s) = -\sum_{x_s} \mu_s(x_s) \log \mu_s(x_s)
 \]

 Mutual information:
 \[
 I_{st}(\mu_{st}) = \sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}.
 \]

- \(\rho \)-reweighted Bethe entropy
 \[
 H_{\text{Bethe}}(\mu) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s, t) \in E} \rho_{st} I_{st}(\mu_{st}),
 \]
Bethe entropy is exact for trees

- exact for trees, using the factorization:

\[
p(x; \theta) = \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}\]
Reweighted sum-product and Bethe variational principle

Define the local constraint set

$$\mathbb{L}(G) = \{ \tau_s, \tau_{st} \mid \tau \geq 0, \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \}$$
Reweighted sum-product and Bethe variational principle

Define the local constraint set

\[\mathbb{L}(G) = \{ \tau_s, \tau_{st} \mid \tau \geq 0, \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \} \]

Theorem

For any choice of positive edge weights \(\rho_{st} > 0 \):

(a) Fixed points of reweighted sum-product are stationary points of the Lagrangian associated with

\[A_{Bethe}(\theta; \rho) := \max_{\tau \in \mathbb{L}(G)} \left\{ \sum_{s \in V} \langle \tau_s, \theta_s \rangle + \sum_{(s, t) \in E} \langle \tau_{st}, \theta_{st} \rangle + H_{Bethe}(\tau; \rho) \right\}. \]
Reweighted sum-product and Bethe variational principle

Define the local constraint set

\[\mathbb{L}(G) = \{ \tau_s, \tau_{st} \mid \tau \geq 0, \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \} \]

Theorem

For any choice of positive edge weights \(\rho_{st} > 0 \):

(a) Fixed points of reweighted sum-product are stationary points of the Lagrangian associated with

\[A_{Bethe}(\theta; \rho) := \max_{\tau \in \mathbb{L}(G)} \left\{ \sum_{s \in V} \langle \tau_s, \theta_s \rangle + \sum_{(s,t) \in E} \langle \tau_{st}, \theta_{st} \rangle + H_{Bethe}(\tau; \rho) \right\}. \]

(b) For valid choices of edge weights \(\{ \rho_{st} \} \), the fixed points are unique and moreover \(\log Z(\theta) \leq A_{Bethe}(\theta; \rho) \). In addition, reweighted sum-product converges with appropriate scheduling.
Lagrangian derivation of ordinary sum-product

- let’s try to solve this problem by a (partial) Lagrangian formulation

- assign a Lagrange multiplier $\lambda_{ts}(x_s)$ for each constraint $C_{ts}(x_s) := \tau_s(x_s) - \sum_{x_t} \tau_{st}(x_s, x_t) = 0$

- will enforce the normalization ($\sum_{x_s} \tau_s(x_s) = 1$) and non-negativity constraints explicitly

- the Lagrangian takes the form:

$$
\mathcal{L}(\tau; \lambda) = \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st})
+ \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t)C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s)C_{ts}(x_s) \right]
$$
Lagrangian derivation (part II)

- taking derivatives of the Lagrangian w.r.t \(\tau_s \) and \(\tau_{st} \) yields

\[
\frac{\partial L}{\partial \tau_s(x_s)} = \theta_s(x_s) - \log \tau_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C
\]

\[
\frac{\partial L}{\partial \tau_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\tau_{st}(x_s, x_t)}{\tau_s(x_s)\tau_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'
\]

- setting these partial derivatives to zero and simplifying:

\[
\tau_s(x_s) \propto \exp \{ \theta_s(x_s) \} \prod_{t \in \mathcal{N}(s)} \exp \{ \lambda_{ts}(x_s) \}
\]

\[
\tau_s(x_s, x_t) \propto \exp \{ \theta_s(x_s) + \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \times
\prod_{u \in \mathcal{N}(s) \setminus t} \exp \{ \lambda_{us}(x_s) \} \prod_{v \in \mathcal{N}(t) \setminus s} \exp \{ \lambda_{vt}(x_t) \}
\]

- enforcing the constraint \(C_{ts}(x_s) = 0 \) on these representations yields the familiar update rule for the messages \(M_{ts}(x_s) = \exp(\lambda_{ts}(x_s)) \):

\[
M_{ts}(x_s) \leftarrow \sum_{x_t} \exp \{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)
\]
Convex combinations of trees

Idea: Upper bound \(A(\theta) := \log Z(\theta) \) with a convex combination of tree-structured problems.

\[
\begin{align*}
\theta & = \rho(T^1) \theta(T^1) + \rho(T^2) \theta(T^2) + \rho(T^3) \theta(T^3) \\
A(\theta) & \leq \rho(T^1) A(\theta(T^1)) + \rho(T^2) A(\theta(T^2)) + \rho(T^3) A(\theta(T^3))
\end{align*}
\]

\(\rho = \{ \rho(T) \} \equiv \) probability distribution over spanning trees

\(\theta(T) \equiv \) tree-structured parameter vector
Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.
Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

Example:
On the 2-D lattice:

<table>
<thead>
<tr>
<th>Grid size</th>
<th># trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>192</td>
</tr>
<tr>
<td>16</td>
<td>100352</td>
</tr>
<tr>
<td>36</td>
<td>3.26×10^{13}</td>
</tr>
<tr>
<td>100</td>
<td>5.69×10^{42}</td>
</tr>
</tbody>
</table>
Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

By a suitable dual reformulation, problem can be avoided:

Key duality relation:

$$\min_{\sum_T \rho(T) \theta(T) = \theta} \rho(T) A(\theta(T)) = \max_{\mu \in \mathbb{L}(G)} \{ \langle \mu, \theta \rangle + H_{\text{Bethe}}(\mu; \rho_{st}) \}.$$
Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ?

