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Many statistical M-estimators are based on convex optimization
problems formed by the combination of a data-dependent loss func-
tion with a norm-based regularizer. We analyze the convergence rates
of projected gradient and composite gradient methods for solving
such problems, working within a high-dimensional framework that
allows the ambient dimension d to grow with (and possibly exceed)
the sample size n. Our theory identifies conditions under which pro-
jected gradient descent enjoys globally linear convergence up to the
statistical precision of the model, meaning the typical distance be-
tween the true unknown parameter 6 and an optimal solution 6. By
establishing these conditions with high probability for numerous sta-
tistical models, our analysis applies to a wide range of M-estimators,
including sparse linear regression using Lasso; group Lasso for block
sparsity; log-linear models with regularization; low-rank matrix re-
covery using nuclear norm regularization; and matrix decomposition
using a combination of the nuclear and ¢; norms. Overall, our analysis
reveals interesting connections between statistical and computational
efficiency in high-dimensional estimation.

1. Introduction. High-dimensional data sets present challenges that
are both statistical and computational in nature. On the statistical side,
recent years have witnessed a flurry of results on convergence rates for
various estimators under high-dimensional scaling, allowing for the possi-
bility that the problem dimension d exceeds the sample size n. These re-
sults typically involve some assumption regarding the structure of the pa-
rameter space, such as sparse vectors, structured covariance matrices, or
low-rank matrices, as well as some regularity of the data-generating pro-
cess. On the computational side, many estimators for statistical recovery
are based on solving convex programs. Examples of such M-estimators in-
clude ¢;-regularized quadratic programs (Lasso) for sparse linear regression
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(e.g. [40, 13} 144l 26, [7]), second-order cone programs (SOCP) for the group
Lasso (e.g., [45, 24, [19]), and SDP relaxations for various problems, including
sparse PCA and low-rank matrix estimation (e.g., [11], 39, 3, 37, 28, [36]).

Many of these programs are instances of convex conic programs, and so
can (in principle) be solved to e-accuracy in polynomial time using inte-
rior point methods, and other standard methods from convex programming
(e.g., see the books [0, 8]). However, the complexity of such quasi-Newton
methods can be prohibitively expensive for the very large-scale problems
that arise from high-dimensional data sets. Accordingly, recent years have
witnessed a renewed interest in simpler first-order methods, among them
the methods of projected gradient descent and mirror descent. Several au-
thors (e.g., [5], 20l 4]) have used variants of Nesterov’s accelerated gradient
method [3I] to obtain algorithms for high-dimensional statistical problems
with a sublinear rate of convergence. Note that an optimization algorithm,
generating a sequence of iterates {6'}9°,, is said to exhibit sublinear conver-
gence to an optimum 6 if the optimization error |6 — 6] decays at the rate
1/t%, for some exponent £ > 0 and norm || - ||. It is known that this is the
best possible convergence rate for gradient descent-type methods for convex
programs under only Lipschitz conditions [30].

It is known that much faster global rates—in particular, a linear or geo-
metric rate—can be achieved if global regularity conditions like strong con-
vexity and smoothness are imposed [30]. An optimization algorithm is said
to exhibit linear or geometric convergence if the optimization error |6 — 0|
decays at a rate k', for some contraction coefficient x € (0, 1). Note that such
convergence is exponentially faster than sub-linear convergence. For certain
classes of problems involving polyhedral constraints and global smoothness,
Tseng and Luo [25] have established geometric convergence. However, a
challenging aspect of statistical estimation in high dimensions is that the
underlying optimization problems can never be strongly convex in a global
sense when d > n (since the d x d Hessian matrix is rank-deficient), and
global smoothness conditions cannot hold when d/n — +o00. Some more re-
cent work has exploited structure specific to the optimization problems that
arise in statistical settings. For the special case of sparse linear regression
with random isotropic designs (also referred to as compressed sensing), some
authors have established local linear convergence, meaning guarantees that
apply once the iterates are close enough to the optimum [9, 17]. Also in the
setting of compressed sensing, Tropp and Gilbert [41] studied finite conver-
gence of greedy algorithms, while Garg and Khandekar [16] provide results
for a thresholded gradient algorithm. In both of these results, the conver-
gence happens up to a tolerance of the order of the noise variance, which is
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 3

substantially larger than the true statistical precision of the problem.

The focus of this paper is the convergence rate of two simple gradient-
based algorithms for solving optimization problems that underlie regular-
ized M-estimators. For a constrained problem with a differentiable objec-
tive function, the projected gradient method generates a sequence of iterates
{6'}2°, by taking a step in the negative gradient direction, and then pro-
jecting the result onto the constraint set. The composite gradient method
of Nesterov [31] is well-suited to solving regularized problems formed by the
sum of a differentiable and a non-differentiable component.

The main contribution of this paper is to establish a form of global ge-
ometric convergence for these algorithms that holds for a broad class of
high-dimensional statistical problems. In order to provide intuition for this
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Fig 1. Convergence rates of projected gradient descent in application to
Lasso (¢1-constrained least-squares). Each panel shows the log optimization
error log || 6" —§|| versus the iteration number ¢. Panel (a) shows three curves,
corresponding to dimensions d € {5000, 10000,20000}, sparsity s = [V/d],
and all with the same sample size n = 2500. All cases show geometric con-
vergence, but the rate for larger problems becomes progressively slower. (b)
For an appropriately rescaled sample size (a = ﬁ), all three convergence
rates should be roughly the same, as predicted by the theory.

guarantee, Figure [I] shows the performance of projected gradient descent
for Lasso problems (¢1-constrained least-squares), each one based on a fixed
sample size n = 2500 and varying dimensions d € {5000, 10000,20000}. In
panel (a), we have plotted the logarithm of the optimization error, measured
in terms of the Euclidean norm ||#" — 8| between 6" and an optimal solution
5, versus the iteration number ¢. Note that all curves are linear (on this loga-
rithmic scale), revealing the geometric convergence predicted by our theory.
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4 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

Moreover, the results in panel (a) exhibit an interesting property: the con-
vergence rate is dimension-dependent, meaning that for a fixed sample size,
projected gradient descent converges more slowly for a large problem than a
smaller problem. This phenomenon reflects the natural intuition that larger
problems are “harder” than smaller problems. A notable aspect of our the-
ory is that it makes a quantitative prediction regarding the extent to which
a larger problem is harder than a smaller one. In particular, our convergence
rates suggest that if the sample size n is re-scaled according to the dimen-
sion d and also other model parameters such as sparsity, then convergence
rates should be roughly similar. Panel (b) confirms this prediction: when the
sample size is rescaled according to our theory (in particular, see Corollary 2]
in Section B.2)), then all three curves lie essentially on top of another.

Although high-dimensional optimization problems are typically neither
strongly convex nor smooth, this paper shows that it is fruitful to consider
suitably restricted notions of strong convexity and smoothness. Our notion
of restricted strong convexity (RSC) is related to but slightly different than
that of Negahban et al. [27] for establishing statistical consistency. We also
introduce a related notion of restricted smoothness (RSM), not needed for
proving statistical rates but essential in the setting of optimization. Our
analysis consists of two parts. We first show that for optimization problems
underlying many regularized M-estimators, RSC/RSM conditions are suffi-
cient to guarantee global linear convergence of projected gradient descent.
Our second contribution is to prove that for the iterates generated by our
methods, these RSC/RSM assumptions do hold with high probability for
numerous statistical models, among them sparse linear models, models with
group sparsity, and various matrix estimation problems, including matrix
completion and matrix decomposition.

An interesting aspect of our results is that the geometric convergence is
not guaranteed to an arbitrary precision, but only to an accuracy related
to statistical precision of the problem. For a given norm || - ||, the statistical
precision is given by the mean-squared error E[[|6 — 6*||?] between the true
parameter 6* and the solution 6 of the optimization problem. Our analysis
guarantees geometric convergence to a parameter 6 such that

10 = 67[| = 116 — %[ + o([l0 — 67])),

which is the best we can hope for statistically, ignoring lower order terms.
Overall, our results reveal an interesting connection between the statistical
and computational properties of M-estimators—that is, the properties of
the underlying statistical model that make it favorable for estimation also
render it more amenable to optimization procedures.
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The remainder of this paper is organized as follows. We begin in Section [2]
with our setup and the necessary background. Section [3] is devoted to the
statement of our main results and various corollaries. In Section ] we provide
a number of empirical results that confirm the sharpness of our theory. Proofs
of our results have been provided in the supplementary material [2].

