Introduction

• graphical model:
 * graph \(G = (V, E) \) with \(N \) vertices
 * random vector: \((X_1, X_2, \ldots, X_N)\)

• useful in many statistical and computational fields:
 – machine learning, artificial intelligence
 – computational biology, bioinformatics
 – statistical signal/image processing, spatial statistics
 – statistical physics
 – communication and information theory
Graphs and random variables

- associate to each node \(s \in V \) a random variable \(X_s \)
- for each subset \(A \subseteq V \), random vector \(X_A := \{X_s, s \in A\} \).

Maximal cliques (123), (345), (456), (47)
Vertex cutset \(S \)

- a clique \(C \subseteq V \) is a subset of vertices all joined by edges
- a vertex cutset is a subset \(S \subset V \) whose removal breaks the graph into two or more pieces

Factorization and Markov properties

The graph \(G \) can be used to impose constraints on the random vector \(X = X_V \) (or on the distribution \(p \)) in different ways.

Markov property: \(X \) is Markov w.r.t \(G \) if \(X_A \) and \(X_B \) are conditionally indpt. given \(X_S \) whenever \(S \) separates \(A \) and \(B \).

Factorization: The distribution \(p \) factorizes according to \(G \) if it can be expressed as a product over cliques:

\[
p(x) = \frac{1}{Z} \prod_{C \in C} \exp\{\theta_C(x_C)\}
\]

Normalization compatibility function on clique \(C \)

Hammersley-Clifford: For strictly positive \(p(\cdot) \), the Markov property and the Factorization property are equivalent.
Core computational challenges

Given an undirected graphical model (Markov random field):
\[
p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \exp \{ \theta_C(x_C) \}
\]

How to efficiently compute?

- the data likelihood or normalization constant

 \[
 Z = \sum_{x \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \exp \{ \theta_C(x_C) \}
 \]

- marginal distributions at single sites, or subsets:

 \[
 p(X_s = x_s) = \sum_{x_t, t \neq s} \prod_{C \in \mathcal{C}} \exp \{ \theta_C(x_C) \}.
 \]

- most probable configuration (MAP estimate):

 \[
 \hat{x} = \arg \max_{x \in \mathcal{X}^N} p(x) = \arg \max_{x \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \exp \{ \theta_C(x_C) \}.
 \]

Variational methods

- “variational”: umbrella term for optimization-based formulations

- many modern algorithms are variational in nature:
 - dynamic programming, finite-element methods
 - max-product message-passing
 - sum-product message-passing: generalized belief propagation, convexified belief propagation, expectation-propagation
 - mean field algorithms

Classical example: Courant-Fischer for eigenvalues:
\[
\lambda_{\text{max}}(Q) = \max_{\|x\|_2 = 1} x^T Q x
\]

Variational principle: Representation of interesting quantity \(u^*\) as the solution of an optimization problem.

1. \(u^*\) can be analyzed/bounded through “lens” of the optimization
2. approximate \(u^*\) by relaxing the variational principle
§1. Convex relaxations and message-passing for MAP

Goal: Compute most probable configuration (MAP estimate) on a tree:

\[
\hat{x} = \arg \max_{x \in \mathcal{X}^N} \left\{ \prod_{s \in V} \exp(\theta_s(x_s)) \prod_{(s,t) \in E} \exp(\theta_{st}(x_s, x_t)) \right\}.
\]

- **Max-product strategy:** “Divide and conquer”: break global maximization into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)

Max-product on trees

Decompose:

\[
\max_{x_1, x_2, x_3, x_4, x_5} p(x) = \max_{x_2} \left[\exp(\theta_1(x_1)) \prod_{t \in N(2)} \left\{ \max_{x_t} \exp[\theta_t(x_t) + \theta_{2t}(x_2, x_t)] \right\} \right].
\]

Update messages:

\[
M_{32}(x_2) = \max_{x_3} \left[\exp(\theta_3(x_3)) + \theta_{23}(x_2, x_3) \prod_{v \in N(3) \setminus 2} M_{v3}(x_3) \right]
\]
Variational view: Max-product and linear programming

- MAP as integer program:
 \[f^* = \max_{x \in X} \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \]

- Define local marginal distributions (e.g., for \(m = 3 \) states):
 \[
 \mu_s(x_s) = \begin{cases}
 \mu_s(0) & \text{if } x_s = 0 \\
 \mu_s(1) & \text{if } x_s = 1 \\
 \mu_s(2) & \text{if } x_s = 2
 \end{cases}
 \]
 \[
 \mu_{st}(x_s, x_t) = \begin{cases}
 \mu_{st}(0, 0) & \text{if } x_s = x_t = 0 \\
 \mu_{st}(0, 1) & \text{if } x_s = 0, x_t = 1 \\
 \mu_{st}(0, 2) & \text{if } x_s = 0, x_t = 2 \\
 \mu_{st}(1, 0) & \text{if } x_s = 1, x_t = 0 \\
 \mu_{st}(1, 1) & \text{if } x_s = 1, x_t = 1 \\
 \mu_{st}(1, 2) & \text{if } x_s = 1, x_t = 2 \\
 \mu_{st}(2, 0) & \text{if } x_s = 2, x_t = 0 \\
 \mu_{st}(2, 1) & \text{if } x_s = 2, x_t = 1 \\
 \mu_{st}(2, 2) & \text{if } x_s = 2, x_t = 2
 \end{cases}
 \]

- Alternative formulation of MAP as linear program:
 \[
 g^* = \max_{\mu_s, \mu_{st} \in M(G)} \left(\sum_{s \in V} \mathbb{E}_{\mu_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}} [\theta_{st}(x_s, x_t)] \right)
 \]

- Key question: What constraints must local marginals \(\{\mu_s, \mu_{st}\} \) satisfy?

