UC Berkeley
 Department of Electrical Engineering and Computer Science

EECS 227A
Nonlinear and Convex Optimization

Solutions 6

Fall 2009

Solution 6.1

(a) $p^{*}=1$
(b) The Lagrangian is $L(x, y, \lambda)=e^{-x}+\lambda x^{2} / y$. The dual function is

$$
g(\lambda)=\inf _{x, y>0}\left(e^{-x}+\lambda x^{2} / y\right)= \begin{cases}0 & \text { if } \lambda \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

so we can write the dual problem as

$$
\begin{array}{ll}
\operatorname{maximize} & 0 \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

with optimal value $d^{*}=0$. The optimal duality gap is $p^{*}-d^{*}=1$
(c) Slater's condition is not satisfied.
(d) $p^{*}(u)=1$ if $u=0, p^{*}(u)=0$ if $u>0$ and $p^{*}(u)=\infty$ if $u<0$

Solution 6.2

Suppose x is feasible. Since f_{i} are convex and $f_{i}(x) \leq 0$, we have

$$
0 \geq f_{i}(x) \geq f_{i}\left(x^{*}\right)+\nabla f_{i}\left(x^{*}\right)^{T}\left(x-x^{*}\right), i=1, \ldots, m
$$

Using $\lambda_{i}^{*} \geq 0$, we conclude that

$$
\begin{aligned}
0 & \geq \sum_{i=1}^{m} \lambda_{i}^{*}\left(f_{i}\left(x^{*}\right)+\nabla f_{i}\left(x^{*}\right)^{T}\left(x-x^{*}\right)\right. \\
& =\sum_{i=1}^{m} \lambda_{i}^{*}\left(f_{i}\left(x^{*}\right)+\sum_{i=1}^{m} \nabla f_{i}\left(x^{*}\right)^{T}\left(x-x^{*}\right)\right. \\
& =-\nabla f_{0}\left(x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

In the last line, we use the complementary slackness condition $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$, and the last KKT condition. This show that $\nabla f_{0}\left(x^{*}\right)^{T}\left(x-x^{*}\right) \geq 0$, i.e. $\nabla f_{0}\left(x^{*}\right)$ defines a supporting hyperplane to feasible set at x^{*}

Solution 6.3

(a) Follows from $\operatorname{tr}\left(W x x^{T}\right)=x^{T} W x$ and $\left(x x^{T}\right)_{i i}=x_{i}^{2}$
(b) It gives a lower bound because we minimize the same objective function over a larger set. If X is rank one, it is optimal.
(c) We write the problem as a minimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} \nu \\
\text { subject to } & W+\boldsymbol{\operatorname { d i a g }}(\nu) \succeq 0
\end{array}
$$

Introducing a Lagrange multiplier $X \in \mathbf{S}^{n}$ for the matrix inequality, we obtain the Lagrangian

$$
\begin{aligned}
L(\nu, X) & =\mathbf{1}^{T} \nu-\operatorname{tr}(X(W+\operatorname{diag}(\nu))) \\
& =\mathbf{1}^{T} \nu-\operatorname{tr}(X W)-\sum_{i=1}^{n} \nu_{i} X_{i i} \\
& =-\operatorname{tr}(X W)+\sum_{i=1}^{n} \nu_{i}\left(1-X_{i i}\right)
\end{aligned}
$$

This is bounded below as a function of ν only if $X_{i i}=1$ for all i, so we obtain the dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{tr}(W X) \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, i=1, \ldots, n
\end{array}
$$

Changing the sign again, and switching from maximization to minimization, yields the problem in part (a)

Solution 6.4

(a) We introduce the new variables, and write the problem as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \left\|y_{i}\right\|_{2} \leq t_{i}, i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, i=1, \ldots, m \\
& t_{i}=c_{i}^{T} x+d_{i}, i=1, \ldots, m
\end{array}
$$