2. Background and problem formulation. In this section, we begin
by describing the class of regularized M-estimators to which our analysis
applies, as well as the optimization algorithms that we analyze. Finally, we
introduce some important notions that underlie our analysis, including the
notions of a decomposable regularization, and the properties of restricted
strong convexity and smoothness.

2.1. Loss functions, regularization and gradient-based methods. Given a
random variable Z ~ P taking values in some set Z, let Z7 = {Z1,...,Z,}
be a sample of n observations. Assuming that P lies within some indexed fam-
ily {IPg, 6 € 1}, the goal is to recover an estimate of the unknown true param-
eter #* € Q) generating the data. Here Q is some subset of R?, where d is the
ambient dimension of the problem. In order to measure the “fit” of any 6 €
to a given data set Z7', we introduce a loss function £,, : 2 x Z" — R,. By
construction, for any given n-sample data set Z* € Z", the loss function
assigns a cost L£,,(0; Z1") > 0 to the parameter 6 € 2. In many applications,
the loss function has a separable structure across the data set, meaning that
L,(0;27) = L3570 0(0; Z;) where £ : Q x Z :— Ry is the loss function
associated with a single data point.

Of primary interest in this paper are estimation problems that are under-
determined, meaning that the sample size n is smaller than the ambient
dimension d. In such settings, without further restrictions on the parameter
space 2, there are various impossibility theorems, asserting that consistent
estimates of the unknown parameter 8* cannot be obtained. For this reason,
it is necessary to assume that the unknown parameter 6* either lies within
a smaller subset of €2, or is well-approximated by some member of such
a subset. In order to incorporate these types of structural constraints, we
introduce a reqularizer R : 2 — R over the parameter space. Given a user-
defined radius p > 0, our analysis applies to the constrained M -estimator

(1) 0, € argRr(%i)I%p{Cn(G; Z1)},

as well as to the regularized M -estimator

(2) Oy, € arg Rr(%%rglﬁ{ﬁn(ﬁs Z7) + MR(0)},
bn(0)
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6 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

where the regularization weight A, > 0 is user-defined. Note that the radii
p and p may be different in general. Throughout this paper, we impose the
following two conditions:

(a) for any data set Z7', the function L, (+; Z7") is convex and differentiable
over {2, and
(b) the regularizer R is a norm.

These conditions ensure that the overall problem is convex, so that by La-
grangian duality, the optimization problems (1) and (2) are equivalent. How-
ever, as our analysis will show, solving one or the other can be computa-
tionally more preferable depending upon the assumptions made. When the
radius p or the regularization parameter )\, is clear from the context, we
will drop the subscript on 6 to ease the notation. Similarly, we frequently
adopt the shorthand £,,(6). Procedures based on optimization problems of
either form are known as M-estimators in the statistics literature.

The focus of this paper is on two simple algorithms for solving the above
optimization problems. The method of projected gradient descent applies
naturally to the constrained problem (II), whereas the composite gradient
descent method due to Nesterov [31] is suitable for solving the regularized
problem (2). Each routine generates a sequence {6}° of iterates by first
initializing to some parameter #° € Q, and then for t = 0,1,2, ..., applying
the recursive update

(3) 6 =—arg min {L£,(60) + (VL.(6Y), 6 — 0") + 14|10 — 6|},
0€BR (p) 2

in the case of projected gradient descent, or the update

(4)
0 = arg min {L£,(0) + (VLa(0), 0 = 0°) + 210 — 02 + \R(6) }.
0€BR (p) 2

for the composite gradient method. Note that the only difference between
the two updates is the addition of the regularization term in the objective.
These updates have a natural intuition: the next iterate /! is obtained by
constrained minimization of a first-order approximation to the loss function,
combined with a smoothing term that controls how far one moves from the
current iterate in terms of Euclidean norm. Moreover, it is easily seen that
the update (@) is equivalent to

(5) oIt = H(Gt — 1v5n(9t)>,

Yu
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 7

where II = Il ,) denotes Euclidean projection onto the regularizer norm
ball Br(p) :={0 € Q | R(0) < p} of radius p. In this formulation, we see
that the algorithm takes a step in the negative gradient direction, using the
quantity 1/, as stepsize parameter, and then projects the resulting vector
onto the constraint set. The update (4] takes an analogous form, however,
the projection will depend on both A\, and ~,. As will be illustrated in
the examples to follow, for many problems, the updates ([B) and (@), or
equivalently (Bl), have a very simple solution. For instance, in the case of
{1-regularization, they are easily computed by an appropriate form of soft-
thresholding.

2.2. Restricted strong convexity and smoothness. In this section, we de-
fine the conditions on the loss function and regularizer that underlie our
analysis. Global smoothness and strong convexity assumptions play an im-
portant role in the classical analysis of optimization algorithms [0, &, [30]. In
application to a differentiable loss function £,,, both of these properties are
defined in terms of a first-order Taylor series expansion around a vector 6’
in the direction of 6—mnamely, the quantity

(6) 72(‘97 0,) = En(e) - ‘Cn(e,) - <V£n(9/)7 0 — 9/>

By the assumed convexity of L,,, this error is always non-negative, and global
strong convexity is equivalent to imposing a stronger condition, namely that
for some parameter 7, > 0, the first-order Taylor error T;(6;6') is lower
bounded by a quadratic term % ||§—6'||? for all §,6" € Q. Global smoothness
is defined in a similar way, by imposing a quadratic upper bound on the
Taylor error. It is known that under global smoothness and strong convexity
assumptions, the method of projected gradient descent (3]) enjoys a globall,

geometric convergence rate, meaning that there is some k € (0, 1) such tha

(7) 16 — 61> < k' [6° — ]2 for all iterations t = 0,1,2,....

We refer the reader to Bertsekas [6, Prop. 1.2.3, p. 145], or Nesterov [30,
Thm. 2.2.8, p. 88] for such results on projected gradient descent, and to
Nesterov [31] for related results on composite gradient descent.
Unfortunately, in the high-dimensional setting (d > n), it is usually im-
possible to guarantee strong convexity of the problem () in a global sense.
For instance, when the data is drawn i.i.d., the loss function consists of a
sum of n terms. If the loss is twice differentiable, the resulting d x d Hes-
sian matrix V2L£(0; Z}) is often a sum of n matrices each with rank one,

'In this statement (and throughout the paper), we use < to mean an inequality that
holds with some universal constant ¢, independent of the problem parameters.
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8 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

so that the Hessian is rank-degenerate when n < d. However, as we show
in this paper, in order to obtain fast convergence rates for the optimiza-
tion method (3), it is sufficient that (a) the objective is strongly convex and
smooth in a restricted set of directions, and (b) the algorithm approaches
the optimum 6 only along these directions. Let us now formalize these ideas.

DEFINITION 1 (Restricted strong convexity (RSC)). The loss func-
tion L, satisfies restricted strong convezity with respect to R and with pa-
rameters (g, 7o(Ly)) over the set Q' if

Q) Tz(0:60) > % 16— 0|12 — 7(L) R2(O—6)  for all 6,0 € V.