Marginal polytopes for general undirected models

- \(M(G) \equiv \{ \mu \in \mathbb{R}^d \mid \mu_s(x_s) = \sum_{x_{s', \neq s}} \mu_{s'}(x_s') \} \) for some \(\mu_s(x_s) \) over \((X_1, \ldots, X_N) \) in \(\{0, 1, \ldots, m-1\}^N \),

- Polytope in \(d = |V| + m^2 |E| \) dimensions (\(m \) per vertex, \(m^2 \) per edge)

- Number of facets?
Marginal polytope for trees

- \(\mathcal{M}(T) \equiv \) special case of marginal polytope for tree \(T \)
- local marginal distributions on nodes/edges (e.g., \(m = 3 \))

\[
\mu_s(x_s) = \begin{bmatrix} \mu_s(0) \\ \mu_s(1) \\ \mu_s(2) \end{bmatrix}, \quad \mu_{st}(x_s, x_t) = \begin{bmatrix} \mu_{st}(0,0) & \mu_{st}(0,1) & \mu_{st}(0,2) \\ \mu_{st}(1,0) & \mu_{st}(1,1) & \mu_{st}(1,2) \\ \mu_{st}(2,0) & \mu_{st}(2,1) & \mu_{st}(2,2) \end{bmatrix}
\]

Deep fact about tree-structured models: If \(\{\mu_s, \mu_{st}\} \) are non-negative and locally consistent:

Normalization: \[\sum_{x_s} \mu_s(x_s) = 1 \]
Marginalization: \[\sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s), \]
then on any tree-structured graph \(T \), they are globally consistent.

Follows from junction tree theorem (Lauritzen & Spiegelhalter, 1988).

Max-product on trees: Linear program solver

- MAP problem as a simple linear program:

\[
f(\hat{x}) = \arg \max_{\bar{\mu} \in \mathcal{M}(T)} \left\{ \sum_{s \in V} \mathbb{E}_{\mu_s}[\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}}[\theta_{st}(x_s, x_t)] \right\}
\]

subject to \(\bar{\mu} \) in tree marginal polytope:

\[
\mathcal{M}(T) = \left\{ \bar{\mu} \geq 0, \quad \sum_{x_s} \mu_s(x_s) = 1, \quad \sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s) \right\}.
\]

Max-product and LP solving:

- on tree-structured graphs, max-product is a dual algorithm for solving the tree LP. (Wai. & Jordan, 2003)
- max-product message \(M_{ts}(x_s) \equiv \) Lagrange multiplier for enforcing the constraint \(\sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s) \).
Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

$$\mathcal{L}(G) = \left\{ \bar{\tau} \in \mathbb{R}^d \mid \bar{\tau} \geq 0, \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x'_t) = \tau_s(x_s) \right\}.$$

Key: For a general graph, $\mathcal{L}(G)$ is an outer bound on $\mathcal{M}(G)$, and yields a linear-programming relaxation of the MAP problem:

$$f(\hat{x}) = \max_{\hat{\mu} \in \mathcal{M}(G)} \theta^T \hat{\mu} \leq \max_{\bar{\tau} \in \mathcal{L}(G)} \theta^T \bar{\tau}.$$

Max-product and graphs with cycles

Early and on-going work:

- local optimality guarantees:
 - “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)
 - optimality on more general sub-graphs (Wainwright et al., 2003)

A natural “variational” conjecture:

- max-product on trees is a method for solving a linear program
- is max-product solving the first-order LP relaxation on graphs with cycles?
Standard analysis via computation tree

- standard tool: computation tree of message-passing updates
 (Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)

(a) Original graph (b) Computation tree (4 iterations)

- level t of tree: all nodes whose messages reach the root (node 1) after t iterations of message-passing

Example: Standard max-product does not solve LP

(Wainwright et al., 2005)

Intuition:
- max-product solves (exactly) a modified problem on computation tree
- nodes not equally weighted in computation tree \Rightarrow max-product can output an incorrect configuration

(a) Diamond graph G_{dia} (b) Computation tree (4 iterations)

- for example: asymptotic node fractions ω in this computation tree:
 $\left[\begin{array}{cccc}
 \omega(1) & \omega(2) & \omega(3) & \omega(4) \\
 \end{array}\right] =
 \left[\begin{array}{cccc}
 0.2393 & 0.2607 & 0.2607 & 0.2393 \\
 \end{array}\right]$
A whole family of non-exact examples

\[
\begin{align*}
\theta_s(x_s) &= \begin{cases}
\alpha x_s & \text{if } s = 1 \text{ or } s = 4 \\
\beta x_s & \text{if } s = 2 \text{ or } s = 3
\end{cases} \\
\theta_{st}(x_s, x_t) &= \begin{cases}
-\gamma & \text{if } x_s \neq x_t \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

- for γ sufficiently large, optimal solution is always either
\[1^4 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}\] or
\[(-1)^4 = \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix}\]

- first-order LP relaxation always exact for this problem

- max-product and LP relaxation give different decision boundaries:

 \underline{Optimal/LP boundary:} \quad \hat{x} = \begin{cases}
1^4 & \text{if } 0.25\alpha + 0.25\beta \geq 0 \\
(-1)^4 & \text{otherwise}
\end{cases}

 \underline{Max-product boundary:} \quad \hat{x} = \begin{cases}
1^4 & \text{if } 0.2393\alpha + 0.2607\beta \geq 0 \\
(-1)^4 & \text{otherwise}
\end{cases}

Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

\[M_{ts}(x_s) \leftarrow \kappa \max_{x'_t \in \chi_t} \left\{ \exp \left[\theta_{st}(x_s, x'_t) \right] + \theta_t(x'_t) \right\} \frac{\prod_{v \in \Gamma(t) \setminus s} \left[M_{vt}(x_t) \right]^{\rho_{vt}}}{\left[M_{st}(x_t) \right]^{(1-\rho_{ts})}}.\]

Properties:

1. Modified updates remain distributed and purely local over the graph.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.

2. Key differences:
 - Potential on edge (s, t) is rescaled by $\rho_{st} \in [0, 1]$.
 - Update involves the reverse direction edge.

3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.
Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ?

![Diagrams](image)

(a) Original
(b) $\rho(T^1) = \frac{1}{3}$
(c) $\rho(T^2) = \frac{1}{3}$
(d) $\rho(T^3) = \frac{1}{3}$

In this example: $\rho_b = 1$; $\rho_e = \frac{2}{3}$; $\rho_f = \frac{1}{3}$.

The vector $\rho_e = \{\rho_e | e \in E\}$ must belong to the *spanning tree polytope.* (Edmonds, 1971)

TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

$$f(\hat{x}) \leq \max_{\tau \in \mathcal{L}(G)} \left\{ \sum_{s \in V} \mathbb{E}_{\tau_s}[\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\tau_{st}}[\theta_{st}(x_s, x_t)] \right\}$$

Results: (Wainwright et al., 2003; Kolmogorov & Wainwright, 2005):

(a) **Strong tree agreement** Any TRW fixed-point that satisfies the strong tree agreement condition specifies an optimal LP solution.