(a) Original

(b) $\rho(T^1) = \frac{1}{3}$

(c) $\rho(T^2) = \frac{1}{3}$

(d) $\rho(T^3) = \frac{1}{3}$

In this example: $\rho_b = 1; \quad \rho_e = \frac{2}{3}; \quad \rho_f = \frac{1}{3}$.

The vector $\rho_e = \{ \rho_e \mid e \in E \}$ must belong to the *spanning tree polytope*. (Edmonds, 1971)
Why does entropy arise in the duality?

Due to a deep correspondence between two problems:

Maximum entropy density estimation

Maximize entropy

\[
H(p) = - \sum_x p(x_1, \ldots, x_N) \log p(x_1, \ldots, x_N)
\]

subject to expectation constraints of the form

\[
\sum_x p(x) \phi_\alpha(x) = \hat{\mu}_\alpha.
\]
Why does entropy arise in the duality?

Due to a deep correspondence between two problems:

Maximum entropy density estimation

Maximize entropy

\[H(p) = -\sum_x p(x_1, \ldots, x_N) \log p(x_1, \ldots, x_N) \]

subject to expectation constraints of the form

\[\sum_x p(x) \phi_\alpha(x) = \hat{\mu}_\alpha. \]

Maximum likelihood in exponential family

Maximize likelihood of parameterized densities

\[p(x_1, \ldots, x_N; \theta) = \exp \left\{ \sum_\alpha \theta_\alpha \phi_\alpha(x) - A(\theta) \right\}. \]
Conjugate dual functions

- Conjugate duality is a fertile source of variational representations.
- Any function f can be used to define another function f^* as follows:
 \[f^*(v) := \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}. \]

 - Easy to show that f^* is always a convex function.

 - How about taking the "dual of the dual"? I.e., what is $(f^*)^*$?

 - When f is well-behaved (convex and lower semi-continuous), we have $(f^*)^* = f$, or alternatively stated:
 \[f(u) = \sup_{v \in \mathbb{R}^n} \{ \langle u, v \rangle - f^*(v) \}. \]
Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in $\mathbb{R}^n \times \mathbb{R}$ with normal $(v, -1)$, what is the intercept of the one that supports $\text{epi}(f)$?

Epigraph of f:

\[
\text{epi}(f) := \{ (u, \beta) \in \mathbb{R}^{n+1} | f(u) \leq \beta \}.
\]

Analytically, we require the smallest $c \in \mathbb{R}$ such that:

\[
\langle v, u \rangle - c \leq f(u) \quad \text{for all } u \in \mathbb{R}^n.
\]

By re-arranging, we find that this optimal c^* is the dual value:

\[
c^* = \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}.
\]
Example: Single Bernoulli

Random variable $X \in \{0, 1\}$ yields exponential family of the form:

$$p(x; \theta) \propto \exp \{ \theta x \} \quad \text{with} \quad A(\theta) = \log [1 + \exp(\theta)].$$

Let’s compute the dual $A^*(\mu) := \sup_{\theta \in \mathbb{R}} \{\mu \theta - \log[1 + \exp(\theta)]\}$.

(Possible) stationary point: $\mu = \exp(\theta)/[1 + \exp(\theta)]$.

We find that: $A^*(\mu) = \begin{cases}
\mu \log \mu + (1 - \mu) \log(1 - \mu) & \text{if } \mu \in [0, 1], \\
+\infty & \text{otherwise.}
\end{cases}$

Leads to the variational representation: $A(\theta) = \max_{\mu \in [0, 1]} \{\mu \cdot \theta - A^*(\mu)\}$.

(a) Epigraph supported
(b) Epigraph cannot be supported
Geometry of Bethe variational problem

belief propagation uses a \textit{polyhedral outer approximation} to $\mathbb{M}(G)$:

\begin{itemize}
 \item for any graph, $\mathbb{L}(G) \supseteq \mathbb{M}(G)$.
 \item equality holds $\iff G$ is a tree.
\end{itemize}

Natural question: Do BP fixed points ever fall outside of the marginal polytope $\mathbb{M}(G)$?
Consider the following assignment of pseudomarginals τ_s, τ_{st}:

Locally consistent (pseudo)marginals

- can verify that $\tau \in \mathbb{L}(G)$, and that τ is a fixed point of belief propagation (with all constant messages)
- however, τ is globally inconsistent

Note: More generally: for any τ in the interior of $\mathbb{L}(G)$, can construct a distribution with τ as a BP fixed point.
High-level perspective: A broad class of methods

- message-passing algorithms (e.g., mean field, belief propagation) are solving approximate versions of exact variational principle in exponential families
- there are two distinct components to approximations:
 (a) can use either inner or outer bounds to M
 (b) various approximations to entropy function $-A^*(\mu)$

Refining one or both components yields better approximations:

- **BP**: polyhedral outer bound and non-convex Bethe approximation
- **Kikuchi and variants**: tighter polyhedral outer bounds and better entropy approximations (e.g., Yedidia et al., 2002)
- **Expectation-propagation**: better outer bounds and Bethe-like entropy approximations (Minka, 2002)