
UC Berkeley
Department of Electrical Engineering and Computer Science

EECS 227A

Nonlinear and Convex Optimization

Solutions 6

Fall 2009

Solution 6.1

(a) p∗ = 1

(b) The Lagrangian is L(x, y, λ) = e−x + λx2/y. The dual function is

g(λ) = inf
x,y>0

(e−x + λx2/y) =

{

0 if λ ≥ 0
−∞ otherwise

so we can write the dual problem as

maximize 0
subject to λ ≥ 0

with optimal value d∗ = 0. The optimal duality gap is p∗ − d∗ = 1

(c) Slater’s condition is not satisfied.

(d) p∗(u) = 1 if u = 0, p∗(u) = 0 if u > 0 and p∗(u) = ∞ if u < 0

Solution 6.2

Suppose x is feasible. Since fi are convex and fi(x) ≤ 0, we have

0 ≥ fi(x) ≥ fi(x
∗) + ∇fi(x

∗)T (x − x∗), i = 1, . . . , m

Using λ∗
i ≥ 0, we conclude that

0 ≥

m
∑

i=1

λ∗
i (fi(x

∗) + ∇fi(x
∗)T (x − x∗)

=

m
∑

i=1

λ∗
i (fi(x

∗) +

m
∑

i=1

∇fi(x
∗)T (x − x∗)

= −∇f0(x
∗)T (x − x∗)

In the last line, we use the complementary slackness condition λ∗
i fi(x

∗) = 0, and the last
KKT condition. This show that ∇f0(x

∗)T (x − x∗) ≥ 0, i.e. ∇f0(x
∗) defines a supporting

hyperplane to feasible set at x∗

Solution 6.3

(a) Follows from tr(WxxT) = xT Wx and (xxT)ii = x2
i

(b) It gives a lower bound because we minimize the same objective function over a larger
set. If X is rank one, it is optimal.

1

(c) We write the problem as a minimization problem

minimize 1T ν
subject to W + diag(ν) � 0

Introducing a Lagrange multiplier X ∈ Sn for the matrix inequality, we obtain the
Lagrangian

L(ν, X) = 1T ν − tr(X(W + diag(ν)))
= 1T ν − tr(XW) −

∑n
i=1

νiXii

= − tr(XW) +
∑n

i=1
νi(1 − Xii)

This is bounded below as a function of ν only if Xii = 1 for all i, so we obtain the dual
problem

maximize − tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n

Changing the sign again, and switching from maximization to minimization, yields the
problem in part (a)

Solution 6.4

(a) We introduce the new variables, and write the problem as

minimize cT x
subject to ‖yi‖2 ≤ ti, i = 1, . . . , m

yi = Aix + bi, i = 1, . . . , m
ti = cT

i x + di, i = 1, . . . , m

The Lagrangian is

L(x, y, t, λ, ν, µ) = cT x +

m
∑

i=1

λi(‖yi‖2 − ti) +

m
∑

i=1

νT
i (yi − Aix − bi)

+

m
∑

i=1

µi(ti − cT
i x − di)

= (c −

m
∑

i=1

AT
i νi −

m
∑

i=1

µici)
T x +

m
∑

i=1

(λi‖yi‖2 + νT
i yi)

+

m
∑

i=1

(−λi + µi)ti −

m
∑

i=1

(bT
i νi + diµi)