We refer to the quantity ~, as the (lower) curvature parameter, and to the
quantity 74 as the tolerance parameter. The set €’ corresponds to a suitably
chosen subset of the space €) of all possible parametersEp

In order to gain intuition for this definition, first suppose that the condi-
tion (B]) holds with tolerance parameter 7, = 0. In this case, the regularizer
plays no role in the definition, and condition (§]) is equivalent to the usual
definition of strong convexity on the optimization set 2. As discussed pre-
viously, this type of global strong convexity typically fails to hold for high-
dimensional inference problems. In contrast, when tolerance parameter 7 is
strictly positive, the condition (8) is much milder, in that it only applies to
a limited set of vectors. For a given pair 6 # €', consider the inequality

R0 —0) Ve
() 6—01F = 2r(Ln)

If this inequality is violated, then the right-hand side of the bound (§]) is non-
positive, in which case the RSC constraint (§]) is vacuous. Thus, RSC imposes
a non-trivial constraint only on pairs § # 6" for which the inequality (@)
holds, and a central part of our analysis will be to prove that for our methods,
the optimization error A! := # — § satisfies a constraint of the form (3).
We note that since the regularizer R is convex, strong convexity of the loss
function £,, also implies the strong convexity of the regularized loss ¢,.
We also specify an analogous notion of restricted smoothness:

DEFINITION 2 (Restricted smoothness (RSM)). We say the loss
function L, satisfies restricted smoothness with respect to R and with pa-

2 As pointed out by a referee, our RSC condition is an instance of the general theory of
paraconvexity (e.g., [32]); however, we are not aware of convergence rates for minimizing
general paraconvex functions.
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 9
rameters (vYu, Tu(Ly)) over the set ' if

(10)  Tz(6;6) < %“ 10 — 0% + 7u(L0) RO —0)  for all 6,6 € V.

As with our definition of restricted strong convexity, the additional tolerance
Tu(Ly) is not present in analogous smoothness conditions in the optimization
literature, but it is essential in our set-up.

2.3. Decomposable reqularizers. In past work on the statistical properties
of regularization, the notion of a decomposable regularizer has been shown
to be useful [27]. Although the focus of this paper is a rather different set of
questions—namely, optimization as opposed to statistics—decomposability
also plays an important role here. Decomposability is defined with respect
to a pair of subspaces defined with respect to the parameter space Q C R
The set M is known as the model subspace, whereas the set ./\_/lj'7 referred to
as the perturbation subspace, captures deviations from the model subspace.

DEFINITION 3. Given a subspace pair (M,/\_/lL) such that M C M, we
say that a norm R is (M,./WL)—decomposable if

(11) R(a+pB) =R(a) +R(H) for alloo € M and B € M.

To gain some intuition for this definition, note that by triangle inequality,
we always have the bound R(a + ) < R(a) + R(f). For a decomposable
regularizer, this inequality always holds with equality. Thus, given a fixed
vector a € M, the key property of any decomposable regularizer is that it
affords the maximum penalization of any deviation 8 € M.

For a given error norm || - ||, its interaction with the regularizer R plays
an important role in our results. In particular, we have the following:

DEFINITION 4 (Subspace compatibility). Given the reqularizer R(-) and
a norm || - ||, the associated subspace compatibility is given by

(12) W¥(M):= sup R(6)

— when M # {0}, and ¥({0}) := 0.
oext\foy 1101

The quantity W(M) corresponds to the Lipschitz constant of the norm R
with respect to || - ||, when restricted to the subspace M.
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10 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

2.4. Some illustrative examples. We now describe some particular exam-
ples of M-estimators with decomposable regularizers, and discuss the form
of the projected gradient updates as well as RSC/RSM conditions. We cover
two main families of examples: log-linear models with sparsity constraints
and /;-regularization (Section [Z4.]]), and matrix regression problems with
nuclear norm regularization (Section 2.4.2)).

2.4.1. Sparse log-linear models and ¢1-reqularization. Suppose that each
sample Z; consists of a scalar-vector pair (y;,z;) € R x R?, corresponding
to the scalar response y; € ) associated with a vector of predictors z; € R%.
A log-linear model with canonical link function assumes that the response
y; is linked to the covariate vector x; via a conditional distribution of the

form P(y; | z;;0%,0) x exp{yi <9*v$i>—<1;(<9*,xi))}, where c¢(o) is a known

c(o

scaling parameter, ®(-) is a known link function, and 6* € R is an unknown
regression vector. In many applications, §* is relatively sparse, so that it
is natural to impose an ¢1-constraint. Computing the maximum likelihood
estimate subject to such a constraint involves solving the convex progra

—~ ] 1
(13) 9 € argmin { = z; {B((0, ) — i 0, m}} such that [|6]l; < p,

Ln(6;27)

with z; € R? as its i*" row. We refer to this estimator as the log-linear Lasso;
it is a special case of the M-estimator (Il). Ordinary linear regression is the
special case of the log-linear setting with ®(¢) = #2/2 and Q = R% and in
this case, the estimator (I3)) corresponds to ordinary least-squares version
of Lasso [13],[40]. Other forms of log-linear Lasso that are of interest include
logistic regression, Poisson regression, and multinomial regression.

Projected gradient updates:. For the log-linear loss from equation (I3]), an
easy calculation yields the gradient VL, (0) = 2 3" | 2, {®((0, ;) — yi) },
and the update (5] corresponds to the Euclidean projection of the vector % —
V%Vﬁn(é?t) onto the /1-ball of radius p. It is well-known that this projection
can be characterized in terms of soft-thresholding, and that the projected
update (Bl can be computed in O(d) operations [14].

Composite gradient updates:. The composite gradient update for this prob-
lem amounts to solving

0t+1: . 9 ne ﬁg_etz )\ne '
arg||g|ﬁ|llllglﬁ{< , VL,(0) + 5 [ 12+ M| Hl}

3® is convex since it is the log-partition function of a canonical exponential family.
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 11

The update can be computed by two soft-thresholding operations. The first
step is soft thresolding the vector 6% — %Vﬁn(ﬁt) at a level \,. If the resulting
vector has ¢1-norm greater than p, then we project on to the ¢1-ball just like
before. Overall, the complexity of the update is still O(d) as before.

Decomposability of €1-norm:. We now illustrate how the ¢;-norm is de-
composable with respect to appropriately chosen subspaces. For any subset
S C{1,2,...,d}, consider the subspace

(14) M(S) = {aeR? | aj=0 forallj¢S},

corresponding to all vectors supported only on S. Defining M(S) = M(S),
its orthogonal complement (with respect to the Euclidean inner product) is
given by ML(S) = M*(S)={BeR? | B;=0forall j €S}. Since any
pair of vectors a € M(S) and g € ./WL(S ) have disjoint supports, it follows
that ||a|l1 + || ]2 = || + B|l1. Consequently, for any subset S, the ¢;-norm
is decomposable with respect to the pairs (M(S), M*(S)).

In analogy to the ¢1-norm, various types of group-sparse norms are also
decomposable with respect to non-trivial subspace pairs. We refer the reader
to the paper [27] for further examples of such decomposable norms.

RSC/RSM conditions:. A calculation using the mean-value theorem shows
that for the loss function (I3)), the error in the first-order Taylor series, as
previously defined in equation (@), can be written as

Tz (0:0) = Z<I>” (60, 22)) ({ws, 06— 0)

where 0; = t0+ (1 —1t)¢ for some ¢ € [0,1]. When n < d, then we can always
find pairs 0 # 6’ such that (x;, § — €) = 0 for all i = 1,2,...,n, showing
that the objective function can never be strongly convex. On the other hand,
RSC for log-linear models requires only that there exist positive numbers
(e, 7¢(Ly)) such that for all 6,6 €

(15) %Z@”(wt, v)) (G, 0 0))> 2 20— 01— 7u(L) R0~ 9),

i=1

where ' := QN Bs(R). This restriction is essential because for many gener-
alized linear models (e.g. logistic), the Hessian function ®” approaches zero
as its argument diverges. RSM imposes an analogous upper bound on the
Taylor error. For a broad class of log-linear models, such bounds hold with
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12 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

%. A detailed discussion of

tolerance 7¢(Ly) and 7,(L,) of the order
RSC for exponential families can be found in the paper [27].

In the special case of linear regression, we have ®”(t) = 1 for all t € R,
so that the lower bound (I5]) involves only the Gram matrix X7 X/n. (Here
X € R™ is the usual design matrix, with z; € R? as its 1" row.) For linear

regression and /;-regularization, the RSC condition is equivalent to

2
I > %HQ — 0|3 —Te(Ly) |0 -3 for all 6,6 € Q.

Such a condition corresponds to a variant of the restricted eigenvalue (RE)
conditions that have been studied in the literature [7, 42]. Such RE condi-
tions are significantly milder than the restricted isometry property; we refer
the reader to van de Geer and Buhlmann [42] for an in-depth comparison of
different RE conditions. From past work, the condition (I6) is satisfied with
high probability with a constant 7, > 0 and tolerance 74(L,) =< % for a
broad classes of anisotropic random design matrices [33), [38], and parts of
our analysis make use of this fact.

