UC Berkeley Department of Electrical Engineering and Computer Science

EECS 227A Nonlinear and Convex Optimization

Solutions 6

Fall 2009

Solution 6.1

(a) $p^* = 1$

(b) The Lagrangian is $L(x, y, \lambda) = e^{-x} + \lambda x^2/y$. The dual function is

$$g(\lambda) = \inf_{x,y>0} (e^{-x} + \lambda x^2/y) = \begin{cases} 0 & \text{if } \lambda \ge 0\\ -\infty & \text{otherwise} \end{cases}$$

so we can write the dual problem as

$$\begin{array}{ll} \mbox{maximize} & 0 \\ \mbox{subject to} & \lambda \geq 0 \end{array}$$

with optimal value $d^* = 0$. The optimal duality gap is $p^* - d^* = 1$

(c) Slater's condition is not satisfied.

(d) $p^*(u) = 1$ if $u = 0, p^*(u) = 0$ if u > 0 and $p^*(u) = \infty$ if u < 0

Solution 6.2

Suppose x is feasible. Since f_i are convex and $f_i(x) \leq 0$, we have

$$0 \ge f_i(x) \ge f_i(x^*) + \nabla f_i(x^*)^T (x - x^*), i = 1, \dots, m$$

Using $\lambda_i^* \geq 0$, we conclude that

$$0 \geq \sum_{\substack{i=1\\m}}^{m} \lambda_i^* (f_i(x^*) + \nabla f_i(x^*)^T (x - x^*))$$

=
$$\sum_{\substack{i=1\\m}}^{m} \lambda_i^* (f_i(x^*) + \sum_{\substack{i=1\\m}}^{m} \nabla f_i(x^*)^T (x - x^*))$$

=
$$-\nabla f_0(x^*)^T (x - x^*)$$

In the last line, we use the complementary slackness condition $\lambda_i^* f_i(x^*) = 0$, and the last KKT condition. This show that $\nabla f_0(x^*)^T(x - x^*) \ge 0$, i.e. $\nabla f_0(x^*)$ defines a supporting hyperplane to feasible set at x^*

Solution 6.3

- (a) Follows from $tr(Wxx^T) = x^TWx$ and $(xx^T)_{ii} = x_i^2$
- (b) It gives a lower bound because we minimize the same objective function over a larger set. If X is rank one, it is optimal.

(c) We write the problem as a minimization problem

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T \nu\\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$

Introducing a Lagrange multiplier $X \in \mathbf{S}^n$ for the matrix inequality, we obtain the Lagrangian

$$L(\nu, X) = \mathbf{1}^{T} \nu - \operatorname{tr}(X(W + \operatorname{diag}(\nu)))$$

= $\mathbf{1}^{T} \nu - \operatorname{tr}(XW) - \sum_{i=1}^{n} \nu_{i} X_{ii}$
= $-\operatorname{tr}(XW) + \sum_{i=1}^{n} \nu_{i} (1 - X_{ii})$

This is bounded below as a function of ν only if $X_{ii} = 1$ for all i, so we obtain the dual problem

$$\begin{array}{ll} \text{maximize} & -\operatorname{tr}(WX) \\ \text{subject to} & X \succeq 0 \\ & X_{ii} = 1, i = 1, \dots, n \end{array}$$

Changing the sign again, and switching from maximization to minimization, yields the problem in part (a)

Solution 6.4

(a) We introduce the new variables, and write the problem as

minimize
$$c^T x$$

subject to $\|y_i\|_2 \le t_i, i = 1, \dots, m$
 $y_i = A_i x + b_i, i = 1, \dots, m$
 $t_i = c_i^T x + d_i, i = 1, \dots, m$

The Lagrangian is

$$L(x, y, t, \lambda, \nu, \mu) = c^T x + \sum_{i=1}^m \lambda_i (\|y_i\|_2 - t_i) + \sum_{i=1}^m \nu_i^T (y_i - A_i x - b_i) + \sum_{i=1}^m \mu_i (t_i - c_i^T x - d_i) = (c - \sum_{i=1}^m A_i^T \nu_i - \sum_{i=1}^m \mu_i c_i)^T x + \sum_{i=1}^m (\lambda_i \|y_i\|_2 + \nu_i^T y_i) + \sum_{i=1}^m (-\lambda_i + \mu_i) t_i - \sum_{i=1}^m (b_i^T \nu_i + d_i \mu_i)$$

The minimum over x is bounded below if and only i

$$\sum_{i=1}^{m} (A_i^T \nu_i + \mu_i c_i) = c$$

To minimize over y_i , we note that

$$\inf_{y_i} (\lambda_i \|y\|_i + \nu_i^T y_i) = \begin{cases} 0 & \|\nu_i\|_2 \le \lambda_i \\ -\infty & \text{otherwise} \end{cases}$$