(b) **LP solving:** For any binary pairwise problem, TRW max-product solves the first-order LP relaxation.

(c) **Persistence for binary problems:** Let $S \subseteq V$ be the subset of vertices for which there exists a single point $x_s^* \in \arg \max_{x_s} \nu_s^*(x_s)$. Then for *any optimal solution*, it holds that $y_s = x_s^*$.
On-going work: Distributed methods for solving LPs

- tree-reweighted max-product solves first-order LP for any binary pairwise problem (Kolmogorov & Wainwright, 2005)

- convergent dual ascent scheme; LP-optimal for binary pairwise problems (Globerson & Jaakkola, 2007)

- convex free energies and zero-temperature limits (Wainwright et al., 2005, Weiss et al., 2006; Johnson et al., 2007)

- coding problems: adaptive cutting-plane methods (Taghavi & Siegel, 2006; Dimakis et al., 2006)

- arbitrary problems: proximal minimization and rounding schemes with correctness guarantees (Ravikumar et al., ICML 2008)

Hierarchies of conic programming relaxations

- hierarchies of SDP relaxations for polynomial programming (Lasserre, 2001; Parrilo, 2002)

- intermediate between LP and SDP: second-order cone programming (SOCP) relaxations (Ravikumar & Lafferty, 2006; Pawan et al., 2008)

- all relaxations: particular outer bounds on the marginal polyope

Key questions:

- when are particular relaxations tight?

- when does more computation (e.g., LP \rightarrow SDP) yield performance gains?
Variational principles for marginalization/summation

Undirected graphical model:
\[p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \exp \{ \theta_C(x_C) \}. \]

Core computational challenges

(a) computing most probable configurations \(\hat{x} \in \arg \max_{x \in \mathcal{X}^N} p(x) \)
(b) computing normalization constant \(Z \)
(c) computing local marginal distributions (e.g., \(p(x_s) = \sum_{x_t, t \neq s} p(x) \))

Variational formulation of problems (b) and (c): not immediately obvious!

Approach: Develop variational representations using exponential families, and convex duality.

Maximum entropy formulation of graphical models

- suppose that we have measurements \(\hat{\mu} \) of the average values of some (local) functions \(\phi_\alpha : \mathcal{X}^n \to \mathbb{R} \)
- in general, will be many distributions \(p \) that satisfy the measurement constraints \(\mathbb{E}_p[\phi_\alpha(x)] = \hat{\mu} \)
- will consider finding the \(p \) with maximum “uncertainty” subject to the observations, with uncertainty measured by entropy
 \[H(p) = -\sum_x p(x) \log p(x). \]

Constrained maximum entropy problem: Find \(\hat{p} \) to solve
\[\max_{p \in \mathcal{P}} H(p) \quad \text{such that} \quad \mathbb{E}_p[\phi_\alpha(x)] = \hat{\mu} \]
- elementary argument with Lagrange multipliers shows that solution belongs to exponential family
 \[\hat{p}(x; \theta) \propto \exp \{ \sum_{\alpha \in \mathcal{I}} \theta_\alpha \phi_\alpha(x) \}. \]
Examples: Scalar exponential families

<table>
<thead>
<tr>
<th>Family</th>
<th>(\mathcal{X})</th>
<th>(\nu)</th>
<th>(\log p(x; \theta))</th>
<th>(A(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>{0, 1}</td>
<td>Counting</td>
<td>(\theta x - A(\theta))</td>
<td>(\log[1 + \exp(\theta)])</td>
</tr>
<tr>
<td>Gaussian</td>
<td>(\mathbb{R})</td>
<td>Lebesgue</td>
<td>(\theta_1 x + \theta_2 x^2 - A(\theta))</td>
<td>(\frac{1}{2}[\theta_1 + \log \frac{2\pi e}{-\theta_2^2}])</td>
</tr>
<tr>
<td>Exponential</td>
<td>(0, +(\infty))</td>
<td>Lebesgue</td>
<td>(\theta (-x) - A(\theta))</td>
<td>(-\log \theta)</td>
</tr>
<tr>
<td>Poisson</td>
<td>{0, 1, 2 \ldots}</td>
<td>Counting</td>
<td>(\theta x - A(\theta))</td>
<td>(\exp(\theta))</td>
</tr>
</tbody>
</table>

- parameterized family of densities (w.r.t. some base measure)
 \[
p(x; \theta) = \exp\left\{ \sum_\alpha \theta_\alpha \phi_\alpha(x) - A(\theta) \right\}
 \]

- cumulant generating function (log normalization constant):
 \[
 A(\theta) = \log \left(\int \exp\{\langle \theta, \phi(x)\rangle\} \nu(dx) \right)
 \]

Example: Discrete Markov random field

Indicators: \(\mathbb{I}_j(x_s) = \begin{cases} 1 & \text{if } x_s = j \\ 0 & \text{otherwise} \end{cases}\)

Parameters:
- \(\theta_s = \{\theta_{s;j}; j \in \mathcal{X}_s\}\)
- \(\theta_{st} = \{\theta_{st;jk}; (j,k) \in \mathcal{X}_s \times \mathcal{X}_t\}\)

Compact form:
- \(\theta_s(x_s) := \sum_j \theta_{s;j} \mathbb{I}_j(x_s)\)
- \(\theta_{st}(x_s, x_t) := \sum_{j,k} \theta_{st;jk} \mathbb{I}_j(x_s) \mathbb{I}_k(x_t)\)

Probability mass function of form:
\[
p(x; \theta) \propto \exp\left\{ \sum_{s \in \mathcal{V}} \theta_s(x_s) + \sum_{(s,t) \in \mathcal{E}} \theta_{st}(x_s, x_t) \right\}
\]

Cumulant generating function (log normalization constant):
\[
A(\theta) = \log \sum_{x \in \mathcal{X}^\infty} \exp\left\{ \sum_{s \in \mathcal{V}} \theta_s(x_s) + \sum_{(s,t) \in \mathcal{E}} \theta_{st}(x_s, x_t) \right\}
\]
Special case: Hidden Markov model