2.4.2. Matrices and nuclear norm regularization. We now discuss a gen-
eral class of matrix regression problems that falls within our framework.
Consider the space of dy x dy matrices endowed with the trace inner product
(A, B)) := trace(ATB). Let ©* € R4*% he an unknown matrix and sup-
pose that for i = 1,2, ..., n, we observe the pair Z; = (y;, X;) € R x Rhxd2,
where the scalar response y; and covariate matrix X; are linked to the un-
known matrix ©* via the linear model

(17) yi = (Xi, ©F) + wy, fori=1,2,...,n.

Here w; is an additive observation noise. In many contexts, it is natural to
assume that ©* is exactly low-rank, or approximately so, meaning that it
is well-approximated by a matrix of low rank. In such settings, a number of
authors (e.g., [15, 37, 28]) have studied the M-estimator

~ ) 1 <& 9
(18) ®carg_min {% > (i~ (X 0)) } such that [|O[; < p,

or the corresponding regularized version. Defining d = min{dy, ds}, the nu-

d
clear or trace norm is given by ||O][|1 := > 0;(©), corresponding to the sum

of the singular values. As discussed in Section [3:3] there are various appli-
cations in which this estimator and variants thereof have proven useful.
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 13

Form of projected gradient descent:. For the M-estimator (I8), the pro-
jected gradient updates take a very simple form—namely

10 (v — (X, ©%) Xi)

Yu n

(19) ol = H(@t -

where IT denotes Euclidean (i.e. in Frobenius norm) projection onto the nu-
clear norm ball By (p) = {© € R4*42 | ||@||; < p}. This nuclear norm pro-
jection can be obtained by first computing the singular value decomposition
(SVD), and then projecting the vector of singular values onto the ¢;-ball.
The latter step can be achieved by the fast projection algorithms discussed
earlier, and there are various methods for fast computation of SVDs. The
composite gradient update also has a simple form, requiring at most two
singular value thresholding operations.

Decomposability of nuclear norm:. We now define matrix subspaces for
which the nuclear norm is decomposable. Defining d := min{d;,ds}, let
U € R%*4 and V € R%*4 be arbitrary matrices with orthonormal columns.
Using col to denote the column span of a matrix, we define the subspaces@

MU, V) := {6 € R"*% | col(0T) C col(V), col(®) C col(U)}, and
MU, V) = {© € RU*% | ¢ol(07) C (col(V))*, col(®) C (col(U)) 1},

Finally, let us verify the decomposability of the nuclear norm . By construc-
tion, any pair of matrices © € M(U,V) and I" € /WL(U, V') have orthog-
onal row and column spaces, which implies the required decomposability
condition—namely [|© + Tl = |O]: + ||IT']:-

Finally, we note that in some special cases such as matrix completion or
matrix decomposition, 2’ will involve an additional bound on the entries of
O* as well as the iterates © to establish RSC/RSM conditions.

3. Main results and some consequences. We are now equipped to
state the two main results of our paper, and discuss some of their conse-
quences. We illustrate its application to several statistical models, including
sparse regression (Section [3.2]), matrix estimation with rank constraints (Sec-
tion B.3), and matrix decomposition problems (Section B.4]). The proofs of
all our results can be found in the supplementary material [2].

* Note that the model space M (U, V') is not equal to M(U, V). Nonetheless, as required
by Definition Bl we do have the inclusion M (U, V) C M(U,V).
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14 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

3.1. Geometric convergence. Recall that the projected gradient algo-
rithm (3 is well-suited to solving an M-estimation problem in its con-
strained form, whereas the composite gradient algorithm (4)) is appropriate
for a regularized problem. Accordingly, let 0 be any optimum of the con-
strained problem (I, or the regularized problem (2)), and let {6}, be a
sequence of iterates generated by generated by the projected gradient (3)),
or the the composite gradient updates (), respectively. Of primary interest
to us are bounds on the optimization error, which can be measured either in
terms of the error vector At := 9" —0, or the difference between the objective
values at 6% and 6. In this section, we state two main results—Theorems [l
and [2—corresponding to the constrained and regularized cases respectively.
In addition to the optimization error previously discussed, both of these
results involve the statistical error A* := 0 — 0* between the optimum 0
and the nominal parameter 6*. At a high level, these results guarantee that
under the RSC/RSM conditions, the optimization error shrinks geometri-
cally, with a contraction coefficient that depends on the the loss function
L, via the parameters (y¢, 7¢(Ly)) and (yu, 7(Ly)). An interesting feature
is that the contraction occurs only up to a certain tolerance €2 depending
on these same parameters, and the statistical error. However, as we discuss,
for many statistical problems of interest, we can show that this tolerance €
is of a lower order than the intrinsic statistical error, and consequently our
theory gives an upper bound on the number of iterations required to solve
an M-estimation problem up to the statistical precision.

Convergence rates for projected gradient:. We now provide the notation
necessary for a precise statement of this claim. Our main result involves

a family of upper bounds, one for each pair (M,./\_/IL) of R-decomposable
subspaces (see Defn. [B]). This subspace choice can be optimized for different

model to obtain the tightest possible bounds. For a given pair (./\/l,/\_/lL)
such that 16W2(M)7, (L) < Yu, let us define the contraction coefficient

(21)

_ 16W2(M) (74 (Lo Ly 1602 (M) 7y (Ln) 1
KL M) = {1—ﬂ+ (M) (ruln) + 7 ))} {1— 6W (M)r (£ )} .
Tu Tu Yu
In addition, we define the tolerance parameter
(22)
_ 2(7u(Ln D)) (2RI e (6%) + U(M)||A*]] + 2R(A*))?
e ) o 2T 7)) Ry (67) + WUV A") + 2R(A%)*

Yu

where A* = §—0* is the statistical error, and II L (0%) denotes the Euclidean
projection of #* onto the subspace M.
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 15

In terms of these two ingredients, we now state our first main result:

THEOREM 1. Suppose that the loss function L, satisfies the RSC/RSM_
condition with parameters (e, 7e(Ly)) and (Yu, Tu(Ln)) respectively. Let (M, M)
be any R-decomposable pair of subspaces such that M C M and

(23) 0 < K(Lp, M) < 1.

Then for any optimum ) of the problem () for which the constraint is active,
for all iterations t =0,1,2,..., we have

(A", M, M)

(24) e e e ,
— K

where k = Kk(Lp, M).

Remarks:. Theorem [ actually provides a family of upper bounds, one for
each R-decomposable pair (M, M) such that condition (Z3) holds. This
condition is always satisfied by setting M equal to the trivial subspace {0}:
indeed, by definition (IZ) of the subspace compatibility, we have ¥(M) = 0,
and hence k(L,;{0}) = (1— ;’—i) < 1. Although this choice of M minimizes
the contraction coefficient, it will leadﬁ to a very large tolerance parameter
(A% M, M ). A more typical application of Theorem [ involves non-trivial
choices of the subspace M.

The bound (24) guarantees that the optimization error decreases geo-
metrically, with contraction factor x € (0,1), up to a certain tolerance
proportional to €2(A*; M, M), as illustrated in Figure 2(a). Whenever the
tolerance terms in the RSC/RSM conditions decay to zero as the sample
size increases—the typical case— then the contraction factor x approaches
1 —¢/~vu. The appearance of the ratio ¢/, is natural since it measures the
conditioning of the objective function; more specifically, it is essentially a
restricted condition number of the Hessian matrix. On the other hand, the
residual error e defined in equation (22)) depends on the choice of decompos-
able subspaces, the parameters of the RSC/RSM conditions, and the statisti-
cal error A* = §—6*. In the corollaries of Theorem [ to follow, we show that
the subspaces can often be chosen such that €2(A*; M, M) = o(||6 — 6*||2).
Consequently, the bound (24) guarantees geometric convergence up to a
residual error smaller than statistical precision, as illustrated in Figure[2(b).
This is sensible, since in statistical settings, there is no point to optimizing
beyond the statistical precision.