The minimum over t_i is bounded below if and only if $\lambda_i = \mu_i$. The Lagrangian is

$$g(\lambda,\nu,\mu) = \begin{cases} -\sum_{i=1}^{m} (b_i^T \nu_i + d_i \mu_i) & \sum_{i=1}^{m} (A_i^T \nu_i + \mu_i c_i) = c, \|\nu_i\|_2 \le \lambda_i, \mu = \lambda \\ -\infty & \text{otherwise} \end{cases}$$

which leads to the dual problem

maximize
$$\begin{aligned} & -\sum_{i=1}^{m} (b_i^T \nu_i + d_i \lambda_i) \\ \text{subject to} & \sum_{i=1}^{m} (A_i^T \nu_i + \lambda_i c_i) = c \\ & \|\nu_i\|_2 \leq \lambda_i, i = 1, \dots, m \end{aligned}$$

(b) We express the SOCP as a conic form problem

minimize
$$c^T x$$

subject to $-(A_i x + b_i, c_i^T x + d_i) \preceq_{K_i} 0, i = 1, \dots, m$

The conic dual is

maximize
$$\sum_{i=1}^{m} (b_i^T u_i + d_i v_i)$$

subject to
$$\sum_{i=1}^{m} (A_i^T u_i + v_i c_i) = c$$

$$(u_i, v_i) \succeq_{K_i^*} 0, i = 1, \dots, m$$

Solution 6.5

(a) Since f is a convex and closed function (i.e., its epigraph is a closed set), it can be represented via its conjugate, as

$$f(r) = \max_{y} \{r^{T}y - f^{*}(y)\}.$$

Consequently, we can express the problem in minimax form, as $p^* = \min_x \max_y \phi(x, y)$, where the function

$$\phi(x,y) := y^T (Ax + b) - f^*(y) + \frac{1}{2} ||x||_2^2.$$

Weak duality tells us that $p^* \ge d^*$, where

$$d^* := \max_y \min_x \phi(x, y).$$

We obtain

$$-d^* = \min_{y} \left\{ f^*(y) + \frac{1}{2} \|A^T y\|_2^2 - b^T y \right\}.$$

(b) We observe that for every y, the sub-level sets of the function $\phi(\cdot, y)$ are bounded. (Here to avoid trivial sub-cases, we assume that p^* is finite, a condition that should have been in the problem statement.) Thus, according to the result of [BV,exercise 5.25], we have $p^* = Ad^*$. We observe that d^* (hence, p^*) is convex in $K = AA^T$, since $-d^*$ is concave:

$$-d^* = \min_{y} \left\{ f^*(y) + \frac{1}{2}y^T K y - b^T y \right\}.$$

(c) The primal problem involves a strictly convex objective function and no constraints, hence the optimum is attained and unique. For each y, the problem

$$\min_x \phi(x,y)$$

has a unique solution, given by $x(y) := A^T y$. According to the result in [BV,§5.5.5], we conclude that if y^* is optimal for the dual problem, then $x^* = A^T y^*$ is optimal.

- (d) The dual takes the following specific forms.
 - (i) Support vector machines classification: When $f(r) = \sum_{i=1}^{m} (r_i)_+$, we have

$$f(r) = \max_{0 \le u \le \mathbf{1}} u^T r,$$

which shows that f^* is then the indicator function of the set $[0,1]^m$. The dual problem writes (with b = 1):

$$-2d^* = \min_{y} \|A^T y\|_2^2 - 2b^T y : 0 \le y \le 1.$$

(ii) Least-squares regression: The function $f(r) = \frac{1}{2} ||r||_2^2$ is self-conjugate, so that the dual problem takes the form

$$2d^* = \min_{y} \frac{1}{2} 2b^T y - y^T (K+I)y = b^T (K+I)^{-1} b_y$$

as expected from the primal form.

(ii) Least-norm regression: when f(r) = ||r||, where $||\cdot||$ is a norm, the conjugate of f is the indicator of the unit ball for the dual norm, hence

$$-2d^* = \min_{y} \|A^T y\|_2^2 - 2b^T y : \|y\|_* \le 1.$$

We can express d^* as

$$-d^* = \min_{y} \|y - y_0\|_K : \|y\|_* \le 1,$$

where $y_0 := K^{-1}b$, and $\|\cdot\|_K$ is the weighted Euclidean norm with values $\|z\|_K^2 = z^T K z$. The above represented the minimum weighted Euclidean distance from y_0 the unit ball in the dual norm.