- Markov chain \(\{X_1, X_2, \ldots\} \) evolving in time, with noisy observation \(Y_t \) at each time \(t \)
- \(\theta_{23}(x_2, x_3) \)
- \(\theta_{5}(x_5) \)
- an HMM is a particular type of discrete MRF, representing the conditional \(p(x \mid y; \theta) \)
- exponential parameters have a concrete interpretation
 \[
 \theta_{23}(x_2, x_3) = \log p(x_3 \mid x_2)
 \]
 \[
 \theta_{5}(x_5) = \log p(y_5 \mid x_5)
 \]
- the cumulant generating function \(A(\theta) \) is equal to the log likelihood \(\log p(y; \theta) \)

Example: Multivariate Gaussian

\(U(\theta) \): Matrix of natural parameters \(\phi(x) \): Matrix of sufficient statistics

\[
\begin{bmatrix}
0 & \theta_1 & \theta_2 & \ldots & \theta_n \\
\theta_1 & \theta_{11} & \theta_{12} & \ldots & \theta_{1n} \\
\theta_2 & \theta_{21} & \theta_{22} & \ldots & \theta_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\theta_n & \theta_{n1} & \theta_{n2} & \ldots & \theta_{nn}
\end{bmatrix}
\begin{bmatrix}
1 & x_1 & x_2 & \ldots & x_n \\
x_1 & (x_1)^2 & x_1x_2 & \ldots & x_1x_n \\
x_2 & x_2x_1 & (x_2)^2 & \ldots & x_2x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_n & x_nx_1 & x_nx_2 & \ldots & (x_n)^2
\end{bmatrix}
\]

Edgewise natural parameters \(\theta_{st} = \theta_{ts} \) must respect graph structure:
Example: Mixture of Gaussians

- can form *mixture models* by combining different types of random variables
- let Y_s be conditionally Gaussian given the discrete variable X_s with parameters $\gamma_{s;j} = (\mu_{s;j}, \sigma^2_{s;j})$:

\[
X_s \quad \equiv \quad \text{mixture indicator}
\]

\[
Y_s \quad \equiv \quad \text{mixture of Gaussian}
\]

- couple the mixture indicators $X = \{X_s, s \in V\}$ using a discrete MRF
- overall model has the exponential form

\[
p(y, x; \theta, \gamma) \propto \prod_{s \in V} p(y_s | x_s; \gamma_s) \exp\left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}.
\]

Conjugate dual functions

- conjugate duality is a fertile source of variational representations
- any function f can be used to define another function f^* as follows:

\[
f^*(v) := \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}.
\]

- easy to show that f^* is always a convex function
- how about taking the “dual of the dual”? I.e., what is $(f^*)^*$?
- when f is well-behaved (convex and lower semi-continuous), we have $(f^*)^* = f$, or alternatively stated:

\[
f(u) = \sup_{v \in \mathbb{R}^n} \{ \langle u, v \rangle - f^*(v) \}\]
Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in \(\mathbb{R}^n \times \mathbb{R} \) with normal \((v, -1)\), what is the intercept of the one that supports \(\text{epi}(f) \)?

\[\text{Epigraph of } f: \quad \text{epi}(f) := \{(u, \beta) \in \mathbb{R}^{n+1} | f(u) \leq \beta\}. \]

Analytically, we require the smallest \(c \in \mathbb{R} \) such that:

\[\langle v, u \rangle - c \leq f(u) \text{ for all } u \in \mathbb{R}^n \]

By re-arranging, we find that this optimal \(c^* \) is the dual value:

\[c^* = \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}. \]

Example: Single Bernoulli

Random variable \(X \in \{0, 1\} \) yields exponential family of the form:

\[p(x; \theta) \propto \exp \{ \theta x \} \text{ with } A(\theta) = \log [1 + \exp(\theta)]. \]

Let’s compute the dual \(A^*(\mu) := \sup_{\theta \in \mathbb{R}} \{ \mu \theta - \log [1 + \exp(\theta)] \} \).

(Possible) stationary point:

\[\mu = \exp(\theta) / [1 + \exp(\theta)]. \]

We find that:

\[A^*(\mu) = \begin{cases}
\mu \log \mu + (1 - \mu) \log(1 - \mu) & \text{if } \mu \in [0, 1], \\
+\infty & \text{otherwise}.
\end{cases} \]

Leads to the variational representation:

\[A(\theta) = \max_{\mu \in [0, 1]} \{ \mu \cdot \theta - A^*(\mu) \}. \]
More general computation of the dual A^*

- consider the definition of the dual function:
 \[A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \{ \langle \mu, \theta \rangle - A(\theta) \}. \]

- taking derivatives w.r.t θ to find a stationary point yields:
 \[\mu - \nabla A(\theta) = 0. \]

- **Useful fact:** Derivatives of A yield mean parameters:
 \[\frac{\partial A}{\partial \theta_\alpha}(\theta) = \mathbb{E}_\theta[\phi_\alpha(X)] := \int \phi_\alpha(x)p(x; \theta)\nu(x). \]

Thus, stationary points satisfy the equation:
\[\mu = \mathbb{E}_\theta[\phi(X)] \] (1)

Computation of dual (continued)

- assume solution $\theta(\mu)$ to equation $\mu = \mathbb{E}_\theta[\phi(X)] \quad (*)$
- strict concavity of objective guarantees that $\theta(\mu)$ attains global maximum with value
 \[A^*(\mu) = \langle \mu, \theta(\mu) \rangle - A(\theta(\mu)) \]
 \[= \mathbb{E}_{\theta(\mu)}[\langle \theta(\mu), \phi(X) \rangle - A(\theta(\mu))] \]
 \[= \mathbb{E}_{\theta(\mu)}[\log p(X; \theta(\mu))] \]

- recall the definition of entropy:
 \[H(p(x)) := -\int \log p(x)p(x)\nu(dx) \]

- thus, we recognize that $A^*(\mu) = -H(p(x; \theta(\mu)))$ when equation $(*)$ has a solution

Question: For which $\mu \in \mathbb{R}^d$ does equation $(*)$ have a solution $\theta(\mu)$?
Sets of realizable mean parameters

- for any distribution \(p(\cdot) \), define a vector \(\mu \in \mathbb{R}^d \) of mean parameters:

\[
\mu_\alpha := \int \phi_\alpha(x) p(x) \nu(dx)
\]

- now consider the set \(\mathbb{M}(G; \phi) \) of all realizable mean parameters:

\[
\mathbb{M}(G; \phi) = \{ \mu \in \mathbb{R}^d \mid \mu_\alpha = \int \phi_\alpha(x) p(x) \nu(dx) \text{ for some } p(\cdot) \}
\]

- for discrete families, we refer to this set as a marginal polytope (as discussed previously).