The Lagrangian is

$$
\begin{aligned}
L(x, y, t, \lambda, \nu, \mu) & =c^{T} x+\sum_{i=1}^{m} \lambda_{i}\left(\left\|y_{i}\right\|_{2}-t_{i}\right)+\sum_{i=1}^{m} \nu_{i}^{T}\left(y_{i}-A_{i} x-b_{i}\right) \\
& +\sum_{i=1}^{m} \mu_{i}\left(t_{i}-c_{i}^{T} x-d_{i}\right) \\
& =\left(c-\sum_{i=1}^{m} A_{i}^{T} \nu_{i}-\sum_{i=1}^{m} \mu_{i} c_{i}\right)^{T} x+\sum_{i=1}^{m}\left(\lambda_{i}\left\|y_{i}\right\|_{2}+\nu_{i}^{T} y_{i}\right) \\
& +\sum_{i=1}^{m}\left(-\lambda_{i}+\mu_{i}\right) t_{i}-\sum_{i=1}^{m}\left(b_{i}^{T} \nu_{i}+d_{i} \mu_{i}\right)
\end{aligned}
$$

The minimum over x is bounded below if and only i

$$
\sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\mu_{i} c_{i}\right)=c
$$

To minimize over y_{i}, we note that

$$
\inf _{y_{i}}\left(\lambda_{i}\|y\|_{i}+\nu_{i}^{T} y_{i}\right)= \begin{cases}0 & \left\|\nu_{i}\right\|_{2} \leq \lambda_{i} \\ -\infty & \text { otherwise }\end{cases}
$$

The minimum over t_{i} is bounded below if and only if $\lambda_{i}=\mu_{i}$. The Lagrangian is

$$
g(\lambda, \nu, \mu)= \begin{cases}-\sum_{i=1}^{m}\left(b_{i}^{T} \nu_{i}+d_{i} \mu_{i}\right) & \sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\mu_{i} c_{i}\right)=c,\left\|\nu_{i}\right\|_{2} \leq \lambda_{i}, \mu=\lambda \\ -\infty & \text { otherwise }\end{cases}
$$

which leads to the dual problem

$$
\begin{array}{cl}
\text { maximize } & -\sum_{i=1}^{m}\left(b_{i}^{T} \nu_{i}+d_{i} \lambda_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\lambda_{i} c_{i}\right)=c \\
& \left\|\nu_{i}\right\|_{2} \leq \lambda_{i}, i=1, \ldots, m
\end{array}
$$

(b) We express the SOCP as a conic form problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & -\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right) \preceq_{K_{i}} 0, i=1, \ldots, m
\end{array}
$$

The conic dual is

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{m}\left(b_{i}^{T} u_{i}+d_{i} v_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(A_{i}^{T} u_{i}+v_{i} c_{i}\right)=c \\
& \left(u_{i}, v_{i}\right) \succeq_{K_{i}^{*}} 0, i=1, \ldots, m
\end{array}
$$

Solution 6.5

(a) Since f is a convex and closed function (i.e., its epigraph is a closed set), it can be represented via its conjugate, as

$$
f(r)=\max _{y}\left\{r^{T} y-f^{*}(y)\right\} .
$$

Consequently, we can express the problem in minimax form, as $p^{*}=\min _{x} \max _{y} \phi(x, y)$, where the function

$$
\phi(x, y):=y^{T}(A x+b)-f^{*}(y)+\frac{1}{2}\|x\|_{2}^{2} .
$$

Weak duality tells us that $p^{*} \geq d^{*}$, where

$$
d^{*}:=\max _{y} \min _{x} \phi(x, y) .
$$

We obtain

$$
-d^{*}=\min _{y}\left\{f^{*}(y)+\frac{1}{2}\left\|A^{T} y\right\|_{2}^{2}-b^{T} y\right\} .
$$