The minimum over x is bounded below if and only i

m
∑

i=1

(AT
i νi + µici) = c

To minimize over yi, we note that

inf
yi

(λi‖y‖i + νT
i yi) =

{

0 ‖νi‖2 ≤ λi

−∞ otherwise

2

The minimum over ti is bounded below if and only if λi = µi. The Lagrangian is

g(λ, ν, µ) =

{

−
∑m

i=1
(bT

i νi + diµi)
∑m

i=1
(AT

i νi + µici) = c, ‖νi‖2 ≤ λi, µ = λ
−∞ otherwise

which leads to the dual problem

maximize −
∑m

i=1
(bT

i νi + diλi)
subject to

∑m
i=1

(AT
i νi + λici) = c

‖νi‖2 ≤ λi, i = 1, . . . , m

(b) We express the SOCP as a conic form problem

minimize cT x
subject to −(Aix + bi, c

T
i x + di) �Ki

0, i = 1, . . . , m

The conic dual is
maximize

∑m
i=1

(bT
i ui + divi)

subject to
∑m

i=1
(AT

i ui + vici) = c
(ui, vi) �K∗

i
0, i = 1, . . . , m

Solution 6.5

(a) Since f is a convex and closed function (i.e., its epigraph is a closed set), it can be
represented via its conjugate, as

f(r) = max
y

{

rT y − f∗(y)
}

.

Consequently, we can express the problem in minimax form, as p∗ = minx maxy φ(x, y),
where the function

φ(x, y) := yT (Ax + b) − f∗(y) +
1

2
‖x‖2

2.

Weak duality tells us that p∗ ≥ d∗, where

d∗ := max
y

min
x

φ(x, y).

We obtain

−d∗ = min
y

{

f∗(y) +
1

2
‖AT y‖2

2 − bT y
}

.

(b) We observe that for every y, the sub-level sets of the function φ(·, y) are bounded. (Here
to avoid trivial sub-cases, we assume that p∗ is finite, a condition that should have been
in the problem statement.) Thus, according to the result of [BV,exercise 5.25], we have
p∗ = Ad∗. We observe that d∗ (hence, p∗) is convex in K = AAT , since −d∗ is concave:

−d∗ = min
y

{

f∗(y) +
1

2
yT Ky − bT y

}

.

3

(c) The primal problem involves a strictly convex objective function and no constraints,
hence the optimum is attained and unique. For each y, the problem

min
x

φ(x, y)

has a unique solution, given by x(y) := AT y. According to the result in [BV,§5.5.5], we
conclude that if y∗ is optimal for the dual problem, then x∗ = AT y∗ is optimal.

(d) The dual takes the following specific forms.

(i) Support vector machines classification: When f(r) =
∑m

i=1
(ri)+, we have

f(r) = max
0≤u≤1

uT r,

which shows that f∗ is then the indicator function of the set [0, 1]m. The dual
problem writes (with b = 1):

−2d∗ = min
y

‖AT y‖2
2 − 2bT y : 0 ≤ y ≤ 1.

(ii) Least-squares regression: The function f(r) = 1

2
‖r‖2

2 is self-conjugate, so that the
dual problem takes the form

2d∗ = min
y

1

2
2bT y − yT (K + I)y = bT (K + I)−1b,

as expected from the primal form.

(ii) Least-norm regression: when f(r) = ‖r‖, where ‖ · ‖ is a norm, the conjugate of f
is the indicator of the unit ball for the dual norm, hence

−2d∗ = min
y

‖AT y‖2
2 − 2bT y : ‖y‖∗ ≤ 1.

We can express d∗ as

−d∗ = min
y

‖y − y0‖K : ‖y‖∗ ≤ 1,

where y0 := K−1b, and ‖ · ‖K is the weighted Euclidean norm with values ‖z‖2
K =

zT Kz. The above represented the minimum weighted Euclidean distance from y0

the unit ball in the dual norm.

Solution 6.6

(a) The KKT conditions for (z∗, λ∗) are given by the following equations:

∇zL(z∗, λ∗) = ∇f(xn) + ∇2f(xn)z∗ + AT λ∗ = 0 (1a)

Az∗ = 0. (1b)

Putting these equations together yields the given matrix form. Since the problem is strictly
convex (assuming that ∇2f(xn) ≻ 0) with linear constraints, these KKT conditions are neces-
sary and sufficient to yield the optimum. Hence when P (xn) is invertible, solving the system
yields the given form of the Newton update.