Examples of \(\mathbb{M} \): Gaussian MRF

- \(\phi(x) \) Matrix of sufficient statistics
- \(U(\mu) \) Matrix of mean parameters

Scalar case:

\[
U(\mu) = \begin{bmatrix}
1 & \mu_1 & \ldots & \mu_n \\
1 & \mu_2 & \ldots & \mu_n \\
\vdots & \vdots & \ddots & \vdots \\
x_n & \mu_n & \ldots & \mu_n
\end{bmatrix}
\]

- Gaussian mean parameters are specified by a single semidefinite constraint as \(\mathbb{M}_{\text{Gauss}} = \{ \mu \in \mathbb{R}^n \mid U(\mu) \succeq 0 \} \).
Examples of \mathcal{M}: Discrete MRF

- sufficient statistics:
 \[I_j(x_s) \quad \text{for } s = 1, \ldots, n, \quad j \in \mathcal{X}_s \]
 \[I_{jk}(x_s, x_t) \quad \text{for } (s, t) \in E, \quad (j, k) \in \mathcal{X}_s \times \mathcal{X}_t \]

- mean parameters are simply marginal probabilities, represented as:
 \[\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s,j} I_j(x_s), \quad \mu_{st}(x_s, x_t) := \sum_{(j, k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st,jk} I_{jk}(x_s, x_t) \]

- denote the set of realizable μ_s and μ_{st} by $\mathcal{M}(G)$
- refer to it as the marginal polytope
- extremely difficult to characterize for general graphs

Geometry and moment mapping

For suitable classes of graphical models in exponential form, the gradient map ∇A is a bijection between Θ and the interior of \mathcal{M}.

(e.g., Brown, 1986; Efron, 1978)
Variational principle in terms of mean parameters

- The conjugate dual of A takes the form:

$$A^*(\mu) = \begin{cases} -H(p(x; \theta(\mu))) & \text{if } \mu \in \text{int} M(G; \phi) \\ +\infty & \text{if } \mu \notin \text{cl} M(G; \phi). \end{cases}$$

Interpretation:
- $A^*(\mu)$ is finite (and equal to a certain negative entropy) for any μ that is globally realizable
- if $\mu \notin \text{cl} M(G; \phi)$, then the max. entropy problem is infeasible

- The cumulant generating function A has the representation:

$$A(\theta) = \sup_{\mu \in M(G; \phi)} \{\langle \theta, \mu \rangle - A^*(\mu)\},$$

cumulant generating func. max. ent. problem over M

- in contrast to the “free energy” approach, solving this problem provides both the value $A(\theta)$ and the exact mean parameters $\hat{\mu}_\alpha = \mathbb{E}_\theta [\phi_\alpha(x)]$

Alternative view: Kullback-Leibler divergence

- Kullback-Leibler divergence defines “distance” between probability distributions:

$$D(p \| q) := \int \left[\log \frac{p(x)}{q(x)} \right] p(x) \nu(dx)$$

- for two exponential family members $p(x; \theta^1)$ and $p(x; \theta^2)$, we have

$$D(p(x; \theta^1) \| p(x; \theta^2)) = A(\theta^2) - A(\theta^1) - \langle \mu^1, \theta^2 - \theta^1 \rangle$$

- substituting $A(\theta^1) = \langle \theta^1, \mu^1 \rangle - A^*(\mu^1)$ yields a mixed form:

$$D(p(x; \theta^1) \| p(x; \theta^2)) \equiv D(\mu^1 \| \theta^2) = A(\theta^2) + A^*(\mu^1) - \langle \mu^1, \theta^2 \rangle$$

Hence, the following two assertions are equivalent:

$$A(\theta^2) = \sup_{\mu^1 \in M(G; \phi)} \{\langle \theta^2, \mu^1 \rangle - A^*(\mu^1)\}$$

$$0 = \inf_{\mu^1 \in M(G; \phi)} D(\mu^1 \| \theta^2)$$
Challenges

1. In general, mean parameter spaces \mathcal{M} can be very difficult to characterize (e.g., multidimensional moment problems).

2. Entropy $A^*(\mu)$ as a function of only the mean parameters μ typically lacks an explicit form.

Remarks:

1. Variational representation clarifies why certain models are tractable.

2. For intractable cases, one strategy is to solve an approximate form of the optimization problem.

Example: Multivariate Gaussian (fixed covariance)

Consider the set of all Gaussians with fixed inverse covariance $Q \succ 0$.

- potentials $\phi(x) = \{x_1, \ldots, x_n\}$ and natural parameter $\theta \in \Theta = \mathbb{R}^n$.
- cumulant generating function:

$$
A(\theta) = \log \int_{\mathbb{R}^n} \exp \left\{ \sum_{s=1}^{n} \theta_s x_s \right\} \exp \left\{ -\frac{1}{2} x^T Q x \right\} dx
$$

- completing the square yields $A(\theta) = \frac{1}{2} \theta^T Q^{-1} \theta + \text{constant}$

- straightforward computation leads to the dual

$$
A^*(\mu) = \frac{1}{2} \mu^T Q \mu - \text{constant}
$$

- putting the pieces back together yields the variational principle

$$
A(\theta) = \sup_{\mu \in \mathbb{R}^n} \left\{ \theta^T \mu - \frac{1}{2} \mu^T Q \mu \right\} + \text{constant}
$$

- optimum is uniquely obtained at the familiar Gaussian mean $\hat{\mu} = Q^{-1} \theta$.
Example: Multivariate Gaussian (arbitrary cov.)

- matrices of sufficient statistics, natural parameters, and mean parameters:

\[
\phi(X) = \begin{bmatrix} 1 \\ X \end{bmatrix} \begin{bmatrix} 1 & X \end{bmatrix}, \quad U(\theta) := \begin{bmatrix} 0 & [\theta_s] \\ [\theta_s] & [\theta_{st}] \end{bmatrix}, \quad U(\mu) := \mathbb{E} \left\{ \begin{bmatrix} 1 \\ X \end{bmatrix} \begin{bmatrix} 1 & X \end{bmatrix} \right\}
\]

- cumulant generating function:

\[
A(\theta) = \log \int \exp \left\{ \text{trace} (U(\theta) \phi(x)) \right\} dx
\]

- computing the dual function:

\[
A^*(\mu) = -\frac{1}{2} \log \det U(\mu) - \frac{n}{2} \log 2\pi e,
\]

- exact variational principle is a log-determinant problem:

\[
A(\theta) = \sup_{U(\mu) > 0, \ |U(\mu)|_{11} = 1} \left\{ \text{trace} (U(\theta) U(\mu)) + \frac{1}{2} \log \det U(\mu) \right\} + C.
\]

- solution yields the normal equations for Gaussian mean and covariance.