(b) We observe that for every y, the sub-level sets of the function $\phi(\cdot, y)$ are bounded. (Here to avoid trivial sub-cases, we assume that p^{*} is finite, a condition that should have been in the problem statement.) Thus, according to the result of [BV,exercise 5.25], we have $p^{*}=A d^{*}$. We observe that d^{*} (hence, p^{*}) is convex in $K=A A^{T}$, since $-d^{*}$ is concave:

$$
-d^{*}=\min _{y}\left\{f^{*}(y)+\frac{1}{2} y^{T} K y-b^{T} y\right\} .
$$

(c) The primal problem involves a strictly convex objective function and no constraints, hence the optimum is attained and unique. For each y, the problem

$$
\min _{x} \phi(x, y)
$$

has a unique solution, given by $x(y):=A^{T} y$. According to the result in $[\mathrm{BV}, \S 5.5 .5]$, we conclude that if y^{*} is optimal for the dual problem, then $x^{*}=A^{T} y^{*}$ is optimal.
(d) The dual takes the following specific forms.
(i) Support vector machines classification: When $f(r)=\sum_{i=1}^{m}\left(r_{i}\right)_{+}$, we have

$$
f(r)=\max _{0 \leq u \leq 1} u^{T} r,
$$

which shows that f^{*} is then the indicator function of the set $[0,1]^{m}$. The dual problem writes (with $b=\mathbf{1}$):

$$
-2 d^{*}=\min _{y}\left\|A^{T} y\right\|_{2}^{2}-2 b^{T} y: 0 \leq y \leq \mathbf{1}
$$

(ii) Least-squares regression: The function $f(r)=\frac{1}{2}\|r\|_{2}^{2}$ is self-conjugate, so that the dual problem takes the form

$$
2 d^{*}=\min _{y} \frac{1}{2} 2 b^{T} y-y^{T}(K+I) y=b^{T}(K+I)^{-1} b,
$$

as expected from the primal form.
(ii) Least-norm regression: when $f(r)=\|r\|$, where $\|\cdot\|$ is a norm, the conjugate of f is the indicator of the unit ball for the dual norm, hence

$$
-2 d^{*}=\min _{y}\left\|A^{T} y\right\|_{2}^{2}-2 b^{T} y:\|y\|_{*} \leq 1 .
$$

We can express d^{*} as

$$
-d^{*}=\min _{y}\left\|y-y_{0}\right\|_{K}:\|y\|_{*} \leq 1,
$$

where $y_{0}:=K^{-1} b$, and $\|\cdot\|_{K}$ is the weighted Euclidean norm with values $\|z\|_{K}^{2}=$ $z^{T} K z$. The above represented the minimum weighted Euclidean distance from y_{0} the unit ball in the dual norm.

Solution 6.6

(a) The KKT conditions for $\left(z^{*}, \lambda^{*}\right)$ are given by the following equations:

$$
\begin{align*}
\nabla_{z} L\left(z^{*}, \lambda^{*}\right) & =\nabla f\left(x^{n}\right)+\nabla^{2} f\left(x^{n}\right) z^{*}+A^{T} \lambda^{*}=0 \tag{1a}\\
A z^{*} & =0 . \tag{1b}
\end{align*}
$$