Solution 6.6

(a) The KKT conditions for (z^*, λ^*) are given by the following equations:

$$\nabla_z L(z^*, \lambda^*) = \nabla f(x^n) + \nabla^2 f(x^n) z^* + A^T \lambda^* = 0$$
(1a)

$$Az^* = 0. \tag{1b}$$

Putting these equations together yields the given matrix form. Since the problem is strictly convex (assuming that $\nabla^2 f(x^n) \succ 0$) with linear constraints, these KKT conditions are necessary and sufficient to yield the optimum. Hence when $P(x^n)$ is invertible, solving the system yields the given form of the Newton update.

(b) Here is some MATLAB code to solve this problem via Newton's method with Armijo rule:

```
\% Newton's method with Armijo rule to solve the constrained maximum
% entropy problem in primal form
clear f;
MAXITS = 500; % Maximum number of iterations
BETA = 0.5; % Armijo parameter
SIGMA = 0.1; % Armijo parameter
GRADTOL = 1e-7; % Tolerance for gradient
load xinit.ascii;
load A.ascii;
load b.ascii
x = xinit;
m = size(A, 1);
n = size(A, 2);
for iter=1:MAXITS,
  val = x'*log(x); % current function value
  f(iter) = val;
  grad = 1 + log(x); % current gradient
  hess = diag(1./x);
  temp = -[hess A'; A zeros(m,m)] \ [grad; zeros(m,1)];
  newt = temp(1:n);
  primal_lambda = temp(n+1:(n+m));
  descmag = grad'*newt; % Check magnitude of descent
  if (abs(descmag) < GRADTOL) break; end;</pre>
  t = 1;
  while (min(x + t*newt) <= 0) t = BETA*t; end;</pre>
  while ( ((x+t*newt)'*log(x+t*newt)) - val >= SIGMA*t*descmag)
       t = BETA * t;
  end;
  x = x + t*newt;
end;
gradviol = norm(A*x -b,2)
pstar = val
```

Applying to the problem data on the website yields $p^* = -33.6429$. Figure 1(a) shows $\log |f(x^n) - p^*|$ versus iteration number n.

Figure 1: Convergence plots for the primal Newton method (a) and dual Newton method (b). The inverted quadratic shape (on a log scale) reveals the quadratic convergence.

(c) The Lagrangian dual is given by

$$q(\lambda) := \inf_{x \ge 0} \left\{ \sum_{i=1}^{n} x_i \log x_i + \lambda^T (Ax - b) \right\}$$
$$= \sum_{i=1}^{n} \inf_{x_i \ge 0} \left\{ x_i \log x_i - (a_i^T \lambda) x_i \right\} - b^T \lambda$$
$$= -\sum_{i=1}^{n} g^* (-a_i^T \lambda) - b^T \lambda$$

where $g(v) = v \log v$ with dom $(g) = \{v > 0\}$, and g^* is its conjugate dual. Straightforward calculations give $g^*(\mu) = \exp(\mu - 1)$ with dom $(g^*) = \mathbb{R}$, so that the result follows.

(d) Here is some MATLAB code to solve the dual problem:

```
% MATLAB code to perform dual optimization via Newton's method
% This code actually solves the convex problem of minimizing the
% negative dual function.
```

clear q;

MAXITS = 500; % Maximum number of iterations BETA = 0.5; % Armijo parameter SIGMA = 0.1; % Armijo parameter

```
load xinit.ascii;
load A.ascii;
load b.ascii
m = size(A, 1);
n = size(A, 2);
laminit = ones(m,1);
lambda = laminit;
for iter=1:MAXITS,
  val = b'*lambda + sum(exp(-A'*lambda -1)); % current function value
  q(iter) = -val;
  grad = b - A*exp(-A'*lambda-1); % current gradient
  hess = A*diag(exp(-A'*lambda-1))*A';
  newt = -hess \grad;
  descmag = grad'*newt; % Check magnitude of descent
  if (abs(descmag) < GRADTOL) break; end;</pre>
  t = 1;
  newval = b'*(lambda + t*newt) + sum(exp(-A'*(lambda + t*newt)-1));
  while (newval > val + SIGMA*t*descmag)
      t = BETA*t;
      fnew = b'*(lambda + t*newt) + sum(exp(-A'*(lambda + t*newt)-1));
  end;
  lambda = lambda + t*newt;
end;
```

GRADTOL = 1e-7; % Tolerance for gradient

```
qstar = -val
```

It yields the optimal dual value $q^* = -33.6429 = p^*$, so that strong duality holds. Figure 1(b) shows a plot of $\log |q(\lambda^n) - q^*|$ versus iteration number n.