Example: Belief propagation and Bethe principle

Problem set-up

- discrete variables \(X_s \in \{0,1,\ldots,m_s - 1\} \) on graph \(G = (V,E) \)

- sufficient statistics: indicator functions for each node and edge

\[
\mathbb{I}_j(x_s) \quad \text{for} \quad s = 1, \ldots n, \quad j \in X_s
\]

\[
\mathbb{I}_{jk}(x_s, x_t) \quad \text{for} \quad (s, t) \in E, \quad (j, k) \in X_s \times X_t.
\]

- exponential representation of distribution:

\[
p(x; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s (x_s) + \sum_{(s,t) \in E} \theta_{st} (x_s, x_t) \right\}
\]

where \(\theta_s (x_s) := \sum_{j \in X_s} \theta_{sj} \mathbb{I}_j(x_s) \) (and similarly for \(\theta_{st} (x_s, x_t) \))

Two main ingredients:

1. Exact entropy \(-A^*(\mu)\) is intractable, so let’s approximate it.

2. The marginal polytope \(\mathcal{M}(G) \) is also difficult to characterize, so let’s use the tree-based outer bound \(\mathbb{L}(G) \).
Bethe entropy approximation

- mean parameters are simply marginal probabilities, represented as:
 \[\mu_s(x_s) := \sum_{j \in X_s} \mu_{sj} \| j(x_s), \quad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in X_s \times X_t} \mu_{stjk} \| jk(x_s, x_t) \]

- Bethe entropy approximation
 \[-A^*_{Bethe}(\mu) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}), \]
 where
 - Single node entropy: \[H_s(\mu_s) := -\sum_{x_s} \mu_s(x_s) \log \mu_s(x_s) \]
 - Mutual information: \[I_{st}(\mu_{st}) := \sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]

- exact for trees, using the factorization:
 \[p(x; \theta) = \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]

Bethe variational principle

- Bethe entropy approximation, and outer bound \(L(G) \):
 \[L(G) = \left\{ \bar{F} \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \right\}. \]

- combining these ingredients leads to the Bethe variational problem (BVP):
 \[\max_{\tau \in L(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\} \]

Key fact: Belief propagation can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Yedidia et al., 2002)
Lagrangian derivation of belief propagation

Let's try to solve this problem by a (partial) Lagrangian formulation.

Assign a Lagrange multiplier $\lambda_{ts}(x_s)$ for each constraint $C_{ts}(x_s) = 0$.

will enforce the normalization $\sum_s \tau_s(x_s) = 1$ and non-negativity constraints explicitly.

the Lagrangian takes the form:

$L(\tau; \lambda) = \langle \theta, \tau \rangle - \sum_{s \in V} H_s(\tau_s) + \sum_{(s,t) \in E} \lambda_{st}(x_s, x_t)$

Taking derivatives of the Lagrangian w.r.t $\tau_s(x_s)$ and $\tau_{st}(x_s, x_t)$ yields:

$\frac{\partial L}{\partial \tau_s(x_s)} = \theta_s(x_s) - \log \tau_s(x_s) + \sum_{t \in N(s)} \lambda_{st}(x_s, x_t) + C'$

Setting these partial derivatives to zero and simplifying:

$\tau_s(x_s) \propto \exp \{ \theta_s(x_s) \} \prod_{u \in N(s)} \exp \{ \lambda_{us}(x_s) \}$

enforcing the constraint $C_{ts}(x_s) = 0$ on these representations yields the familiar update rule for the messages $M_{st}(x_s) = \exp(\lambda_{ts}(x_s))$:

$M_{st}(x_s) \propto \sum_{x_t} \exp \{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \prod_{u \in N(t)} \exp \{ \lambda_{ut}(x_t) \}$
Geometry of Bethe variational problem

- belief propagation uses a polyhedral outer approximation to $\mathbb{M}(G)$:
 - for any graph, $\mathbb{L}(G) \supseteq \mathbb{M}(G)$.
 - equality holds $\iff G$ is a tree.

Natural question: Do BP fixed points ever fall outside of the marginal polytope $\mathbb{M}(G)$?

Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τ_s, τ_{st}:

- can verify that $\tau \in \mathbb{L}(G)$, and that τ is a fixed point of belief propagation (with all constant messages)
- however, τ is globally inconsistent

Note: More generally: for any τ in the interior of $\mathbb{L}(G)$, can construct a distribution with τ as a BP fixed point.
High-level perspective: A broad class of methods

- message-passing algorithms (e.g., mean field, belief propagation) are solving approximate versions of exact variational principle in exponential families
- there are two *distinct* components to approximations:
 - (a) can use either inner or outer bounds to M
 - (b) various approximations to entropy function $-A^*(\mu)$

 Refining one or both components yields better approximations:

 - **BP**: polyhedral outer bound and non-convex Bethe approximation
 - **Kikuchi and variants**: tighter polyhedral outer bounds and better entropy approximations (e.g., Yedidia et al., 2002)
 - **Expectation-propagation**: better outer bounds and Bethe-like entropy approximations (Minka, 2002)

Generalized belief propagation on hypergraphs

(Yedidia et al., 2002)

- a *hypergraph* is a natural generalization of a graph
- it consists of a set of vertices V and a set E of hyperedges, where each *hyperedge* is a subset of V

(a) Ordinary graph (b) Hypertree (width 2) (c) Hypergraph

- ancestor/descendant relationships:
 - $g \subseteq h$ if g is contained within hyperedge h
 - $g \supset h$ for opposite relationship
Hypertree factorization

- for each hyperedge: \(\log \varphi_h(x_h) := \sum_{g \subseteq h, |h \setminus g|} (-1)^{|h \setminus g|} \log \tau_g(x_g) \).
- any hypertree-structured distribution is guaranteed to factor as:
 \[p(x) = \prod_{h \in E} \varphi_h(x_h). \]

- Ordinary tree:
 \(\varphi_s(x_s) = \mu_s(x_s) \) for any vertex \(s \)
 \(\varphi_{st}(x_s, x_t) = \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \) for edge \((s, t)\).