®Indeed, the setting M~ = R? means that the term R(IT .1 (0*)) = R(0*) appears in
the tolerance; this quantity is far larger than statistical precision.
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16 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

(a) (b)
Fig 2. (a) Generic illustration of Theorem [II The optimization error

At =0t — 0 is guaranteed to decrease geometrically with coefficient x €
(0,1), up to the tolerance €* = €?(A*; M, M), represented by the circle.
(b) Relation between the optimization tolerance €2(A*; M, M) (solid cir-

cle) and the statistical precision ||[A*| = [|6* — 5“ (dotted circle). In many
settings, we have e2(A*; M, M) < ||A*]2.

The result of Theorem [I] takes a simpler form when there is a subspace
M that includes 0*, and the R-ball radius is chosen such that p < R(6*).

COROLLARY 1. In addition to the conditions of Theorem[, suppose that
0* € M and p < R(0%). Then as long as V(M) (1u(Ly) + 7¢(Lr)) = o(1),
we have for all iterations t =0,1,2, ...,

(25) 107 = 811 < £ 16° — )% + (110 — 01%).

Thus, Corollary [I] guarantees that the optimization error decreases geomet-
rically, with contraction factor k, up to a tolerance that is of strictly lower
order than the statistical precision H§ — 0*||2. As will be clarified in sev-
eral examples to follow, the condition W?(M)(7y(Ly) 4+ 7¢(Ln)) = o(1) is
satisfied for many statistical models, including sparse linear regression and
low-rank matrix regression. This result is illustrated in Figure 2(b), where
the solid circle represents the optimization tolerance, and the dotted circle
represents the statistical precision. In the results to follow, we quantify the
term 0(\\5 — 6*||?) in a more precise manner for different statistical models.

Convergence rates for composite gradient:. We now present our main result
for the composite gradient iterates (d) that are suitable for the Lagrangian-
based estimator (2). As before, our analysis yields a range of bounds indexed

imsart-aos ver. 2007/12/10 file: AOS_sparseopt.tex date: July 25, 2012



FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 17

by subspace pairs (M, ./\__/lL) that are R-decomposable. For any subspace M
such that 6474(L,,)¥%(M) < v, we define effective RSC coefficient as

(26) i = e — 647¢(Ly,) VP (M).

This coefficient accounts for the residual amount of strong convexity after
accounting for the lower tolerance terms. In addition, we define the com-
pound contraction coefficient as

Ye 2(M Tu\kn Wi
(27) (L ) = {1 _ 4% el (“\j_j (& )} (M)

where {(M) = (1— %%\PQM)A, and A* = 0 — 6" is the statistical

error Vecto@ for a specific choice of p and A,. As before, the coefficient k
measures the geometric rate of convergence for the algorithm. Finally, we
define the compound tolerance parameter

2

(28) (A" M, M) = 8E(M) BM) (68 (M)[|AT[| + 8R(ILp (7))

Ve
with our previous result, the tolerance parameter determines the radius up

to which geometric convergence can be attained.

Recall that the regularized problem (2)) involves both a regularization
weight A\, and a constraint radius p. Our theory requires that the constraint
radius is chosen such that p > R(6*), which ensures that 6* is feasible. In
addition, the regularization parameter should be chosen to satisfy

where S(M) = 2 (g + w) (L) + 87u(Ln) + 27¢(Ln). As

(29) An 2 2R* (VL (07)),

where R* is the dual norm of the regularizer. This constraint is known to play
an important role in proving bounds on the statistical error of regularized
M-estimators (see the paper [27] and references therein for further details).
Recalling the definition (2) of the overall objective function ¢, the following
result provides bounds on the excess loss ¢, (0') — dn (6, ).

THEOREM 2. Consider the optimization problem (2l) for a radius p such
that 0* is feasible, and a regularization parameter A, satisfying the bound (29]),
and suppose that the loss function Ly, satisfies the RSC/RSM condition with

5When the context is clear, we remind the reader that we drop the subscript A, on the
parameter 6.
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18 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

parameters (e, 7¢(Ly)) and (v, 7u(Lr)) respectively. Let (/\/l,/\_/ll) be any
R-decomposable pair such that

325

(30) K = K(Ln, M) €[0,1), and 1= m(Lo M)

EM)BM) < An.

Then for any 6% > 62(%7/\:)’/\/0, we have ¢, (0) — gbn(é;\n) < 62 for all

P (00) = (O,) B
Qlog% PAn log 2
> —_— _ ).
BU 2 T “0g21°g2<62 ><1+1og<1/m>>

Remarks:. Note that the bound (BI]) guarantees the excess loss ¢, (0') — ¢,,(6)
decays geometrically up to any squared error §% larger than the compound
tolerance (28). Moreover, the RSC condition also allows us to further trans-
late this result to a bound on the optimization error 6t — 0. In particular,
for any iterate 6’ such that ¢, (0") — ¢,(#) < 62, we are guaranteed that

~ 2 2 1 2 n 4 n N\ II 1)) 2
(32) (16" =0y, |1 < 2 Géff(f ) | A7e(Ln) (6F (M) + SR(TLq2 (7))

In conjunction with Theorem 2 we see that it suffices to take a number
of steps that is logarithmic in the inverse tolerance (1/J), again showing a
geometric rate of convergence.

Whereas Theorem [ requires setting the radius so that the constraint is
active, Theorem [2] has only a very mild constraint on the radius p, namely
that it be large enough such that p > R(6*). The reason for this much milder
requirement is that the additive regularization with weight A, suffices to
constrain the solution, whereas the extra side constraint is only needed to
ensure good behavior of the optimization algorithm in the first few iterations.

Step-size setting:. It seems that the updates ([B) and () need to know
the smoothness bound -y, in order to set the step-size for gradient updates.
However, we can use the same doubling trick as described in Algorithm (3.1)
of Nesterov [31]. At each step, we check if the smoothness upper bound holds
at the current iterate relative to the previous one. If the condition does not
hold, we double our estimate of 7, and resume. Nesterov [31] demonstrates
that this guarantees a geometric convergence with a contraction factor worse
at most by a factor of 2, compared to the knowledge of ~,.

The following subsections are devoted to the development of some con-
sequences of Theorems [I] and 2] and Corollary [ for some specific statistical
models, among them sparse linear regression with ¢1-regularization, and ma-
trix regression with nuclear norm regularization. In contrast to the entirely
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 19

deterministic arguments that underlie the Theorems [I] and 2, these corol-
laries involve probabilistic arguments, more specifically in order to establish
that the RSC and RSM properties hold with high probability.

3.2. Sparse vector regression. Recall from Section 2.4.1] the observation
model for sparse linear regression. In a variety of applications, it is natural
to assume that #* is sparse. For a parameter ¢ € [0, 1] and radius R, > 0,
let us define the ¢, “ball”

d
(33) By(Ry) = {0 € R | > |89 < R, }.
j=1

Note that ¢ = 0 corresponds to the case of “hard sparsity”, for which any
vector € By(Rp) is supported on a set of cardinality at most Ry. For
q € (0,1], membership in the set B, (R,) enforces a decay rate on the ordered
coefficients, thereby modelling approximate sparsity. In order to estimate the
unknown regression vector 6* € B,(R,), we consider the least-squares Lasso
estimator from Section ZZ1] based on L(0;Z7) := & |y — X0||3, where
X € R™9 is the design matrix. In order to state a concrete result, we
consider a random design matrix X, in which each row z; € R? is drawn
iid. from a N(0,X) distribution, where ¥ is the covariance matrix. We use
Omax(2) and opin () to refer the maximum and minimum eigenvalues of 3

respectively, and ((¥) := max dej for the maximum variance. We also
§=1,2,...,

assume that the observation noise is zero-mean and v2-sub-Gaussian.

Guarantees for constrained Lasso:. Our convergence rate on the optimiza-
tion error 6% — 0 is stated in terms of the contraction coefficient

(34) K= {1—m+xn(z)} {1—xn(2)}71,

where we have adopted the shorthand

cod(X logd\1—4/2
<35) Xn(E) = Umoai(z)) Rq ( 5 ) ! for ¢ > 0
oiofi(zz)) 8 (105(1) for ¢ =0 ’

for a numerical constant cg. We assume that x,,(2) is small enough to ensure
that k € (0,1); in terms of the sample size, this amounts to a condition of
the form n = Q(Ré/ (1=a/2) log d). Such a scaling is sensible, since it is known
from minimax theory on sparse linear regression [34] to be necessary for any
method to be statistically consistent over the ¢,-ball.