Putting these equations together yields the given matrix form. Since the problem is strictly convex (assuming that $\nabla^{2} f\left(x^{n}\right) \succ 0$) with linear constraints, these KKT conditions are necessary and sufficient to yield the optimum. Hence when $P\left(x^{n}\right)$ is invertible, solving the system yields the given form of the Newton update.
(b) Here is some MATLAB code to solve this problem via Newton's method with Armijo rule:

```
% Newton's method with Armijo rule to solve the constrained maximum
% entropy problem in primal form
clear f;
MAXITS = 500; % Maximum number of iterations
BETA = 0.5; % Armijo parameter
SIGMA = 0.1; % Armijo parameter
GRADTOL = 1e-7; % Tolerance for gradient
load xinit.ascii;
load A.ascii;
load b.ascii
x = xinit;
m = size(A,1);
n = size(A,2);
for iter=1:MAXITS,
    val = x'*log(x); % current function value
    f(iter) = val;
    grad = 1 + log(x); % current gradient
    hess = diag(1./x);
    temp = -[hess A'; A zeros(m,m)] \ [grad; zeros(m,1)];
    newt = temp(1:n);
    primal_lambda = temp(n+1:(n+m));
    descmag = grad'*newt; % Check magnitude of descent
    if (abs(descmag) < GRADTOL) break; end;
    t = 1;
    while (min(x + t*newt) <= 0) t = BETA*t; end;
    while ( ((x+t*newt)'*log(x+t*newt)) - val >= SIGMA*t*descmag)
            t = BETA*t;
    end;
    x = x + t*newt;
end;
gradviol = norm(A*x -b,2)
pstar = val
```

Applying to the problem data on the website yields $p^{*}=-33.6429$. Figure 1 (a) shows $\log \left|f\left(x^{n}\right)-p^{*}\right|$ versus iteration number n.

Figure 1: Convergence plots for the primal Newton method (a) and dual Newton method (b). The inverted quadratic shape (on a log scale) reveals the quadratic convergence.
(c) The Lagrangian dual is given by

$$
\begin{aligned}
q(\lambda) & :=\inf _{x \succ 0}\left\{\sum_{i=1}^{n} x_{i} \log x_{i}+\lambda^{T}(A x-b)\right\} \\
& =\sum_{i=1}^{n} \inf _{x_{i}>0}\left\{x_{i} \log x_{i}-\left(a_{i}^{T} \lambda\right) x_{i}\right\}-b^{T} \lambda \\
& =-\sum_{i=1}^{n} g^{*}\left(-a_{i}^{T} \lambda\right)-b^{T} \lambda
\end{aligned}
$$

where $g(v)=v \log v$ with $\operatorname{dom}(g)=\{v>0\}$, and g^{*} is its conjugate dual. Straightforward calculations give $g^{*}(\mu)=\exp (\mu-1)$ with $\operatorname{dom}\left(g^{*}\right)=\mathbb{R}$, so that the result follows.
(d) Here is some MATLAB code to solve the dual problem:

```
% MATLAB code to perform dual optimization via Newton's method
% This code actually solves the convex problem of minimizing the
% negative dual function.
clear q;
MAXITS = 500; % Maximum number of iterations
BETA = 0.5; % Armijo parameter
SIGMA = 0.1; % Armijo parameter
```

```
GRADTOL = 1e-7; % Tolerance for gradient
load xinit.ascii;
load A.ascii;
load b.ascii
m = size(A,1);
n = size(A,2);
laminit = ones(m,1);
lambda = laminit;
for iter=1:MAXITS,
        val = b'*lambda + sum(exp(-A'*lambda -1)); % current function value
        q(iter) = -val;
        grad = b - A*exp(-A'*lambda-1); % current gradient
        hess = A*diag(exp(-A'*lambda-1))*A';
        newt = -hess \grad;
        descmag = grad'*newt; % Check magnitude of descent
        if (abs(descmag) < GRADTOL) break; end;
        t = 1;
        newval = b'*(lambda + t*newt) + sum(exp(-A'*(lambda + t*newt)-1));
        while (newval > val + SIGMA*t*descmag)
            t = BETA*t;
            fnew = b'*(lambda + t*newt) + sum(exp(-A'*(lambda + t*newt)-1));
        end;
        lambda = lambda + t*newt;
end;
qstar = -val
```

It yields the optimal dual value $q^{*}=-33.6429=p^{*}$, so that strong duality holds. Figure 1 (b) shows a plot of $\log \left|q\left(\lambda^{n}\right)-q^{*}\right|$ versus iteration number n.