- Hypertree:

 \[
 \begin{align*}
 \varphi_{1245} &= \frac{\mu_{1245}}{\mu_5 \mu_{45} \mu_{5}^{2}} \\
 \varphi_{45} &= \frac{\mu_{45}}{\mu_{5}^{2}} \\
 \varphi_{5} &= \mu_{5}^{2}
 \end{align*}
 \]

Building augmented hypergraphs

Better entropy approximations via augmented hypergraphs.

(a) Original (b) Clustering (c) Full covering (d) Kikuchi (e) Fails single counting
Expectation-propagation (EP)

- originally derived in terms of assumed density filtering (Minka, 2002)
- another instance of a relaxed variational principle:
 - “Bethe-like” (termwise) approximation to entropy
 - local consistency constraints on marginals
- distribution with tractable/intractable decomposition:

\[
f(x, \gamma, \Gamma) \propto \exp(\langle \gamma, \phi(x) \rangle) \prod_{i=1}^{k} T_i(x)\]

- tractable \quad intractable

- auxiliary parameters \(\theta \), and term-by-term entropy approx.:

\[
H(f) \approx H(q_{base}(x; \theta, \gamma)) + \sum_{i=1}^{k} \left[H(q_{aug}^i(x; \theta, \gamma, T_i)) - H(q_{base}(x; \theta, \gamma)) \right]
\]

- base entropy \quad term approximations

EP updates for Gaussian mixtures

- distribution formed by tractable/intractable combination:

\[
f(x, \Sigma) \propto \exp \left(-\frac{1}{2} x^T \Sigma^{-1} x \right) \prod_{i=1}^{n} f(y^i \mid X = x)\]

- Gaussian mixture likelihoods

\[
f(y^i \mid X = x) = \alpha \mathcal{N}(y^i; 0, \sigma_0^2) + (1 - \alpha) \mathcal{N}(y^i; x, \sigma_1^2)\]

- base/augmented distributions take form:

 Base: \(q_{base}(x; \Sigma, \theta, \Theta) \propto \exp \left(\langle \gamma, x \rangle - \frac{1}{2} \text{trace}(\Theta + \Sigma^{-1} x x^T) \right) \)

 Augmented: \(q_{aug}^i(x; \Sigma, \theta, \Theta, T_i) \propto q(x; \Sigma, \theta, \Theta) T_i(x). \)

- variational problem: maximize term-by-term entropy approximation, subject to marginalization constraints:

\[
\mathbb{E}_{q_{base}}[X] = \mathbb{E}_{q_{aug}}[X] \quad \mathbb{E}_{q_{base}}[XX^T] = \mathbb{E}_{q_{aug}}[XX^T].
\]
Convex relaxations and upper bounds

Possible concerns with Bethe/Kikuchi, expectation-propagation etc.?

(a) lack of convexity ⇒ multiple local optima, and algorithmic complications
(b) failure to bound the log partition function

Goal: Techniques for approximate computation of marginals and parameter estimation based on:

(a) convex variational problems ⇒ unique global optimum
(b) relaxations of exact problem ⇒ upper bounds on $A(\theta)$

Usefulness of bounds:

(a) interval estimates for marginals
(b) approximate parameter estimation
(c) large deviations (prob. of rare events)

Bounds from “convexified” Bethe/Kikuchi problems

$-A^*(\mu) \leq -\rho(T^1)A^*(\mu(T^1)) - \rho(T^2)A^*(\mu(T^2)) - \rho(T^3)A^*(\mu(T^3))$

- given any spanning tree T, define the moment-matched tree distribution:
 \[
 p(x; \mu(T)) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}
 \]

- use $-A^*(\mu(T))$ to denote the associated tree entropy
- let $\rho = \{\rho(T)\}$ be a probability distribution over spanning trees
Optimal bounds by tree-reweighted message-passing

Recall the constraint set of locally consistent marginal distributions:
\[
L(G) = \{ \tau \geq 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_st} \tau_{st}(x_s, x_t) = \tau_t(x_t) \}.
\]

Theorem: (Wainwright et al., UAI-02)

(a) For any given edge weights \(\rho_{e} = \{\rho_{e}\} \) in the spanning tree polytope, the optimal upper bound over all tree parameters is given by:
\[
A(\theta) \leq \max_{\tau \in L(G)} \{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \}.
\]

(b) This optimization problem is strictly convex, and its unique optimum is specified by the fixed point of \(\rho_{e}\)-reweighted sum-product:
\[
M^{\ast}_{ts}(x_s) = \kappa \sum_{x'_t \in \mathcal{X}_t} \left\{ \exp \left[\frac{\theta_{st}(x_s, x'_t)}{\rho_{st}} + \theta_t(x'_t) \right] \prod_{v \in \Gamma(t) \setminus s} \frac{[M^{\ast}_{vt}(x_t)]^{\rho_{vt}}}{[M^{\ast}_{st}(x_t)]^{(1-\rho_{ts})}} \right\}.
\]

Semidefinite constraints in convex relaxations

Fact: Belief propagation and its hypergraph-based generalizations all involve polyhedral (i.e., linear) outer bounds on the marginal polytope.

Idea: Semidefinite constraints to generate more global outer bounds.

Example: For the Ising model, relevant mean parameters are \(\mu_s = p(X_s = 1) \) and \(\mu_{st} = p(X_s = 1, X_t = 1) \).

Define \(Y = [1 \ X]^T \), and consider the second-order moment matrix:
\[
\mathbb{E}[YY^T] = \begin{bmatrix}
1 & \mu_1 & \mu_2 & \ldots & \mu_n \\
\mu_1 & \mu_1 & \mu_{12} & \ldots & \mu_{1n} \\
\mu_2 & \mu_{12} & \mu_2 & \ldots & \mu_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mu_n & \mu_{n1} & \mu_{n2} & \ldots & \mu_n
\end{bmatrix} = M_1[\mu].
\]

- since it must be positive semidefinite, this (an infinite number of) linear constraints on \(\mu_s, \mu_{st} \).
- defines the first-order semidefinite relaxation of \(\mathcal{M}(G) \):
\[
\mathcal{S}(G) = \left\{ \mu \in \mathbb{R}^d \mid M_1[\mu] \succeq 0 \right\}.
\]
Illustrative example

Locally consistent (pseudo)marginals

Second-order moment matrix

\[
\begin{bmatrix}
\mu_1 & \mu_{12} & \mu_{13} \\
\mu_{21} & \mu_2 & \mu_{23} \\
\mu_{31} & \mu_{32} & \mu_3
\end{bmatrix} =
\begin{bmatrix}
0.5 & 0.4 & 0.1 \\
0.4 & 0.5 & 0.4 \\
0.1 & 0.4 & 0.5
\end{bmatrix}
\]

Not positive-semidefinite!