With this set-up, we have the following consequence of Theorem [Ik
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20 A. AGARWAL AND S. NEGAHBAN AND M. J. WAINWRIGHT

COROLLARY 2 (Sparse vector recovery). Under conditions of Theorem/[],
suppose that we solve the constrained Lasso with p < ||0*||1 and vy, = 20max(X).

(a) Exact sparsity: Suppose that 6* is supported on a subset of cardinality s.
Then the iterates [Bl) satisfy

(36) 16" = 013 < K*10° = 6113 + 2 xa(Z) 10 - 6113

for allt =0,1,2,... with probability at least 1 — exp(—cy logd).
(b) Weak sparsity: Suppose that 0* € B,(R,) for some q € (0,1]. Then the
error |0t — 0|3 in the iterates ([B) is at most

~ logd,1- ~
BT 16 =018 + o a() { R (B 4 10— 071

for allt =0,1,2,... with probability at least 1 — exp(—cy logd).

We can now compare part (a), which deals with the special case of ex-
actly sparse vectors, to some past work that has established convergence
guarantees for optimization algorithms for sparse linear regression. Certain
methods are known to converge at sublinear rates (e.g., [9]), more specifi-
cally at the rate O(1/t?). The geometric rate of convergence guaranteed by
Corollary [2is exponentially faster. Other work on sparse regression has pro-
vided geometric rates of convergence that hold once the iterates are close to
the optimum [9, [I7], or geometric convergence up to the noise level v? using
various methods, including greedy methods [41] and thresholded gradient
methods [16]. In contrast, Corollary 2] guarantees geometric convergence for
all iterates up to a precision below that of statistical error. For these prob-
lems, the statistical error % is typically much smaller than the noise
2 and decreases as the sample size is increased.

In addition, Corollary [2] also applies to the case of approximately sparse
vectors, lying within the set B,(R,) for ¢ € (0, 1]. There are some important
differences between the case of exact sparsity and that of approximate spar-
sity. Part (a) guarantees geometric convergence to a tolerance depending
only on the statistical error [|§ — 6*||2. In contrast, the second result also

has the additional term Rq(%)l_q/ ?. This second term arises due to the
statistical non-identifiability of linear regression over the /,-ball, and it is no

variance v

larger than ||§— 0*||3 with high probability. This fact follows from known
results [34] about minimax rates for linear regression over /,-balls; these
unimprovable rates include a term of this order.
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FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 21

Guarantees for reqularized Lasso:. Using similar methods, we can also use
Theorem [2] to obtain an analogous guarantee for the regularized Lasso esti-
mator. Here focus only on the case of exact sparsity, although the result ex-
tends to approximate sparsity in a similar fashion. Letting ¢;,¢ = 0,1, 2, 3,4
be universal positive constants, we define the modified curvature constant
Vi =Y — Co %C(Z). Our results assume that n = Q(slogd), a condi-
tion known to be necessary for statistical consistency, so that 47 > 0. The

contraction factor then takes the form

Umin(z)

wo={1- 160max (%)

-1
+ Can(Z)} {1 - C2Xn(z)} )
where y,(X) := % sl‘:ligd. The residual error in the optimization is given
by

2 5+ coxn(X) ¢(X) slogd
b1~ C3Xn(z) n

(38) ¢ 16" — 13,

where 6* € R? is the unknown regression vector, and 0 is any optimal solu-
tion. With this notation, we have the following corollary.

COROLLARY 3 (Regularized Lasso). Under the conditions of Theorem|[Z,

suppose that we solve the regularized Lasso with A, = 6v4/ logd, and that 6*

1s supported on a subset of cardinality at most s. Suppose further that we
have

log d 7 4slogd v 128slogd/n) ~*
(39) 6452 {5+W+650_g /"}{W—&ng /”} < An.
4’Yu Ye 4'Yu Ye

Then for any 6% > €2, and any optimum é;\n, we have

16" — @\,\nﬂg <42 for all iterations t > (log M)/(log 1)
with probability at least 1 — exp(—cqlogd).

As with Corollary 2(a), this result guarantees that O(log(1/€2))) iterations
are sufficient to obtain an iterate 6" that is within squared error O(€2)) of any
optimum 6), . The condition (B9) is the specialization of equation (B0) to the
sparse linear regression problem, and imposes an upper bound on admissible
settings of p for our theory. Moreover, whenever % = o(1)—a condition
that is required for statistical consistency of any method by known minimax

results [34]—the residual error €2 is of lower order than the statistical error
16— 0113.
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3.3. Matriz regression with rank constraints. We now turn to estimation
of matrices under various types of “soft” rank constraints. Recall the model
of matrix regression from Section [Z4.2] and the M-estimator based on least-
squares regularized with the nuclear norm (I8]). So as to reduce notational
overhead, here we specialize to square matrices ©* € R%*? so that our
observations are of the form

(40) yi = (Xi, ©") +w;, fori=1,2,...,n,

where X; € R™? is a matrix of covariates, and w; ~ N(0,22) is Gaussian
noise. As discussed in Section 242 the nuclear norm R(©) = ||O]; =
Z?:l 0;(0O) is decomposable with respect to appropriately chosen matrix
subspaces, and we exploit this fact heavily in our analysis.

We model the behavior of both exactly and approximately low-rank ma-
trices by enforcing a sparsity condition on the vector of singular values. In
particular, for a parameter ¢ € [0, 1], we define the £,-“ball” of matrices

d
(41) By(Ry) := {0 € R | Y "|0;(0)|7 < R},
j=1

where ¢,(0) denotes the j* singular value of ©. Note that if ¢ = 0, then
Bo(Rp) consists of the set of all matrices with rank at most » = Ry. On the
other hand, for ¢ € (0, 1], the set B,(R,) contains matrices of all ranks, but
enforces a relatively fast rate of decay on the singular values.

3.3.1. Bounds for matriz compressed sensing. We begin by considering
the compressed sensing version of matrix regression, a model first introduced
by Recht et al. [36], and later studied by other authors (e.g., [22, 28]). In this
model, the observation matrices X; € R%%? are dense and drawn from some
random ensemble. The simplest example is the standard Gaussian ensemble,
in which each entry of X; is drawn i.i.d. as standard normal N(0,1). Note
that X; is a dense matrix in general; this in an important contrast with the
matrix completion setting to follow shortly.

Here we consider a more general ensemble of random matrices X;, in which
each matrix X; € R%? is drawn i.i.d. from a zero-mean normal distribution
in RY with covariance matrix ¥ € R¥*4”, The setting > = I 2,42 Tecov-
ers the standard Gaussian ensemble studied in past work. As usual, we let
Omax(2) and opin(X) define the maximum and minimum eigenvalues of 3,
and we define (,..(X) = Sup|y|j,—1 SUP|jy,=1 var ((X, uv™))), corresponding
to the maximal variance of X when projected onto rank one matrices. For
the identity ensemble, we have (,..(I) = 1.
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We now state a result on the convergence of the updates (I9) when applied
to a statistical problem involving a matrix ©* € By(R,). The convergence
rate depends on the contraction coefficient

K= {1 - m +Xn(2)} {1 - Xn(z)}_la

where x,,(X) := %itg) Rq(%)kq/ ? for some universal constant ¢;. In the
case g = 0, corresponding to matrices with rank at most r, note that we have
Ry = r. With this notation, we have the following convergence guarantee:

COROLLARY 4 (Low-rank matrix recovery). Under the conditions of
Theorem[d, consider the semidefinite program ([I8) with p < ||©*|1, and sup-
pose that we apply the projected gradient updates ([I9) with vy = 20max(X).