(b) Here is some MATLAB code to solve this problem via Newton’s method with Armijo rule:

4

% Newton’s method with Armijo rule to solve the constrained maximum

% entropy problem in primal form

clear f;

MAXITS = 500; % Maximum number of iterations

BETA = 0.5; % Armijo parameter

SIGMA = 0.1; % Armijo parameter

GRADTOL = 1e-7; % Tolerance for gradient

load xinit.ascii;

load A.ascii;

load b.ascii

x = xinit;

m = size(A,1);

n = size(A,2);

for iter=1:MAXITS,

val = x’*log(x); % current function value

f(iter) = val;

grad = 1 + log(x); % current gradient

hess = diag(1./x);

temp = -[hess A’; A zeros(m,m)] \ [grad; zeros(m,1)];

newt = temp(1:n);

primal_lambda = temp(n+1:(n+m));

descmag = grad’*newt; % Check magnitude of descent

if (abs(descmag) < GRADTOL) break; end;

t = 1;

while (min(x + t*newt) <= 0) t = BETA*t; end;

while (((x+t*newt)’*log(x+t*newt)) - val >= SIGMA*t*descmag)

t = BETA*t;

end;

x = x + t*newt;

end;

gradviol = norm(A*x -b,2)

pstar = val

Applying to the problem data on the website yields p∗ = −33.6429. Figure 1(a) shows
log |f(xn) − p∗| versus iteration number n.

5

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration number

|fn −
 p

* |

Convergence plot for primal Newton method

1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration number

|q
n −

 q
* |

Convergence plot for dual Newton method

(a) Primal Newton method (b) Dual Newton method

Figure 1: Convergence plots for the primal Newton method (a) and dual Newton method (b).
The inverted quadratic shape (on a log scale) reveals the quadratic convergence.

(c) The Lagrangian dual is given by

q(λ) : = inf
x≻0

{

n
∑

i=1

xi log xi + λT (Ax − b)
}

=
n

∑

i=1

inf
xi>0

{

xi log xi − (aT
i λ)xi

}

− bT λ

= −
n

∑

i=1

g∗(−aT
i λ) − bT λ

where g(v) = v log v with dom(g) = {v > 0}, and g∗ is its conjugate dual. Straightforward
calculations give g∗(µ) = exp(µ − 1) with dom(g∗) = R, so that the result follows.

(d) Here is some MATLAB code to solve the dual problem:

% MATLAB code to perform dual optimization via Newton’s method

% This code actually solves the convex problem of minimizing the

% negative dual function.

clear q;

MAXITS = 500; % Maximum number of iterations

BETA = 0.5; % Armijo parameter

SIGMA = 0.1; % Armijo parameter

6

GRADTOL = 1e-7; % Tolerance for gradient

load xinit.ascii;

load A.ascii;

load b.ascii

m = size(A,1);

n = size(A,2);

laminit = ones(m,1);

lambda = laminit;

for iter=1:MAXITS,

val = b’*lambda + sum(exp(-A’*lambda -1)); % current function value

q(iter) = -val;

grad = b - A*exp(-A’*lambda-1); % current gradient

hess = A*diag(exp(-A’*lambda-1))*A’;

newt = -hess \grad;

descmag = grad’*newt; % Check magnitude of descent

if (abs(descmag) < GRADTOL) break; end;

t = 1;

newval = b’*(lambda + t*newt) + sum(exp(-A’*(lambda + t*newt)-1));

while (newval > val + SIGMA*t*descmag)

t = BETA*t;

fnew = b’*(lambda + t*newt) + sum(exp(-A’*(lambda + t*newt)-1));

end;

lambda = lambda + t*newt;

end;

qstar = -val

It yields the optimal dual value q∗ = −33.6429 = p∗, so that strong duality holds. Fig-
ure 1(b) shows a plot of log |q(λn) − q∗| versus iteration number n.

7