Log-determinant relaxation

• based on optimizing over covariance matrices \(M_1(\mu) \in \mathbb{S}_1(K_n) \)

Theorem: Consider an outer bound \(\mathcal{O}(K_n) \) that satisfies:

\[
\mathbb{M}(K_n) \subseteq \mathcal{O}(K_n) \subseteq \mathbb{S}_1(K_n)
\]

For any such outer bound, \(A(\theta) \) is upper bounded by:

\[
\max_{\mu \in \mathcal{O}(K_n)} \left\{ \langle \theta, \mu \rangle + \frac{1}{2} \log \det \left[M_1(\mu) + \frac{1}{3} \text{blkdiag}[0, I_n] \right] \right\} + \frac{n}{2} \log \left(\frac{\pi e}{2} \right)
\]

Remarks:

1. Log-det. problem can be solved efficiently by interior point methods.
2. Relevance for applications \(\text{(e.g., Banerjee et al., 2008)} \)
 (a) Upper bound on \(A(\theta) \).
 (b) Method for computing approximate marginals.

\(\text{(Wainwright & Jordan, 2003)} \)
Mean field theory

Recap: All variational methods discussed until now are based on:
- *outer bounding* the set of valid mean parameters.
- approximating the entropy (negative dual function $-A^*(\mu)$)

Different idea: Restrict μ to a *subset* of distributions for which $-A^*(\mu)$ has a tractable form.

Examples:
(a) For product distributions $p(x) = \prod_{s \in V} \mu_s(x_s)$, entropy decomposes as $-A^*(\mu) = \sum_{s \in V} H_s(x_s)$.
(b) Similarly, for trees (more generally, decomposable graphs), the junction tree theorem yields an explicit form for $-A^*(\mu)$.

Definition: A subgraph H of G is *tractable* if the entropy has an explicit form for any distribution that respects H.

Geometry of mean field

- let H represent a *tractable subgraph* (i.e., for which A^* has explicit form)
- let $M_{tr}(G; H)$ represent tractable mean parameters:
 $$M_{tr}(G; H) := \{ \mu | \mu = E_{\theta}[\phi(x)] \text{ s.t. } \theta \text{ respects } H \}.$$

 - under mild conditions, M_{tr} is a non-convex *inner approximation* to M
 - optimizing over M_{tr} (as opposed to M) yields lower bound:
 $$A(\theta) \geq \sup_{\tilde{\mu} \in M_{tr}} \{ \langle \theta, \tilde{\mu} \rangle - A^*(\tilde{\mu}) \}.$$
Alternative view: Minimizing KL divergence

- recall the mixed form of the KL divergence between $p(x; \theta)$ and $p(x; \tilde{\theta})$:

$$D(\tilde{\mu} \mid \mid \theta) = A(\theta) + A^*(\tilde{\mu}) - \langle \tilde{\mu}, \theta \rangle$$

- try to find the “best” approximation to $p(x; \theta)$ in the sense of KL divergence

- in analytical terms, the problem of interest is

$$\inf_{\tilde{\mu} \in \mathbb{M}_{tr}} D(\tilde{\mu} \mid \mid \theta) = A(\theta) + \inf_{\tilde{\mu} \in \mathbb{M}_{tr}} \left\{ A^*(\tilde{\mu}) - \langle \tilde{\mu}, \theta \rangle \right\}$$

- hence, finding the tightest lower bound on $A(\theta)$ is equivalent to finding the best approximation to $p(x; \theta)$ from distributions with $\tilde{\mu} \in \mathbb{M}_{tr}$

Example: Naive mean field algorithm for Ising model

- consider completely disconnected subgraph $H = (V, \emptyset)$

- permissible exponential parameters belong to subspace

$$\mathcal{E}(H) = \{ \theta \in \mathbb{R}^d \mid \theta_{st} = 0 \ \forall \ (s, t) \in E \}$$

- allowed distributions take product form $p(x; \theta) = \prod_{s \in V} p(x_s; \theta_s)$, and generate

$$\mathbb{M}_{tr}(G; H) = \{ \mu \mid \mu_{st} = \mu_s \mu_t, \ \mu_s \in [0, 1] \}.$$

- approximate variational principle:

$$\max_{\mu_s \in [0, 1]} \left\{ \sum_{s \in V} \theta_s \mu_s + \sum_{(s, t) \in E} \theta_{st} \mu_s \mu_t - \left[\sum_{s \in V} \mu_s \log \mu_s + (1 - \mu_s) \log(1 - \mu_s) \right] \right\}.$$

- Co-ordinate ascent: with all $\{\mu_t, t \neq s\}$ fixed, problem is strictly concave in μ_s and optimum is attained at

$$\mu_s \leftarrow \left\{ 1 + \exp[-(\theta_s + \sum_{t \in \mathcal{N}(s)} \theta_{st} \mu_t)] \right\}^{-1}$$
Example: Structured mean field for coupled HMM

- entropy of distribution that respects H decouples into sum: one term for each chain.
- *structured mean field updates* are an iterative method for finding the tightest approximation (either in terms of KL or lower bound)

Summary and future directions

- variational methods: statistical/computational tasks converted to optimization problems:
 (a) complementary to sampling-based methods (e.g., MCMC)
 (b) require entropy approximations, and characterization of marginal polytopes (sets of valid mean parameters)
 (c) a variety of new “relaxations” remain to be explored
- many open questions:
 (a) strong performance guarantees? (only for special cases thus far...)
 (b) extension to non-parametric settings?
 (c) hybrid techniques (variational and MCMC)
 (d) variational methods in parameter estimation
 (e) fast techniques for solving large-scale relaxations (e.g., SDPs, other convex programs)