(a) Exactly low-rank: Suppose that ©* has rank r < d. Then the iter-
ates (I9)) satisfy the bound

(42) 0" - Ol < £'10° = Bl + ¢z xa(E) 16 — O°

for allt =0,1,2,... with probability at least 1 — exp(—cod).
(b) Approximately low-rank: Suppose that ©* € By (R,) for some q € (0, 1].
Then the iterates (I9) satisfy

- - d 1—q/2 R .
6"~ 81 < #16° - 81 + eoa(®) { o (2) T +16- "I},

forallt =0,1,2,... with probability at least 1 — exp(—cod).

Although quantitative aspects of the rates are different, Corollary Ml is
analogous to Corollary 2l For the case of exactly low rank matrices (part
(a)), geometric convergence is guaranteed up to a tolerance involving the
statistical error [|© — ©* |%.. For the case of approximately low rank matrices
(part (b)), the tolerance term involves an additional factor of Rq(%)l_Q/ 2,
Again, from known results on minimax rates for matrix estimation [37],
this term is known to be of comparable or lower order than the quantity
16 — O©*||%. As before, it is also possible to derive an analogous corollary
of Theorem [2 for estimating low-rank matrices; in the interests of space, we
leave such a development to the reader.

3.3.2. Bounds for matriz completion. In this model, observation y; is a

noisy version of a randomly selected entry @Z(i) b(i) of the unknown matrix
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©*. Applications of this matrix completion problem include collaborative
filtering [39], where the rows of the matrix ©* correspond to users, and the
columns correspond to items (e.g., movies in the Netflix database), and the
entry ©7, corresponds to user’s a rating of item b. Given observations of only
a subset of the entries of ©*, the goal is to fill in, or complete the matrix,
thereby making recommendations of movies that a user has not yet seen.

Matrix completion can be viewed as a particular case of the matrix re-
gression model (I7)), in particular by setting X; = Eq(iyb(i), corresponding
to the matrix with a single one in position (a(i),b(i)), and zeroes in all
other positions. Note that these observation matrices are extremely sparse,
in contrast to the compressed sensing model. Nuclear-norm based estima-
tors for matrix completion are known to have good statistical properties
(e.g., [11), 35, B9, 29]). Here we consider the M-estimator

n

=~ 1 2
(43) O € arg min o Z (yi — Ouipp(iy)” such that O]y < p,

1=

where Q = {6 € R™? | |0/ < 2} is the set of matrices with bounded
elementwise ¢, norm. This constraint eliminates matrices that are overly
“spiky” (i.e., concentrate too much of their mass in a single position); as
discussed in the paper [29], such spikiness control is necessary in order to
bound the non-identifiable component of the matrix completion model.

COROLLARY 5 (Matrix completion).  Under the conditions of Theorem/[],
suppose that ©* € B,(Ry), and that we solve the program ([A3) with p < [|©* 1.
As long as n > coRé/(l_Q/Q) dlogd for a sufficiently large constant cy, then

there is a contraction coefficient 7y € (0,1) that decreases with t such that
(44)

~ _ ~ a’dlogd
101 — B} < &L 60 — BIF + e { Ry (225

1-¢/2 A X
)18 - e}
for all iterations t = 0, 1,2, ..., with probability at least 1 — exp(—ci1dlogd).

As with our previous results, the residual optimization error in this re-
sult is of the same order as known statistical minimax rates for the matrix
completion problem under the soft-rank model described here (cf. Theorem
3 in Negahban and Wainwright [29]). In some cases, the bound on ||0||s in
the algorithm (43]) might be unknown, or undesirable. While this constraint
is necessary in general [29], it can be avoided if more information such as
the sampling distribution (that is, the distribution of X;) is known and used

imsart-aos ver. 2007/12/10 file: AOS_sparseopt.tex date: July 25, 2012



FAST GLOBAL CONVERGENCE OF GRADIENT METHODS 25

to construct the estimator. In this case, Koltchinskii et al. [2I] use an al-
ternative nuclear-norm penalized estimator for which it is not necessary to
directly impose an ¢, bound on o.

Again a similar corollary of Theorem [2] can be derived by combining the
proof of Corollary [ with that of Theorem 2l An interesting aspect of this

problem is that the condition BO(b) takes the form A, > mivff;gd/n, where
« is a bound on ||©||«. This condition is independent of p, and hence, given
a sample size as stated in the corollary, the algorithm always converges
geometrically for any radius p > [|©*||;.

3.4. Matriz decomposition problems. In recent years, various researchers
have studied methods for solving the problem of matrix decomposition
(e.g., [12], 10, 43, 1, [18]). The basic problem has the following form: given
a pair of unknown matrices ©* and I'*, both lying in R4 *% suppose that
we observe a third matrix specified by the model Y = ©* +I'* + W, where
W e R%%d2 represents observation noise. Typically the matrix ©* is as-
sumed to be low-rank, and some low-dimensional structural constraint is
assumed on the matrix I'*. For example, the papers [12] 10, [I8] consider the
setting in which I'* is sparse, while Xu et al. [43] consider a column-sparse
model, in which only a few of the columns of I'* have non-zero entries. In
order to illustrate the application of our general result to this setting, here
we consider the low-rank plus column-sparse framework [43]. (We note that
since the ¢1-norm is decomposable, similar results can easily be derived for
the low-rank plus entrywise-sparse setting as well.)

Since ©* is assumed to be low-rank, as before we use the nuclear norm
IO[li as a regularizer (see Section Z4.2]). We assume that the unknown
matrix I'* € R4*% g column-sparse, say with at most s < do non-zero
columns. A suitable convex regularizer for this matrix structure is based on
the columnwise (1,2)-norm, given by

do
(45) ITf12 = 1Tl
j=1

where I'; € R4 denotes the j* column of T'. Note also that the dual norm
is given by the elementwise (00, 2)-norm ||I'||cc,2 = maxj—i . g, [|T'}||2, cor-
responding to the maximum fo-norm over columns.

In order to estimate the unknown pair (©*,I'*), we consider the M-
estimator (©,T) which minimizes the objective

(0%
46) min|Y — 0 —T|% s.t. [|O]1 < po, |IT]12 < pr, ||© < —.
(46) nix I I st 10llr < peo, [ITll1,2 < pr, || ||oo,27\/£
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The first two constraints restrict © and I' to a nuclear norm ball of radius
pe and a (1,2)-norm ball of radius pr, respectively. The final constraint
controls the “spikiness” of the low-rank component ©, as measured in the
(00, 2)-norm, corresponding to the maximum fe-norm over the columns. As
with the elementwise £,-bound for matrix completion, this additional con-
straint is required in order to limit the non-identifiability in matrix decom-
position. (See the paper [I] for more discussion of non-identifiability issues
in matrix decomposition.)

With this set-up, consider the projected gradient algorithm when applied
to the matrix decomposition problem: it generates a sequence of matrix
pairs (O, T?) for t = 0,1,2,..., and the optimization error is characterized
in terms of the matrices &g = 0! — 0 and A% =Tt -T. Finally, we mea-
sure the optimization error at time ¢ in terms of the squared Frobenius er-
ror 62(3%, ﬁ%) = |||£7E9 1% + |||£HH%, summed across both the low-rank and
column-sparse components.

COROLLARY 6 (Matrix decomposition). Under the conditions of Theo-
rem/[d, suppose that ||©*|| 2 < \/Ld—z and T* has at most s non-zero columns.

If we solve the convex program @Bl with pe < [©*|1 and pr < ||T*|12,
then for all iterations t =0,1,2,...,
¢
(3680 = (3) @A+ (IF-T +a7] ).
2
This corollary has some unusual aspects, relative to the previous corol-
laries. First of all, in contrast to the previous results, the guarantee is a
deterministic one (as opposed to holding with high probability). More specif-
ically, the RSC/RSM conditions hold deterministic sense, which should be
contrasted with the high probability statements given in Corollaries 215l
Consequently, the effective conditioning of the problem does not depend on
sample size and we are guaranteed geometric convergence at a fixed rate,
independent of sample size. The additional tolerance term is completely in-
dependent of ©®* and only depends on the column-sparsity of I'*.

4. Simulation results. In this section, we provide some experimental
results that confirm the accuracy of our theoretical results, in particular
showing excellent agreement with the linear rates predicted by our theory. In
addition, the rates of convergence slow down for smaller sample sizes, which
lead to problems with relatively poor conditioning. In all the simulations
reported below, we plot the log error [|6" — 6] between the iterate 6 at time
t versus the final solution 6. Each curve provides the results averaged over
five random trials, according to the ensembles which we now describe.
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4.1. Sparse regression. We investigate the standard linear regression model
y = X6 4+ w where 6* is the unknown regression vector belonging to the set
B,(R,), and i.i.d. observation noise w; ~ N(0,0.25). We consider a family
of ensembles for the random design matrix X € R"*¢. In particular, we
construct X by generating each row x; € R? independently according to
following procedure. Let z1, ..., 2z, be an i.i.d. sequence of N (0, 1) variables,
and fix some correlation parameter w € [0,1). We first initialize by setting
xi1 = z1/V1 — w?, and then generate the remaining entries by applying the
recursive update x; ;41 = wr;+2 fort =1,2,...,d—1, so that x; € R? is a
zero-mean Gaussian random vector. It can be verified that all the eigenval-
ues of X = cov(z;) lie within the interval [(1+1w)2, (1_w)§(1+w)], so that ¥ has
a a finite condition number for all w € [0,1). At one extreme, for w = 0, the
matrix ¥ is the identity, and so has condition number equal to 1. As w — 1,
the matrix ¥ becomes progressively more ill-conditioned, with a condition
number that is very large for w close to one. As a consequence, although
incoherence conditions like the restricted isometry property can be satisfied
when w = 0, they will fail to be satisfied (w.h.p.) once w is large enough.

For this random ensemble of problems, we have investigated convergence
rates for a wide range of dimensions d and radii R,. Since the results are
relatively uniform across the choice of these parameters, here we report
results for dimension d = 20,000, and radius R, = [(logd)?]. In the case
q = 0, the radius Ry = s corresponds to the sparsity level. The per iteration
cost in this case is O(nd). In order to reveal dependence of convergence rates
on sample size, we study a range of the form n = [« slogd]|, where the order
parameter « > 0 is varied.

Our first experiment is based on taking the correlation parameter w = 0,
and the /,-ball parameter ¢ = 0, corresponding to exact sparsity. We then
measure convergence rates for sample sizes specified by « € {1,1.25,5,25}.
As shown by the results plotted in panel (a) of Figure Bl projected gradi-
ent descent fails to converge for @« = 1 or a = 1.25; in both these cases,
the sample size n is too small for the RSC and RSM conditions to hold, so
that a constant step size leads to oscillatory behavior in the algorithm. In
contrast, once the order parameter o becomes large enough to ensure that
the RSC/RSM conditions hold (w.h.p.), we observe a geometric convergence
of the error ||#" — 6]|o. Moreover the convergence rate is faster for o = 25
compared to a = 5, since the RSC/RSM constants are better with larger
sample size. Such behavior is in agreement with the conclusions of Corol-
lary 2, which predicts that the the convergence rate should improve as the
number of samples n is increased.

On the other hand, Corollary 2lalso predicts that convergence rates should
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Fig 3. Plot of the log of the optimization error log(]|6" — §H2) in the sparse
linear regression problem, rescaled so the plots start at 0. In this problem,
d = 20000, s = [logd], n = aslogd. Plot (a) shows convergence for the
exact sparse case with ¢ = 0 and ¥ = I (i.e. w = 0). In panel (b), we
observe how convergence rates change as the correlation parameter w is
varied for ¢ = 0 and o = 25. Plot (c) shows the convergence rates when
w =0, a =25 and ¢ is varied. Plot (d), repeated from Figure [[] shows that
keeping « fixed keeps the converegence rate constant across problem sizes.

be slower when the condition number of ¥ is worse. In order to test this pre-
diction, we again studied an exactly sparse problem (¢ = 0), this time with
the fixed sample size n = [25slogd], and we varied the correlation param-
eter w € {0,0.5,0.8}. As shown in panel (b) of Figure Bl the convergence
rates slow down as the correlation parameter is increased and for the case of
extremely high correlation of w = 0.8, the optimization error curve is almost
flat—the method makes very slow progress in this case.
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A third prediction of Corollary [2] is that the convergence of projected
gradient descent should become slower as the sparsity parameter ¢ is varied
between exact sparsity (¢ = 0), and the least sparse case (¢ = 1). (In particu-
lar, note for n > logd, the quantity x, from equation (B3] is monotonically
increasing with ¢.) Panel (c¢) of Figure Bl shows convergence rates for the
fixed sample size n = 25slogd and correlation parameter w = 0, and with
the sparsity parameter g € {0,0.5,1.0}. As expected, the convergence rate
slows down as ¢ increases from 0 to 1. Corollary 2] further captures how the
contraction factor changes as the problem parameters (s,d,n) are varied.
In particular, it predicts that as we change the triplet simultaneously, while
holding the ratio o = slogd/n constant, the convergence rate should stay
the same. This phenomenon that we earlier pointed out in the introduction
is indeed demonstrated in Figure [B(d).

5. Low-rank matrix estimation. We also performed experiments with
two different versions of low-rank matrix regression. Our simulations applied
to instances of the observation model y; = (X;, ©*)+w;, fori =1,2,...,n,
where ©* € R200x200 j5 5 fixed unknown matrix, X; € R?90%290 ig 3 matrix of
covariates, and w; ~ N (0,0.25) is observation noise. In analogy to the sparse
vector problem, we performed simulations with the matrix ©* belonging to
the set B,(R,) of approximately low-rank matrices, as previously defined in
equation ({I]) for g € [0, 1]. The case ¢ = 0 corresponds to the set of matrices
with rank at most » = Ry, whereas the case ¢ = 1 corresponds to the ball
of matrices with nuclear norm at most Rj.

In our first set of matrix experiments, we considered the matrix version
of compressed sensing [35], in which each matrix X; € R?00%200 js randomly
formed with i.i.d. N(0,1) entries, as described in Section B3Il In the case
g = 0, we formed a matrix ©* € R?00x200 with rank Ry = 5, and per-
formed simulations over the sample sizes n = aRyd, with the parameter
a € {1,1.25,5,25}. The per iteration cost in this case is O(nd?). As seen
in panel (a) of Figure M, the projected gradient descent method exhibits
behavior that is qualitatively similar to that for the sparse linear regression
problem. More specifically, it fails to converge when the sample size (as re-
flected by the order parameter «) is too small, and converges geometrically
with a progressively faster rate as « is increased. We have also observed
similar types of scaling as we vary ¢ € [0, 1].

In our second set of matrix experiments, we studied the behavior of pro-
jected gradient descent for the problem of matrix completion, as described
in Section For this problem, we again studied matrices of dimension
d = 200 and rank Ry = 5, and we varied the sample size as n = o Ry dlogd
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Fig 4. (a) Plot of log Frobenius error log([|©' — ©||) versus number of
iterations in matrix compressed sensing for a matrix size d = 200 with
rank Rg = 5, and sample sizes n = aRod. For a € {1,1.25}, the algorithm
oscillates, whereas geometric convergence is obtained for « € {5,25}. (b)
Convergence rate for the matrix completion problem with d = 200, Ry = 5,
and n = aR,dlog(d) with o € {1,2,5,25}. For a € {2,5,25} the algorithm
enjoys geometric convergence.

for a € {1,2,5,25}. As shown in Figured(b), projected gradient descent for
matrix completion also enjoys geometric convergence for « large enough.

6. Discussion. In this paper, we have shown that even though high-
dimensional M-estimators in statistics are neither strongly convex nor smooth,
simple first-order methods can still enjoy global guarantees of geometric
convergence. The key insight is that strong convexity and smoothness need
only hold in restricted senses, and moreover, these conditions are satisfied
with high probability for many statistical models and decomposable regu-
larizers used in practice. Examples include sparse linear regression and ¢-
regularization, various statistical models with group-sparse regularization,
matrix regression with nuclear norm constraints (including matrix comple-
tion and multi-task learning), and matrix decomposition problems. Some
related work also shows that related ideas can be used to provide rigorous
guarantees for gradient methods in application to certain classes of non-
convex programs [23]. Overall, our results highlight some important connec-
tions between computation and statistics: the properties of M-estimators
favorable for fast rates in statistics can also be used to establish fast rates
for optimization algorithms.
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